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Descriptive Complexity

Descriptive Complexity provides an alternative perspective on Computational
Complexity.

Computational Complexity

• Measure use of resources (space, time, etc.) on a machine model of
computation;

• Complexity of a language—i.e. a set of strings.

Descriptive Complexity

• Complexity of a class of structures—e.g. a collection of graphs.

• Measure the complexity of describing the collection in a formal logic, using
resources such as variables, quantifiers, higher-order operators, etc.

There is a fascinating interplay between the views.
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First-Order Logic

For a first-order sentence ϕ, we ask what is the computational complexity of the
problem:

Given: a structure A

Decide: if A |= ϕ

In other words, how complex can the collection of finite models of ϕ be?

In order to talk of the complexity of a class of finite structures, we need to fix some
way of representing finite structures as strings.
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Encoding Structures

We use an alphabet Σ = {0, 1,#,−}.

For a structure A = (A,R1, . . . , Rm, f1, . . . , fl), fix a linear order < on
A = {a1, . . . , an}.

Ri (of arity k) is encoded by a string [Ri]< of 0s and 1s of length nk .

fi is encoded by a string [fi]< of 0s, 1s and −s of length nk log n.

[A]< = 1 · · · 1
︸ ︷︷ ︸

n

#[R1]<# · · ·#[Rm]<#[f1]<# · · ·#[fl]<

The exact string obtained depends on the choice of order.
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Naı̈ve Algorithm

The straightforward algorithm proceeds recursively on the structure of ϕ:

• Atomic formulas by direct lookup.

• Boolean connectives are easy.

• If ϕ ≡ ∃xψ then for each a ∈ A check whether

(A, c 7→ a) |= ψ[c/x],

where c is a new constant symbol.

This runs n time O(lnm) and O(m log n) space, where m is the nesting depth
of quantifiers in ϕ.

Mod(ϕ) = {A | A |= ϕ}

is in logarithmic space and polynomial time.
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Second-Order Logic

There are computationally easy properties that are not definable in first-order
logic.

• There is no sentence ϕ of first-order logic such that A |= ϕ if, and only if, |A|
is even.

• There is no formula ϕ(E, x, y) that defines the transitive closure of a binary
relation E.

Consider second-order logic, extending first-order logic with relational quantifiers
— ∃Xϕ
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Examples

Evennness
This formula is true in a structure if, and only if, the size of the domain is even.

∃B∃S ∀x∃yB(x, y) ∧ ∀x∀y∀zB(x, y) ∧B(x, z) → y = z

∀x∀y∀zB(x, z) ∧B(y, z) → x = y

∀x∀yS(x) ∧B(x, y) → ¬S(y)

∀x∀y¬S(x) ∧B(x, y) → S(y)
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Examples

Transitive Closure
This formula is true of a pair of elements a, b in a structure if, and only if, there is
an E-path from a to b.

∃P ∀x∀y P (x, y) → E(x, y)

∃xP (a, x) ∧ ∃xP (x, b) ∧ ¬∃xP (x, a) ∧ ¬∃xP (b, x)

∀x∀y(P (x, y) → ∀z(P (x, z) → y = z))

∀x∀y(P (x, y) → ∀z(P (z, x) → y = z))

∀x((x 6= a ∧ ∃yP (x, y)) → ∃zP (z, x))

∀x((x 6= b ∧ ∃yP (y, x)) → ∃zP (x, z))
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Examples

3-Colourability

The following formula is true in a graph (V,E) if, and only if, it is 3-colourable.

∃R∃B∃G ∀x(Rx ∨Bx ∨Gx)∧

∀x( ¬(Rx ∧Bx) ∧ ¬(Bx ∧Gx) ∧ ¬(Rx ∧Gx))∧

∀x∀y(Exy → ( ¬(Rx ∧Ry)∧

¬(Bx ∧By)∧

¬(Gx ∧Gy)))
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Fagin’s Theorem

Theorem (Fagin)
A class C of finite structures is definable by a sentence of existential second-order
logic if, and only if, it is decidable by a nondeterminisitic machine running in
polynomial time.

ESO = NP

One direction is easy: Given A and ∃P1 . . .∃Pmϕ.

a nondeterministic machine can guess an interpretation for P1, . . . , Pm

and then verify ϕ.
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Fagin’s Theorem

Given a machineM and an integer k, there is an ESO sentence ϕ such that
A |= ϕ if, and only if, M accepts [A]<, for some order< in nk steps.

