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Quest of a logic for P, short recap

Find an enumeration of the P queries (more or less: [Gur88])

Immerman-Vardi theorem: FP over ordered structures

Over arbitrary structures:

FP does not express Parity
FP + C ̸= P [CFI92]
FP + rk ̸= P [Lic23]

CPT ?

Over restricted classes of unordered structures:

FP + C captures P on any class of structures with bounded
tree-width [GM99]
More generally, FP + C captures P on any class of structures
which excludes a minor [Gro17].

Relies on canonisation
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The role of permutation groups in Graph Isomorphism

Graph Automorphism problem (GAC): given G ∈ C, output a
generating set for Aut(G) ≤ Sym(VG).

Note: a polynomial-size such generating set always exists.

GIC ≤P GAC for any union-closed class of (connected) graphs
C.
Based on this insight, many upper bounds have been found for
Graph Iso and/or Canonisation for restricted (or not) classes
of graphs [Bab79, Luk82, BL83, Bab16]. Most use the CFSG.
One exception: Bounded Colour-class Graph Isomorphism.
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Primitive operations on permutation groups

All those results rely on some fundamental operations on
permutation groups which can be carried out in polynomial time,
thanks to the Schreier-Sims algorithm:

Given S ⊆ Sym(D), output |⟨S⟩|.
Given S ⊆ Sym(D) and σ ∈ Sym(D), does σ ∈ ⟨S⟩ ?
Given S ⊆ Sym(D) and a black-box membership test for
H ≤ ⟨S⟩ such that |⟨S⟩|/|H| < |D|k (for some fixed k),
output T ⊆ Sym(D) s.t. ⟨T ⟩ = H.

This last operation gives rise to the definition of k-accessible
subgroups of ⟨S⟩.
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How to represent permutation groups in relational
structures ?

Can we bring those methods in reach of isomorphism-invariant
formalisms for polynomial-time computation ?

One main issue: it is not clear how to represent permutation
groups in relational structures.
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Direct translation of the algorithmic framework

Definition (definable permutation)

A permutation σ ∈ Sym(Ak) is definable in A if there is a formula
φ(s⃗, t⃗) with |s⃗| = |t⃗| = k such that

∀b⃗, c⃗ ∈ Ak , σ(b⃗) = c⃗ ⇐⇒ (A, b⃗, c⃗) |= φ

Definition (definable permutation group)

A group G ≤ Sym(Ak) is definable in A if there is a formula
φ(p⃗, s⃗, t⃗) such that

⟨{perm(φ(A, a⃗)) | a⃗ ∈ Ap⃗}⟩ = G
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Low-hanging fruits

FO + tc can define the orbits of any definable group.

(Schreier-Sims) Given any structure A and any formula φ (in
a poly-time model checking logic), |⟨φ⟩| is computable in
polynomial time.

If G and H are L-definable, with L ≥ FO, ⟨G ∪ H⟩ is
L-definable.

Corollary: the membership problem reduces (via ”Turing FO
reduction”) to group-order computation.

Turing FO reduction: What if we add an operator to FP that
computes the order of a group ? ord
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Spoiler

Theorem (D.25)

FP + rk < FP + ord.
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Limits

In an isomorphism-invariant context, this representation is not
complete, i.e. there are groups which admit no small,
isomorphism-invariant, generating set:

An := Kn,n and Gn := Aut(An)

Worse, we can find a (sequence of) structure A s.t.:

A group G(A) is (FP-)definable from A

A subgroup H(A) is accessible from G(A)

FP defines a witness of the accessibility of H(A) in G(A).

Any symmetric generating set of H(A) has exponential size.
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Idea: find restricted cases where we can leverage structural
properties of the groups at hand to represent them differently.
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Morphism-definability

Definition

Let R be a relation symbol of arity 2k.
φm(R, x⃗ , y⃗) defines a morphism m : G → Sym(A|x⃗ |) on A, where
G ≤ Sym(Ak) if, for all σ ∈ G ,

φm(A,R ← graph(σ)) = graph(m(σ))

H ⊴ G ≤ Sym(AT ) is morphism-definable from G in A if:

There is a definable generating set for G in A

there is a L-formula φm which defines a morphism
m : G → Sym(AT ′

) on A such that ker(m) = H.
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Operations on morphism-definable subgroups

If H is morphism-definable from G in A, then FP + ord
defines |H|, and defines membership to H.

If H1 and H2 are morphism-definable from G in A, then so is
H1 ∩ H2.
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Implications

The separation of FP + rk from P relies on structures with
abelian colours. In this case, all the relevant groups are
morphism-definable.

Yields a definable canonisation of those structures (following
the algorithm from [BL83])

Theorem: FP + rk < FP + ord [D.25].
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If FP + ord defines an ordered generating set of permutations
for G on A, and H ≤ G is FP + ord-definably accessible in G ,
then FP + ord defines a generating set for H.

if G is abelian, FPC suffices.

structures with abelian colours are equipped with ordered,
abelian groups.

FPC defines the automorphism groups of the structures with
abelian colours (which separate FP + rk from P).
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Conclusion

Thank you !
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László Babai, Monte-Carlo algorithms in graph isomorphism
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