The Limits of Symmetric Computation

Anuj Dawar

Department of Computer Science and Technology, University of Cambridge

Zhejiang University, 21 June 2021
The P vs. NP problem is the most famous problem in theoretical computer science.

It is one of six remaining Clay Millenium Prize problems.

Research motivated by this question has spawned a vast field of work in Complexity Theory.
Algorithmic Problems

\textbf{P} the class of problems solvable \textit{efficiently}.

\textit{the number of steps required by an algorithm to solve it grows polynomially in the the instance size.}

\textbf{NP} the class of problems for which a solution can be \textit{checked efficiently}.

\textit{there is an algorithm, given an instance and a candidate solution can check it using a number of steps that grows polynomially in the the instance size.}
Consider a system of linear equations:

\[
\begin{align*}
 a_{11}x_1 + \cdots + a_{1n}x_n &= b_1 \\
 a_{21}x_1 + \cdots + a_{2n}x_n &= b_2 \\
 &\vdots \\
 a_{m1}x_1 + \cdots + a_{mn}x_n &= b_m
\end{align*}
\]

The *instance* is the matrix A and the vector b, and we wish to know if there is an x such that $Ax = b$.

The *size* of the instance is the *number of bits* required to write down all the numbers in A and b.
What do the variables range over?

Given a matrix A and vector b over the rationals \mathbb{Q}, does there exist a rational vector x with $Ax = b$?

The problem is in P using the Gaussian elimination algorithm. This requires proving that the bit complexity of the solution is bounded by a polynomial in that of the instance.

The same argument works for A, b and x over a finite field K.

Given a matrix A and vector b over the integers \mathbb{Z}, does there exist an integer vector x with $Ax = b$?

Now Gaussian elimination does not work. Nonetheless the problem is in P by other algorithms.

The same argument works for A, b and x over a finite ring R.
Given a matrix A and vector b over the \mathbb{Z}, does there exist a non-negative integer vector x with $Ax = b$?

The problem is in \textit{NP} because we can bound the value of a solution by an exponential function of the instance.

We know of no \textit{polynomial-time} algorithm for the problem.

Indeed, the problem is \textit{NP-complete} meaning that a \textit{polynomial-time} algorithm would imply $P = NP$.

The problem is already \textit{NP}-complete even if we are looking for solutions in $\{0, 1\}$.
NP-completeness

A problem in NP has an exponential size search space of possible solutions.

E.g., the 2^n possible $\{0, 1\}$-values of the n unknowns in the vector x.

Sometimes the algebraic structure of the problem means we can converge quickly to a solution, and so the problem is in P.

E.g., systems $Ax = b$ where addition and multiplication are taken modulo 2.

Sometimes the lack of structure means we can code any problem in NP in the solution space of an instance, and the problem is NP-complete.

E.g., any set of the 2^n $\{0, 1\}$-vectors can occur as the solution set of $Ax = b$ over the integers.
Boolean Satisfiability

The classic NP-complete problem is the *satisfiability* of Boolean formulas in conjunctive normal form (*SAT* for short).

> Each formula is the AND of clauses, where each clause is the OR of a number of literals.

On the other hand, *XOR-SAT* is solvable in polynomial time.

> Each formula is the AND of clauses, where each clause is the XOR of a number of literals.

This is essentially the same as solving systems of equations over the 2-element field.
Among the most commonly studied algorithmic problems are problems on graphs.

Some problems in \(P \):

Eulerian Graphs: Given a graph \(G = (V, E) \), is there a walk starting at a vertex \(v \), returning to \(v \) and passing through every edge exactly once.

Perfect Matching: Given a graph \(G = (V, E) \), is there a subset \(M \subseteq E \) such that each \(v \in V \) is incident on exactly one edge in \(M \).
Some *NP*-complete graph problems:

Hamiltonicity: Given a graph $G = (V, E)$, is there a cycle starting at a vertex v, returning to v and passing through every vertex exactly once.

3-colourability: Given a graph $G = (V, E)$, is there a function $\chi : V \to \{1, 2, 3\}$ such that $(u, v) \in E \Rightarrow \chi(u) \neq \chi(v)$
How could we prove the *impossibility* of an algorithm?

