
The Limits of Symmetric Computation

Anuj Dawar

Department of Computer Science and Technology, University of Cambridge

Zhejiang University, 21 June 2021



P vs. NP

The P vs. NP problem is the most famous problem in theoretical
computer science.

It is one of six remaining Clay Millenium Prize problems.

Research motivated by this question has spawned a vast field of work in
Complexity Theory.

Anuj Dawar June 2021



Algorithmic Problems

P the class of problems solvable efficiently.

the number of steps required by an algorithm to solve it
grows polynomially in the the instance size.

NP the class of problems for which a solution can be checked efficiently.

there is an algorithm, given an instance and a candidate
solution can check it using a number of steps that grows
polynomially in the the instance size.

Anuj Dawar June 2021



Example

Consider a system of linear equations:

a11x1 + · · · a1nxn = b1
a21x1 + · · · a2nxn = b2

...
...

am1x1 + · · · amnxn = bm

The instance is the matrix A and the vector b, and we wish to know if
there is an x such that Ax = b.

The size of the instance is the number of bits required to write down all
the numbers in A and b.

Anuj Dawar June 2021



What do the variables range over?

Given a matrix A and vector b over the rationals Q, does there exist a
rational vector x with Ax = b?

The problem is in P using the Gaussian elimination algorithm.
This requires proving that the bit complexity of the solution is
bounded by a polynomial in that of the instance.

The same argument works for A, b and x over a finite field K.

Given a matrix A and vector b over the integers Z, does there exist an
integer vector x with Ax = b?

Now Gaussian elimination does not work.
Nonetheless the problem is in P by other algorithms.

The same argument works for A, b and x over a finite ring R.

Anuj Dawar June 2021



The Natural Numbers

Given a matrix A and vector b over the Z, does there exist a
non-negative integer vector x with Ax = b?

The problem is in NP because we can bound the value of a
solution by an exponential function of the instance.
We know of no polynomial-time algorithm for the problem.

Indeed, the problem is NP-complete meaning that a polynomial-time
algorithm would imply P = NP.

The problem is already NP-complete even if we are looking for solutions
in {0, 1}.

Anuj Dawar June 2021



NP-completeness

A problem in NP has an exponential size search space of possible
solutions.

E.g., the 2n possible {0, 1}-values of the n unknowns in the
vector x.

Sometimes the algebraic structure of the problem means we can converge
quickly to a solution, and so the problem is in P.

E.g, systems Ax = b where addition and multiplication are
taken modulo 2.

Sometimes the lack of structure means we can code any problem in NP
in the solution space of an instance, and the problem is NP-complete.

E.g., any set of the 2n {0, 1}-vectors can occur as the solution
set of Ax = b over the integers.

Anuj Dawar June 2021



Boolean Satisfiability

The classic NP-complete problem is the satisfiability of Boolean formulas
in conjunctive normal form (SAT for short).

Each formula is the AND of clauses, where each clause is the
OR of a number of literals.

On the other hand, XOR-SAT is solvable in polynomial time.

Each formula is the AND of clauses, where each clause is the
XOR of a number of literals.

This is essentially the same as solving systems of equations over the
2-element field.

Anuj Dawar June 2021



Graph Problems

Among the most commonly studied algorithmic problems are problems on
graphs.

Some problems in P:

Eulerian Graphs: Given a graph G = (V,E), is there a walk
starting at a vertex v, returning to v and passing through every
edge exactly once.

Perfect Matching: Given a graph G = (V,E), is there a subset
M ⊆ E such that each v ∈ V is incident on exactly one edge in
M .

Anuj Dawar June 2021



Graph Problems

Some NP-complete graph problems:

Hamiltonicity: Given a graph G = (V,E), is there a cycle
starting at a vertex v, returning to v and passing through every
vertex exactly once.