∃ < ∃State ∃Head ∃Tape

< is a linear order ∧

State(t+ 1, s1) → State(t, s) ∨ . . .

∧State(t+ 1, s2) → . . .

∧Tape(t+ 1, p) ↔ Head(t, p) . . .

∧Head(t+ 1, h+ 1) ↔ . . .

∧Head(t+ 1, h− 1) ↔ . . .







encoding

transitions

of M

∧at time 0 the tape contains a description of A

∧State(max, s) for some accepting s
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Fagin’s Theorem

State, Tape and Head are 2k-ary relations, that use the lexicographic order on
k-tuples.

To state that Tape encodes the input structure:

∀x x < n→ Tape(0,x)

x < na → (Tape(0,x + n) ↔ R1(x|a))

. . .

where,
x < na :

∧

i≤(k−a)

xi = 0
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Is there a logic for P?

The major open question in Descriptive Complexity (first asked by Chandra and
Harel in 1982) is whether there is a logic L such that

for any class of finite structures C, C is definable by a sentence of L if,
and only if, C is decidable by a deterministic machine running in
polynomial time.

Formally, we require L to be a recursively enumerable set of sentences, with a
computable map taking each sentence to a Turing machineM and a polynomial
time bound p such that (M,p) accepts a class of structures.

(Gurevich 1988)
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Enumerating Queries

For a given structure A with n elements, there may be as many as n! distinct
strings [A]< encoding it.

Given (M0, p0), . . . , (Mi, pi), . . .—an enumeration of polynomially-clocked
Turing machines.

Can we enumerate a subsequence of those that compute graph properties, i.e.
are encoding invariant, while including all such properties?
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Inductive Definitions

Let ϕ(R, x1, . . . , xk) be a first-order formula in the vocabulary σ ∪ {R}

Associate an operator Φ on a given structure A:

Φ(RA) = {a | (A, RA, a) |= ϕ(R,x)}

We define the increasing sequence of relations on A:

Φ0 = ∅

Φm+1 = Φm ∪ Φ(Φm)

The inflationary fixed point of Φ is the limit of this sequence.

On a structure with n elements, the limit is reached after at most nk stages.

Anuj Dawar July 2008



16

IFP

The logic IFP is formed by closing first-order logic under the rule:

If ϕ is a formula of vocabulary σ ∪ {R} then [ifpR,xϕ](t) is a formula of
vocabulary σ.

The formula is read as:

the tuple t is in the inflationary fixed point of the operator defined by ϕ

LFP is the similar logic obtained using least fixed points of monotone operators
defined by positive formulas.

LFP and IFP have the same expressive power (Gurevich-Shelah; Kreutzer).
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Transitive Closure

The formula

[ifpT,xy(x = y ∨ ∃z(E(x, z) ∧ T (z, y)))](u, v)

defines the transitive closure of the relation E

The expressive power of IFP properly extends that of first-order logic.

On structures which come equipped with a linear order IFP expresses exactly the
properties that are in PTime.

(Immerman; Vardi)
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Immerman-Vardi Theorem

∃ < ∃State ∃Head ∃Tape

< is a linear order ∧

State(t+ 1, s1) → State(t, s) ∨ . . .

∧State(t+ 1, s2) → . . .

∧Tape(t+ 1, p) ↔ Head(t, p) . . .

∧Head(t+ 1, h+ 1) ↔ . . .

∧Head(t+ 1, h− 1) ↔ . . .







encoding

transitions

of M

∧at time 0 the tape contains a description of A

∧State(max, s) for some accepting s

With a deterministic machine, the relations State, Tape and Head can be define
inductively.
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IFP vs. Ptime

The order cannot be built up inductively.

It is an open question whether a canonical string representation of a structure can
be constructed in polynomial-time.

If it can, there is a logic for PTime.
If not, then PTime 6= NP.

All PTime classes of structures can be expressed by a sentence of IFP with <,
which is invariant under the choice of order. The set of all such sentences is not
r.e.

IFP by itself is too weak to express all properties in PTime.

Evenness is not definable in IFP.
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Finite Variable Logic

We write Lk for the first order formulas using only the variables x1, . . . , xk.