Any *polynomial-time* algorithm gives, for each *input size* a *circuit*:

Circuits are just the *unfoldings* of the behaviour of an algorithm on inputs of a fixed size n into simple actions such as Boolean *AND*, *OR* and *NOT* operations.
P/poly

P/poly is the class of problems for which, for each value of \(n \), there is a circuit of size polynomial in \(n \) which correctly decides the problem.

It is conjectured that \(\text{NP} \not\subseteq \text{P/poly} \).

This means that it is not possible to solve an \(\text{NP} \)-complete problem even if we allow

- an arbitrary amount of computation based on the \(\text{size} \) of the input;
- followed by a polynomial amount of computation given the actual input.
Some graph problems are naturally \textit{monotone}.

If $G = (V, E)$ and $H = (V, E')$ are graphs with $E \subseteq E'$ and G contains a \textit{Hamiltonian cycle}, then so does H.

\textit{3-colourability} is not monotone but its \textit{complement} is:

\begin{center}
If $G = (V, E)$ is \textit{not} 3-colourable, then neither is $H = (V, E')$ when $E \subseteq E'$.
\end{center}

In principle, these can be decided by families of \textit{monotone} circuits, i.e. using only \textit{AND} and \textit{OR} gates.
Circuit Lower Bounds

For some \textit{monotone} problems in \textit{NP}, we can prove that no \textit{polynomial-size} family of \textit{monotone} circuits suffices to decide the problem.

- No \textit{polynomial-size} family of \textit{monotone} circuits decides \textit{clique}.
- No \textit{polynomial-size} family of \textit{monotone} circuits decides \textit{perfect matching}.

\textit{(Razborov 1985)}.

Lower bounds have also been established by restricting the \textit{depth} of circuits.

- No \textit{constant-depth} (unbounded fan-in), \textit{polynomial-size} family of circuits decides \textit{parity}.
- No \textit{constant-depth}, \(O(n^{\frac{k}{4}})\)-\textit{size} family of circuits decides \textit{k-clique}.

\textit{(Rossman 2008)}.
Circuits for Graph Problems

We want to study families of circuits that decide properties of \textit{graphs} (or other relational structures—for simplicity of presentation we restrict ourselves to graphs).

We have a family of Boolean circuits \((C_n)_{n \in \omega}\) where there are \(n^2\) inputs labelled \((i, j) : i, j \in [n]\), corresponding to the \textit{potential edges}. Each input takes value 0 or 1;

Graph properties in \(P\) are given by such families where:

- the size of \(C_n\) is bounded by a polynomial \(p(n)\); and
- the family is uniform, so the function \(n \mapsto C_n\) is in \(P\).
Invariant Circuits

\(C_n \) is \textit{invariant} if, for every input graph, the output is unchanged under a permutation of the inputs induced by a permutation of \([n]\).

That is, given any input \(G : [n]^2 \to \{0, 1\} \), and a permutation \(\pi \in S_n \),

\(C_n \) accepts \(G \) if, and only if, \(C_n \) accepts the input \(\pi G \) given

\[(\pi G)(i, j) = G(\pi(i), \pi(j)).\]

Note: this is not the same as requiring that the result is invariant under \textit{all} permutations of the input. That would only allow us to define functions of the \textit{number} of 1s in the input. The functions we define include all \textit{isomorphism-invariant} graph properties such as \textit{Eulerian graphs}, \textit{perfect matching}, \textit{Hamiltonicity}, \textit{3-colourability}.
Say C_n is symmetric if any permutation of $[n]$ applied to its inputs can be extended to an automorphism of C_n.

\[\text{i.e., for each } \pi \in S_n, \text{ there is an automorphism of } C_n \text{ that takes input } (i, j) \text{ to } (\pi i, \pi j). \]

Any symmetric circuit is invariant, but not conversely.
FPC is a class of decision problems definable in fixed-point logic with counting.

The decision problems are (isomorphism-closed) classes (or properties) of finite structures (such as graphs, Boolean formulas, systems of equations).

A graph property is in FPC if, and only if, it is decided by a P-uniform family of symmetric circuits using AND, OR, NOT and MAJ gates.