3-colourability: Given a graph G = (V,E), is there a function
χ : V → {1, 2, 3} such that (u, v) ∈ E ⇒ χ(u) 6= χ(v)

Anuj Dawar June 2021



Circuit Models

How could we prove the
impossibility of an algo-
rithm?

Any polynomial-time algo-
rithm gives, for each input
size a circuit:

Circuits are just the un-
foldings of the behaviour
of an algorithm on in-
puts of a fixed size n
into simple actions such
as Boolean AND, OR and
NOT operations.

x1 x2 xn· · ·

OR

OR OR

ORAND AND

AND

NOT

Anuj Dawar June 2021



P/poly

P/poly is the class of problems for which, for each value of n, there is a
circuit of size polynomial in n which correctly decides the problem.

It is conjectured that NP 6⊆ P/poly.

This means that it is not possible to solve an NP-complete problem even
if we allow

• an arbitrary amount of computation based on the size of the input;

• followed by a polynomial amount of computation given the actual
input.

Anuj Dawar June 2021



Monotone Problems

Some graph problems are naturally monotone.

If G = (V,E) and H = (V,E′) are graphs with E ⊆ E′ and G contains a
Hamiltonian cycle, then so does H.

3-colourability is not monotone but its complement is:

If G = (V,E) is not 3-colourable, then neither is H = (V,E′)
when E ⊆ E′.

In principle, these can be decided by families of monotone circuits, i.e.
using only AND and OR gates.

Anuj Dawar June 2021



Circuit Lower Bounds

For some monotone problems in NP, we can prove that no
polynomial-size family of monotone circuits suffices to decide the
problem.

• No polynomial-size family of monotone circuits decides clique.

• No polynomial-size family of monotone circuits decides perfect
matching.

(Razborov 1985).

Lower bounds have also been established by restricting the depth of
circuits.

• No constant-depth (unbounded fan-in), polynomial-size family of
circuits decides parity. (Furst, Saxe, Sipser 1983).

• No constant-depth, O(n
k
4 )-size family of circuits decides k-clique.

(Rossman 2008).

Anuj Dawar June 2021



Circuits for Graph Problems

We want to study families of circuits that decide properties of graphs (or
other relational structures—for simplicity of presentation we restrict
ourselves to graphs).

We have a family of Boolean circuits (Cn)n∈ω where there are n2 inputs
labelled (i, j) : i, j ∈ [n], corresponding to the potential edges.
Each input takes value 0 or 1;

Graph properties in P are given by such families where:

• the size of Cn is bounded by a polynomial p(n); and

• the family is uniform, so the function n 7→ Cn is in P.

Anuj Dawar June 2021



Invariant Circuits

Cn is invariant if, for every input graph, the output is unchanged under a
permutation of the inputs induced by a permutation of [n].

That is, given any input G : [n]2 → {0, 1}, and a permutation π ∈ Sn,

Cn accepts G if, and only if, Cn accepts the input πG given

(πG)(i, j) = G(π(i), π(j)).

Note: this is not the same as requiring that the result is invariant under all

permutations of the input. That would only allow us to define functions of the

number of 1s in the input. The functions we define include all

isomorphism-invariant graph properties such as Eulerian graphs, perfect

matching, Hamiltonicity, 3-colourability.

Anuj Dawar June 2021



Symmetric Circuits

Say Cn is symmetric if any permutation of [n] applied to its inputs can
be extended to an automorphism of Cn.

i.e., for each π ∈ Sn, there is an automorphism of Cn that
takes input (i, j) to (πi, πj).

Any symmetric circuit is invariant, but not conversely.

Anuj Dawar June 2021



FPC

FPC is a class of decision problems definable in fixed-point logic with
counting.

The decision problems are (isomorphism-closed) classes (or
properties) of finite structures (such as graphs, Boolean
formulas, systems of equations).

A graph property is in FPC if, and only if, it is decided by a P-uniform
family of symmetric circuits using AND, OR, NOT and MAJ gates.