(A, a) ≡k (B,b)

denotes that there is no formula ϕ of Lk such that A |= ϕ[a] and B 6|= ϕ[b]

If ϕ(R,x) has k variables all together, then each of the relations in the
sequence:

Φ0 = ∅; Φm+1 = Φm ∪ Φ(Φm)

is definable in L2k.

Proof by induction, using substitution and renaming of bound variables.
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Pebble Game

The k-pebble game is played on two structures A and B, by two players—Spoiler
and Duplicator—using k pairs of pebbles {(a1, b1), . . . , (ak, bk)}.

Spoiler moves by picking a pebble and placing it on an element (ai on
anelement of A or bi on an element of B).

Duplicator responds by picking the matching pebble and placing it on an
element of the other structure

Spoiler wins at any stage if the partial map from A to B definedby the
pebble pairs is not a partial isomorphism

If Duplicator has a winning strategy for q moves, then A and B agree on
all sentences of Lk of quantifier rank at most q. (Barwise)

A ≡k
B if, for every q, Duplicator wins the q round, k pebble game on A and B.

Equivalently (on finite structures) Duplicator has a strategy to play forever.
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Evenness

To show that Evenness is not definable in IFP, it suffices to show that:

for every k, there are structures Ak and Bk such that Ak has an even
number of elements, Bk has an odd number of elements and

A ≡k
B.

It is easily seen that Duplicator has a strategy to play forever when one structure
is a set containing k elements (and no other relations) and the other structure has
k + 1 elements.
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Fixed-point Logic with Counting

Immerman proposed IFP + C—the extension of IFP with a mechanism for
counting

Two sorts of variables:

• x1, x2, . . . range over |A|—the domain of the structure;

• ν1, ν2, . . . which range over numbers in the range 0, . . . , |A|

If ϕ(x) is a formula with free variable x, then ν = #xϕ denotes that ν is the
number of elements of A that satisfy the formula ϕ.

We also have the order ν1 < ν2, which allows us (using recursion) to define
arithmetic operations.
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Counting Quantifiers

Ck is the logic obtained from first-order logic by allowing:

• allowing counting quantifiers: ∃ixϕ; and

• only the variables x1, . . . .xk .

Every formula of Ck is equivalent to a formula of first-order logic, albeit one with
more variables.

For every sentence ϕ of IFP + C, there is a k such that if A ≡Ck

B, then

A |= ϕ if, and only if, B |= ϕ.
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Cai-Fürer-Immerman Graphs

There are polynomial-time decidable properties of graphs that are not definable in
IFP + C. (Cai, Fürer, Immerman, 1992)

More precisely, we can construct a sequence of pairs of graphsGk, Hk(k ∈ ω)

such that:

• Gk ≡Ck

Hk for all k.

• There is a polynomial time decidable class of graphs that includes all Gk and
excludes all Hk .

Still, IFP + C is a natural level of expressiveness within PTime.
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Constructing Gk and Hk

Given any graphG, we can define a graphXG by replacing every edge with a
pair of edges, and every vertex with a gadget.

The picture shows the gadget for a ver-
tex v that is adjacent in G to vertices
w1, w2 and w3.
The vertex vS is adjacent to avwi

(i ∈

S) and bvwi
(i 6∈ S) and there is one

vertex for all even size S.
The graph X̃G is like XG except that
at one vertex v, we include V S for odd
size S.

PSfrag replacements

avw1
bvw1

avw2

bvw2
avw3

bvw3

v∅ v{1,2} v{1,3}v{2,3}
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Properties

If G is connected and has treewidth at least k, then:

1. XG 6∼= X̃G; and

2. XG ≡Ck

X̃G.

(1) allows us to construct a polynomial time property separatingXG and X̃G.

(2) is proved by a game argument.

The original proof of (Cai, Fürer, Immerman) relied on the existence of
balanced separators in G. The characterisation in terms of treewidth is
from (D., Richerby 07).
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Bijection Games

≡Ck

is characterised by a k-pebble bijection game. (Hella 96).

The game is played on structures A and B with pebbles a1, . . . , ak on A and
b1, . . . , bk on B.

• Spoiler chooses a pair of pebbles ai and bi;

• Duplicator chooses a bijection h : A→ B such that for pebbles aj and
bj(j 6= i), h(aj) = bj ;

• Spoiler chooses a ∈ A and places ai on a and bi on h(a).