Excluding MAJ gates gives us something strictly weaker.
Symmetric Computation

Say a Boolean function $f : \{0, 1\}^n \to \{0, 1\}$ is symmetric if it is invariant under all permutations of its inputs.

A graph property is in FPC if, and only if, it is decided by a P-uniform family of symmetric circuits using symmetric gates.

FPC gives a natural notion of polynomial-time, symmetric computation.
Some **NP**-complete problems are *provably* not in **FPC**, including:

- *Sat*
- *Hamiltonicity*
- *3-colourability*

For some **NP**-complete problems, inclusion in **FPC** is an open problem, equivalent to $P = NP$.
Most “obviously” polynomial-time algorithms can be expressed in FPC.

Many non-trivial polynomial-time algorithms can be expressed in FPC: FPC captures all of P over any proper minor-closed class of graphs (Grohe 2017)

In FPC we can express the existence of a Eulerian cycle or a perfect matching.

Solving systems of equations over the rationals or the integers.
Lower Bounds

But some cannot be expressed:

- There are polynomial-time decidable properties of graphs that are not definable in FPC. (Cai, Fürer, Immerman, 1992)
- XOR-Sat, or more generally, solvability of a system of linear equations over a finite field cannot be expressed in FPC.

In particular, this means that the Gaussian elimination algorithm cannot be made symmetric without a super-polynomial blow-up.
Fixed-Point Logic with Counting

FPC is a logic formulated to add *inductive definitions* and the ability to *count* to first-order logic (FO).

If $\varphi(x)$ is a formula with free variable x, then $\#x \varphi$ is a term denoting the number of elements satisfying φ.

Formulae of FPC:

- all atomic formulae as in FO;
- $\tau_1 < \tau_2$; $\tau_1 = \tau_2$ where τ_i is a term of numeric sort;
- $\exists x \varphi$; $\exists \nu \varphi$; where ν is a variable ranging over numbers up to the size of the domain;
- $[\text{lfp}_{X,x,\nu} \varphi](t)$; and
- $\varphi \land \psi$; $\neg \varphi$.
C^k is the logic obtained from \textit{first-order logic} by allowing:

- \textit{counting quantifiers}: $\exists^i x \varphi$; and
- only the variables x_1, \ldots, x_k.

Every formula of C^k is equivalent to a formula of first-order logic, albeit one with more variables.

For every sentence φ of FPC, there is a k such that φ is equivalent to a \textit{theory} of C^k.

Indeed, for any fixed n, there is a formula of C^k equivalent to φ on structures with at most n elements.
Weisfeiler-Leman

For a pair of graphs G and H, we write $G \equiv^k H$ to denote that they are not distinguished by any sentence of C^k.

$G \equiv^k H$ is decidable in time $n^{O(k)}$.

It has many equivalent characterisations arising from

- **combinatorics** (Babai)
- **logic** (Immerman-Lander)
- **algebra** (Weisfeiler; Holm)
- **linear optimization** (Atserias-Maneva; Malkin)
Counting Width

For any class of structures C, we define its \textit{counting width} $\nu_C : \mathbb{N} \to \mathbb{N}$ so that

\[\nu_C(n) \text{ is the least } k \text{ such that } C \text{ restricted to structures with at most } n \text{ elements is closed under } \equiv^k. \]

More generally, let μ be a \textit{numeric graph parameter}. That is, it assigns a \textit{numeric value} $\mu(G)$ to any graph G.

The \textit{counting width} of μ is the function $\nu_\mu : \mathbb{N} \to \mathbb{N}$ such that

\[\nu_\mu(n) \text{ is the least } k \text{ such that for } n\text{-vertex graphs } G \text{ and } H, \]
\[G \equiv^k H \text{ implies } \mu(G) = \mu(H). \]
Every class definable in FPC has counting width bounded by a constant. Also, any numeric parameter definable in FPC has counting width bounded by a constant.

To say a class has constant counting width is the same as saying it is axiomatizable in C^k for some constant k.

Many natural problems can be shown to have unbounded counting width. They are, hence not definable in FPC.

3SAT, XOR-Sat, Hamiltonicity, 3-Colourability all have counting width $\Omega(n)$.
Linear Programming

Linear Programming is an important algorithmic tool for solving a large variety of optimization problems.