Excluding MAJ gates gives us something strictly weaker.

Anuj Dawar June 2021



Symmetric Computation

Say a Boolean function f : {0, 1}n → {0, 1} is symmetric if it is invariant
under all permutations of its inputs.

A graph property is in FPC if, and only if, it is decided by a P-uniform
family of symmetric circuits using symmetric gates.

FPC gives a natural notion of polynomial-time, symmetric computation.

Anuj Dawar June 2021



Lower Bounds

Some NP-complete problems are provably not in FPC, including:

• Sat

• Hamiltonicity

• 3-colouraiblity

For some NP-complete problems, inclusion in FPC is an open problem,
equivalent to P = NP.

Anuj Dawar June 2021



Upper Bounds

Most “obviously” polynomial-time algorithms can be expressed in FPC.

Many non-trivial polynomial-time algorithms can be expressed in FPC:

FPC captures all of P over any proper minor-closed class of graphs
(Grohe 2017)

In FPC we can express the existence of a Eulerian cycle or a perfect
matching.

Solving systems of equations over the rationals or the integers.

Anuj Dawar June 2021



Lower Bounds

But some cannot be expressed:

• There are polynomial-time decidable properties of graphs that are
not definable in FPC. (Cai, Fürer, Immerman, 1992)

• XOR-Sat, or more generally, solvability of a system of linear
equations over a finite field cannot be expressed in FPC.

In particular, this means that the Gaussian elimination algorithm cannot
be made symmetric without a super-polynomial blow-up.

Anuj Dawar June 2021



Fixed-Point Logic with Counting

FPC is a logic formulated to add inductive definitions and the ability to
count to first-order logic (FO).

If ϕ(x) is a formula with free variable x, then #xϕ is a term denoting
the number of elements satisfying ϕ.

Formulae of FPC:

• all atomic formulae as in FO;

• τ1 < τ2; τ1 = τ2 where τi is a term of numeric sort;

• ∃xϕ; ∃ν ϕ; where ν is a variable ranging over numbers up to the
size of the domain;

• [lfpX,x,νϕ](t); and

• ϕ ∧ ψ; ¬ϕ.

Anuj Dawar June 2021



Counting Quantifiers

Ck is the logic obtained from first-order logic by allowing:

• counting quantifiers: ∃ixϕ; and

• only the variables x1, . . . .xk.

Every formula of Ck is equivalent to a formula of first-order logic, albeit
one with more variables.

For every sentence ϕ of FPC, there is a k such that ϕ is equivalent to a
theory of Ck.

Indeed, for any fixed n, there is a formula of Ck equivalent to ϕ on
structures with at most n elements.

Anuj Dawar June 2021



Weisfeiler-Leman

For a pair of graphs G and H, we write G ≡k H to denote that they are
not distinguished by any sentence of Ck.

G ≡k H is decidable in time nO(k).

It has many equivalent characterisations arising from

• combinatorics (Babai)

• logic (Immerman-Lander)

• algebra (Weisfeiler; Holm)

• linear optimization (Atserias-Maneva; Malkin)

Anuj Dawar June 2021



Counting Width

For any class of structures C, we define its counting width νC : N→ N so
that

νC(n) is the least k such that C restricted to structures with at
most n elements is closed under ≡k.

More generally, let µ be a numeric graph parameter.

That is, it assigns a numeric value µ(G) to any graph G.

The counting width of µ is the function νµ : N→ N such that

νµ(n) is the least k such that for n-vertex graphs G and H,
G ≡k H implies µ(G) = µ(H).

Anuj Dawar June 2021



Counting Width

Every class definable in FPC has counting width bounded by a constant.

Also, any numeric parameter definable in FPC has counting width
bounded by a constant.

To say a class has constant counting width is the same as saying it is
axiomatizable in Ck for some constant k.

Many natural problems can be shown to have unbounded counting width.
They are, hence not definable in FPC.