Duplicator loses if the partial map ai 7→ bi is not a partial isomorphism.
Duplicator has a strategy to play forever if, and only if, A ≡Ck

B.
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TreeWidth

The treewidth of a graph is a measure of how tree-like the graph is.

A graph has treewidth k if it can be covered by subgraphs of at most k + 1 nodes
in a tree-like fashion.
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TreeWidth

Formal Definition:

For a graphG = (V,E), a tree decomposition of G is a relation D ⊂ V × T

with a tree T such that:

• for each v ∈ V , the set {t | (v, t) ∈ D} forms a connected subtree of T ;
and

• for each edge (u, v) ∈ E, there is a t ∈ T such that (u, t), (v, t) ∈ D.

The treewidth of G is the least k such that there is a tree T and a
tree-decompositionD ⊂ V × T such that for each t ∈ T ,

|{v ∈ V | (v, t) ∈ D}| ≤ k + 1.
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Cops and Robbers

A game played on an undirected graphG = (V,E) between a player
controlling k cops and another player in charge of a robber.

At any point, the cops are sitting on a set X ⊆ V of the nodes and the robber on
a node r ∈ V .

A move consists in the cop player removing some cops from X ′ ⊆ X nodes and
announcing a new position Y for them. The robber responds by moving along a
path from r to some node s such that the path does not go throughX \X ′.

The new position is (X \X ′) ∪ Y and s. If a cop and the robber are on the
same node, the robber is caught and the game ends.
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Strategies and Decompositions

Theorem (Seymour and Thomas 93):
There is a winning strategy for the cop player with k cops on a graphG if, and
only if, the tree-width of G is at most k − 1.

It is not difficult to construct, from a tree decomposition of width k, a winning
strategy for k + 1 cops.

Somewhat more involved to show that a winning strategy yields a decomposition.

Anuj Dawar July 2008



33

Cops, Robbers and Bijections

If G has treewidth k or more, than the robber has a winning strategy in the
k-cops and robbers game played on G.

We use this to construct a winning strategy for Duplicator in the k-pebble bijection
game on XG and X̃G.

• A bijection h : XG → X̃G is good bar v if it is an isomorphism everywhere
except at the vertices vS .

• If h is good bar v and there is a path from v to u, then there is a bijection h′

that is good bar u such that h and h′ differ only at vertices corresponding to
the path from v to u.

• Duplicator plays bijections that are good bar v, where v is the robber position
in G when the cop position is given by the currently pebbled elements.
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Restricted Graph Classes

If we restrict the class of structures we consider, IFP + C may be powerful
enough to express all polynomial-time decidable properties.

• IFP + C captures PTime on trees. (Immerman and Lander 1989).

• IFP + C captures PTime on any class of graphs of bounded treewidth.
(Grohe and Mariño 1999).

• IFP + C captures PTime on the class of planar graphs. (Grohe 1998).

In each case, the proof proceeds by showing that for anyG in the class, a
canonical, ordered representaton of G can be interpreted in G using IFP + C.
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Graph Minors

We say that a graphG is a minor of graphH (written G ≺ H) if G can be
obtained from H by repeated applications of the operations:

• delete an edge;

• deete an vertex (and all incident edges); and

• contract an edge

PSfrag replacements ⇒

Anuj Dawar July 2008



36

Graph Minors

Alternatively, G = (V,E) is a minor of H = (U,F ), if there is a graph
H ′ = (U ′, F ′) with U ′ ⊆ U and F ′ ⊆ F and a surjective map M : U ′ → V

such that

• for each v ∈ V , M−1(v) is a connected subgraph of H ′; and

• for each edge (u, v) ∈ E, there is an edge in F ′ between some
x ∈M−1(u) and some y ∈M−1(v).

PSfrag replacements

G H ′
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Facts about Graph Minors

• G is planar if, and only if, K5 6≺ G and K3,3 6≺ G.

• If G ⊂ H then G ≺ H .

• The relation ≺ is transitive.

• If G ≺ H , then tw(G) ≤ tw(H).

• If tw(G) < k − 1, then Kk 6≺ G.

Say that a class of structures C excludesH as a minor if H 6≺ GA for all A ∈ C.

C has excluded minors if it excludes someH as a minor (equivalently, it excludes
someKk as a minor).

• Tk excludesKk+2 as a minor.
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More Facts about Graph Minors

Theorem (Robertson-Seymour)
In any infinite collection {Gi | i ∈ ω} of graphs, there are i, j with Gi ≺ Gj .