It was shown by *(Khachiyan 1980)* that linear programming problems can be solved in polynomial time. We have a set C of *constraints* over a set V of *variables*. Each $c \in C$ consists of $a_c \in \mathbb{Q}^V$ and $b_c \in \mathbb{Q}$.

Feasibility Problem: Given a linear programming instance, determine if there is an $x \in \mathbb{Q}^V$ such that:

$$a_c^T x \leq b_c \quad \text{for all } c \in C$$

This, and the corresponding *optimization problem* are expressible in FPC.
Ellipsoid Method

The set of constraints determines a *polytope*
Start at the origin and calculate an ellipsoid enclosing it.
If the centre is not in the polytope, choose a constraint it *violates*.
Ellipsoid Method

Calculate a new *centre*.
And a new ellipsoid around the centre of at most *half* the volume.
Ellipsoid Method in FPC

We can encode all the calculations involved in FPC. This relies on expressing algebraic manipulations of unordered matrices.

What is not obvious is how to choose the violated constraint on which to project.

However, the ellipsoid method works as long as we can find, at each step, some separating hyperplane.
Ellipsoid Method in FPC
Ellipsoid Method in FPC

We can encode all the calculations involved in FPC. This relies on expressing algebraic manipulations of unordered matrices.

What is not obvious is how to choose the violated constraint on which to project.

However, the ellipsoid method works as long as we can find, at each step, some separating hyperplane.

So, we can take:

\[\left(\sum_{c \in S} a_c \right)^T x \leq \sum_{c \in S} b_c \]

where \(S \) is the set of all violated constraints.
In the 1980s there was a great deal of excitement at the discovery that linear programming could be done in polynomial time. This raised the possibility that linear programming techniques could be used to efficiently solve hard problems.

Many proposals were put forth for encoding hard problems (such as the Travelling Salesman Problem) (TSP) as linear programs. (Yannakakis 1991) proved that any encoding of TSP as a linear program, satisfying natural symmetry conditions, must have exponential size.
Travelling Salesman Problem

Given a set of V of n vertices and a distance matrix $C = \mathbb{R}^{V \times V}$, find

$$\min_{\pi \in [n] \rightarrow V} \sum_{i \in [n]} c_{\pi(i)\pi(i+1)} + c_{\pi(n)\pi(1)}$$

To formulate this as a *linear optimization* problem, introduce a set of variables:

$$X = \{x_{ij} \mid i, j \in V\}.$$

So, a graph is a *function* $G : X \rightarrow \{0, 1\}$.

Let $P \subseteq \{0, 1\}^X$ be the collection of simple cycles of length n.

Anuj Dawar June 2021
Let $\text{conv}(P) \subseteq \mathbb{R}^X$ be the \textit{convex hull} of P. That is, the set of $\vec{y} \in \mathbb{R}^X$ such that

$$\vec{y} = \sum_{\vec{x} \in P} \lambda_{\vec{x}} \vec{x}$$

with $\lambda_{\vec{x}} \geq 0$ and $\sum_{\vec{x} \in P} \lambda_{\vec{x}} = 1$.

\textit{TSP}: \quad \min \sum_{i,j \in V} c_{ij} x_{ij} \quad \text{over } \vec{x} \in P.

This is equivalent to minimizing $\sum_{i,j \in V} c_{ij} x_{ij}$ over $\text{conv}(P)$.

We call $\text{conv}(P)$ the \textit{TSP polytope}.

$\text{conv}(P)$ has \textit{exponentially many facets}.
Extended Formulations

Could $\text{conv}(P)$ be obtained as the projection of a polytope with a small number of facets?

Is there a small $Q \subseteq \mathbb{R}^X \times \mathbb{R}^Y$ such that

$$\{ \vec{x} | \exists \vec{y} (\vec{x}, \vec{y}) \in Q \} = \text{conv}(P)?$$

If a description of such a Q could be obtained in polynomial time in n, then $P = \text{NP}$.

If such a Q of polynomial size exists, then $\text{NP} \subseteq \text{P/poly}$.