3SAT, XOR-Sat, Hamiltonicity, 3-Colourability all have counting width
Ω(n).

Anuj Dawar June 2021



Linear Programming

Linear Programming is an important algorithmic tool for solving a large
variety of optimization problems.

It was shown by (Khachiyan 1980) that linear programming problems can
be solved in polynomial time.
We have a set C of constraints over a set V of variables.
Each c ∈ C consists of ac ∈ QV and bc ∈ Q.

Feasibility Problem: Given a linear programming instance, determine if
there is an x ∈ QV such that:

aTc x ≤ bc for all c ∈ C

This, and the corresponding optimization problem are expressible in FPC.

Anuj Dawar June 2021



Ellipsoid Method

The set of constraints determines a polytope

Anuj Dawar June 2021



Ellipsoid Method

x

Start at the origin and calculate an ellipsoid enclosing it.

Anuj Dawar June 2021



Ellipsoid Method

x

If the centre is not in the polytope, choose a constraint it violates.

Anuj Dawar June 2021



Ellipsoid Method

x

x′

Calculate a new centre.

Anuj Dawar June 2021



Ellipsoid Method

x

x′

And a new ellipsoid around the centre of at most half the volume.

Anuj Dawar June 2021



Ellipsoid Method in FPC

We can encode all the calculations involved in FPC.

This relies on expressing algebraic manipulations of unordered matrices.

What is not obvious is how to choose the violated constraint on which to
project.

However, the ellipsoid method works as long as we can find, at each step,
some separating hyperplane.

Anuj Dawar June 2021



Ellipsoid Method in FPC

x

Anuj Dawar June 2021



Ellipsoid Method in FPC

We can encode all the calculations involved in FPC.

This relies on expressing algebraic manilpulations of unordered matrices.

What is not obvious is how to choose the violated constraint on which to
project.

However, the ellipsoid method works as long as we can find, at each step,
some separating hyperplane.

So, we can take:
(
∑
c∈S

ac)
Tx ≤

∑
c∈S

bc

where S is the set of all violated constraints.

Anuj Dawar June 2021



Linear Programs for Hard problems

In the 1980s there was a great deal of excitement at the discovery that
linear programming could be done in polynomial time.

This raised the possibility that linear programming techniques could be
used to efficiently solve hard problems.

Many proposals were put forth for encoding hard problems (such as the
Travelling Salesman Problem) (TSP) as linear programs.

(Yannakakis 1991) proved that any encoding of TSP as a linear program,
satisfying natural symmetry conditions, must have exponential size.

Anuj Dawar June 2021



Travelling Salesman Problem

Given a set of V of n vertices and a distance matrix C = RV×V , find

min
π∈[n]bij→V

∑
i∈[n]

cπ(i)π(i+1) + cπ(n)π(1)

To formulate this as a linear optimization problem, introduce a set of
variables:

X = {xij | i, j ∈ V }.

So, a graph is a function G : X → {0, 1}.
Let P ⊆ {0, 1}X be the collection of simple cycles of length n.

Anuj Dawar June 2021



TSP polytope

Let conv(P ) ⊆ RX be the convex hull of P .
That is, the set of ~y ∈ RX such that

~y =
∑
~x∈P

λ~x~x with λ~x ≥ 0 and
∑
~x∈P

λ~x = 1.

TSP: min
∑
i,j∈V cijxij over ~x ∈ P .

This is equivalent to minimizing
∑
i,j∈V cijxij over conv(P ).

We call conv(P ) the TSP polytope.

conv(P ) has exponentially many facets.

Anuj Dawar June 2021



Extended Formulations

Could conv(P ) be obtained as the projection of a polytope with a small
number of facets?

Is there a small Q ⊆ RX × RY such that

{~x | ∃~y(~x, ~y) ∈ Q} = conv(P )?

If a description of such a Q could be obtained in polynomial time in n,
then P = NP.

If such a Q of polynomial size exists, then NP ⊆ P/poly.