Corollary
For any class C closed under minors, there is a finite collection F of graphs such
that G ∈ C if, and only if, F 6≺ G for all F ∈ F .

Theorem (Robertson-Seymour)
For any G there is an O(n3) algorithm for deciding, given H , whether G ≺ H .

Corollary
Any class C closed under minors is decidable in cubic time.
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Ptime on Minor-Closed Classes

Conjecture (Grohe)
IFP + C captures PTime on every proper minor-closed class of graphs.

Theorem (Grohe 2008)
IFP + C captures PTime on the class of graphs that excludeK5 as a minor.

The Cai-Fürer-Immerman construction cannot be used to refute Grohe’s
conjecture.

If C—a class of graphs containsXG and X̃G for graphsG of unbounded
treewidth, then C does not exclude any graph as a minor.

(D., Richerby 2007)
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Logics with Choice

Extending IFP with a choice operator allows us to define all polynomial-time
decidable classses.

This is akin to adding order to the logic. It also allows sentences whose
interpretation is dependent on choices, and therfore not determined by the
structure alone.

The sentences that are invariant under choices express all polynomial-time
properties, but do not form an r.e. set.

Gire and Hoang considered a method of restricting the choice operator to ensure
that the interpretation of sentences was invariant.
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Non-deterministic Choice

Given two formulas ϕ(R,X,x);ψ(R,X,y) and a structure A, we define the
following sequence of pairs of relations.

Φ0 = ∅ Ψ0 = ∅;

Φi+1 = Φi ∪ ϕA(Φi/R,Ψi/X);

Ψi+1 = {a} for some a such that A |= ψ(Φi/R,Ψi/X)[a].

The sequence Φi converges to a limit.

We say that the pair of formulas ϕ;ψ is choice-invariant if the limit does not
depend on the choice of the sequence Ψi.

The collection of choice-invariant formulas captures PTime, but is not an r.e. set.
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Symmetric Choice

Alter the definition of the sequence so that:

Φ0 = ∅ Ψ0 = ∅;

Φi+1 = Φi ∪ ϕA(Φi/R,Ψi/X);

Ψi+1 =







{a} for A |= ψ(Φi/R,Ψi/X)[a]

if ψ(Φi/R,Ψi/X) defines an automorphism class of A

∅ otherwise

Now, the limit of the sequence Φi is independent of the choices.

However, it is not clear that a pair of formulas can be evaluated in polynomial time.

The semantics involves an automorphism test.
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Specified Symmetric Choice

The logic of specified symmetric choice (SSC-IFP) defines fixed points for triples
ϕ;ψ; θ of formulas.

Ψi+1 = {a} only if ψ(Φi/R,Ψi/X) defines an automorphism class and this
is witnessed by θ (i.e. this formula defines, for each pair of tuples satisfying ψ, an
automorphism mapping one to the other).

Any formula of SSC-IFP can be evaluated in polynomial time.

The Cai-Fürer-Immerman property can be expressed in SSC-IFP.
(Gire-Hoang 98)

Open Question: Is there a polynomial-time decidable property that cannot be
expressed in SSC-IFP?
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Choiceless Polynomial Time

Choiceless Polynomial Time (C̃PT) is a class of computational problems defined
by Blass, Gurevich and Shelah.

It is based on a machine model (Gurevich Abstract State Machines) that works
directly on a relational structure (rather than on a string representation).

The machine can access the collection of hereditarily finite sets over the universe
of the structure.

C̃PT is the polynomial time and space restriction of the machines.

C̃PT is strictly more expressive than IFP, but still cannot express counting
properties.

Consider C̃PT(Card)—the extension of C̃PT with counting.

Does it express all properties in PTime?
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Choiceless Polynomial Time

C̃PT can express the property of Cai, Fürer and Immerman.

Any program of C̃PT(Card) that expresses the CFI property must use sets of
unbounded rank.

IFP + C can be translated to programs of C̃PT(Card) of bounded rank.

(D., Richerby and Rossman 2008)
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Ongoing Research

Is there a PTime decidable class that cannot be expressed in SSC-IFP?

Is there PTime decidable class that is not in C̃PT(Card)?

How does the expressive power of SSC-IFP compare with that of C̃PT(Card)?

Are there other natural extensions of IFP that might capture PTime?
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