Also note that by adding inequalities $x \leq G(x)$ for a graph $G : X \rightarrow \{0, 1\}$, we obtain a polytope $Q_G \subseteq \mathbb{R}^X \times \mathbb{R}^Y$ which is non-empty if, and only if, G contains a Hamiltonian cycle.
Say $Q \subseteq \mathbb{R}^X \times \mathbb{R}^Y$ is symmetric if for every $\pi \in S_V$, there is a $\sigma \in S_Y$ such that

$$Q(\pi,\sigma) = Q$$

Here, we extend the action of π to $V \times V$, and hence to \mathbb{R}^X. Similarly σ to \mathbb{R}^Y.

Theorem (Yannakakis)
Any symmetric $Q \subseteq \mathbb{R}^X \times \mathbb{R}^Y$ whose projection on \mathbb{R}^X is $\text{conv}(P)$ has exponentially many facets.

This is derived from a similar lower bound for the matching polytope.
Fix $X = \{x_{ij} \mid i, j \in [n]\}$ for a fixed n.
Consider a class C of graphs.
We identify a graph on n vertices with a function $G : X \rightarrow \{0, 1\}$.

We say that a polytope $Q \subseteq \mathbb{R}^X \times \mathbb{R}^Y$ recognizes C if its projection on \mathbb{R}^X includes $C|_n$ and excludes its complement.

Say $Q \subseteq \mathbb{R}^X \times \mathbb{R}^Y$ is symmetric if for every $\pi \in S_V$, there is a $\sigma \in S_Y$ such that

$$Q^{(\pi, \sigma)} = Q$$

Here, we extend the action of π to $V \times V$, and hence to \mathbb{R}^X.

Anuj Dawar
June 2021
Theorem (Atserias, D., Ochremiak ’19)
If a family of symmetric polytopes of size $s = O(2^{n^{1-\epsilon}}), \epsilon > 0$ recognizes C, then C has *counting width* at most $O\left(\frac{\log s}{\log n}\right)$.

In particular, classes of counting width $\Omega(n)$ are not recognized by any subexponential size symmetric linear programs.

We get an exponential lower bound on the size of any symmetric extended formulation of *Hamiltonicity*

In contrast, the class of graphs with a *perfect matching* does have bounded *counting width*. Indeed, it is definable in FPC.
FPC defines a natural notion of *symmetric polynomial-time computation*. It is remarkably powerful and able to express many *non-trivial* polynomial-time algorithms.

These include some of the strongest algorithmic techniques for approximating NP-hard optimization problems.

Since we are able to show for some NP-hard optimization problems that no algorithm expressible in FPC can solve them exactly, we establish limitations on commonly used approximation techniques.
Arithmetic Circuits over a field K have:

- Inputs labelled by a variable $x \in X$, or constant $c \in K$.
- Internal gates labelled by $+$ or \times.

Each circuit computes a polynomial in $K[X]$.

Valiant’s conjecture $\text{VP} \neq \text{VNP}$ is that there are no polynomial-size arithmetic circuits for computing the **permanent**

$$\sum_{\sigma \in S_n} \prod_{i \in [n]} x_{i\sigma(i)}$$

Note: there are such circuits for the **determinant**:

$$\sum_{\sigma \in S_n} (-1)^{\text{sgn}(\sigma)} \prod_{i \in [n]} x_{i\sigma(i)}$$
Symmetric Arithmetic Circuits

Both the **determinant** and the **permanent** are defined over a set of variables $x_{ij} : i, j \in \{1, \ldots, n\}$.

Both are invariant under *permutations* of the variables induced by the action of S_n on $\{1, \ldots, n\}$.

Are they computed by *symmetric, polynomial-size, arithmetic* circuits?

We are able to prove that the determinant *is* and the permanent *provably is not*.

(D. Wilsenach 2020)

This is proved by showing that the *number of perfect matchings in a bipartite graph* on n vertices has counting width $\Omega(n)$.
A Rich Theory of Symmetry in Computation

A number of distinct strands of research converge on a study of symmetry in computation.

Besides those mentioned here, there is work on the complexity of constraint satisfaction problems; of symmetry in combinatorial optimization; of semi-structured data and abstract syntax.

The research builds heavily on mathematical tools for the study of symmetry: group theory.

An exciting, emerging field in theoretical computer science, dealing with both abstraction and complexity.