Also note that by adding inequalities x ≤ G(x) for a graph
G : X → {0, 1}, we obtain a polytope QG ⊆ RX × RY which is
non-empty if, and only if, G contains a Hamiltonian cycle.

Anuj Dawar June 2021



Yannakakis

Say Q ⊆ RX × RY is symmetric if for every π ∈ SV , there is a σ ∈ SY
such that

Q(π,σ) = Q

Here, we extend the action of π to V × V , and hence to RX .
similarly σ to RY .

Theorem (Yannakakis)

Any symmetric Q ⊆ RX × RY whose projection on RX is conv(P ) has
exponentially many facets.

This is derived from a similar lower bound for the matching polytope.

Anuj Dawar June 2021



Symmetric Linear Programs

Fix X = {xij | i, j ∈ [n]} for a fixed n.
Consider a class C of graphs.
We identify a graph on n vertices with a function G : X → {0, 1}.

We say that a polytope Q ⊆ RX × RY recognizes C if its projection on
RX includes C|n and excludes its complement.

Say Q ⊆ RX × RY is symmetric if for every π ∈ SV , there is a σ ∈ SY
such that

Q(π,σ) = Q

Here, we extend the action of π to V × V , and hence to RX .

Anuj Dawar June 2021



Symmetric Linear Programs

Theorem (Atserias, D., Ochremiak ’19)

If a family of symmetric polytopes of size s = O(2n
1−ε

), ε > 0 recognizes
C, then C has counting width at most O( log s

logn ).

In particular, classes of counting width Ω(n) are not recognized by any
subexponential size symmetric linear programs.

We get an exponential lower bound on the size of any symmetric
extended formulation of Hamiltonicity

In contrast, the class of graphs with a perfect matching does have
bounded counting width. Indeed, it is definable in FPC.

Anuj Dawar June 2021



Limits of Symmetric Computation

FPC defines a natural notion of symmetric polynomial-time computation.

It is remarkably powerful and able to express many non-trivial
polynomial-time algorithms.

These include some of the strongest algorithmic techniques for
approximating NP-hard optimization problems.

Since we are able to show for some NP-hard optimization problems that
no algorithm expressible in FPC can solve them exactly, we establish
limitations on commonly used approximation techniques.

Anuj Dawar June 2021



Arithmetic Circuits

Arithmetic Circuits over a field K have:

• Inputs labelled by a variable x ∈ X, or constant c ∈ K.

• Internal gates labelled by + or ×.

Each circuit computes a polynomial in K[X].

Valiant’s conjecture VP 6= VNP is that there are no polynomial-size
arithmetic circuits for computing the permanent∑

σ∈Sn

∏
i∈[n]

xiσ(i)

Note: there are such circuits for the determinant:∑
σ∈Sn(−1)sgn(σ)

∏
i∈[n] xiσ(i)

Anuj Dawar June 2021



Symmetric Arithmetic Circuits

Both the determinant and the permanent are defined over a set of
variables xij : i, j ∈ {1, . . . , n}.

Both are invariant under permutations of the variables induced by the
action of Sn on {1, . . . , n}.

Are they computed by symmetric, polynomial-size, arithmetic circuits?

We are able to prove that the determinant is and the permanent provably
is not. (D. Wilsenach 2020)

This is proved by showing that the number of perfect matchings in a
bipartite graph on n vertices has counting width Ω(n).

Anuj Dawar June 2021



A Rich Theory of Symmetry in Computation

A number of distinct strands of research converge on a study of
symmetry in computation.

Besides those mentioned here, there is work on the complexity of
constraint satisfaction problems; of symmetry in combinatorial
optimization; of semi-structured data and abstract syntax.

The research builds heavily on mathematical tools for the study of
symmetry: group theory.

An exciting, emerging field in theoretical computer science, dealing with
both abstraction and complexity.

Anuj Dawar June 2021


