#### Notions of Width

Variables, Pebbles, Supports

Anuj Dawar

Department of Computer Science and Technology, University of Cambridge

LICS, Singapore, 23 June 2025

#### What is this talk about?

Start with a straightforward question:

What is the smallest number of variables with which you can equivalently write a given formula  $\varphi$  of first-order logic?

We always assume we have formulas in a fixed *relational vocabulary* (say the vocabulary of *graphs*):

 $x = y \mid E(x,y) \mid \varphi \land \psi \mid \varphi \lor \psi \mid \neg \varphi \mid \exists x \varphi \mid \forall x \varphi$ 

Each formula  $\varphi(\mathbf{x})$  defines a *query*, i.e. a map that takes a finite graph G to a *relation*  $\varphi^G \subseteq G^{\mathbf{x}}$ . Why do we care about the total number of variables? The answer will take us on a tour touching on *combinatorics*; *conjunctive queries*; *categories* and *circuit complexity*.

## Flashback: LICS 1990

**Ph.G. Kolaitis and M.Y. Vardi**, *0-1 Laws for Infinitary Logics*, LICS 1990, Philadelphia.

This proves a 0-1-law for  $L^{\omega}_{\infty\omega}$ 

the closure of first-order logic under infinitary conjunctions and disjunctions, but limiting each formula to a finite number of distinct variables.

Every formula of FP (*fixed-point logic*) is equivalent *over finite structures* to a formula of  $L^{\omega}_{\infty\omega}$ .



## Variable-confined Logics

 $L^k$ — formulas of first-order logic using only the variables  $x_1, \ldots, x_k$ .  $L^k_{\infty\omega}$ —closure of  $L^k$  under infinitary conjunctions and disjunctions.  $L^{\omega}_{\infty\omega} = \bigcup_k L^k_{\infty\omega}$ 

Why do we care about the *syntactic names* of the variables that appear in a formula?

Limiting the number of variables limits the maximum number of *free variables* that can appear in any subformula.



## **Conjunctive Queries**

A *conjunctive query* is a first-order formula constructing using only *conjunction* and *existential quantification*.

Consider the query (in the language of *directed graphs*) saying *"there is a walk of length five"*. In *prenex normal form* this requires *six* variables

 $\exists x_1 \cdots \exists x_6 (E(x_1, x_2) \land \cdots \land E(x_5, x_6)).$ 

but, can be formulated with just *two*:

 $\exists x \exists y (E(x,y) \land \exists x (E(y,x) \land \exists y (\cdots))).$ 



## Query Plans

Formulating the query with a small number of variables allows for a *query plan* with small *intermediate relations*.

 $\exists x \exists y (E(x,y) \land \exists x (E(y,x) \land \exists y (\cdots))).$ 



## Chandra-Merlin

Conjunctive query evalutation is the same as *structure homomorphism*. (Chandra Merlin 1977)

From a conjunctive query  $\varphi,$  we construct a structure  $M_{\varphi}$  such that for any  $\mathbb A$ 

 $\mathbb{A} \models \varphi$  if, and only if,  $M_{\varphi} \longrightarrow \mathbb{A}$ 

Put  $\varphi$  in prenex normal form; strip away the existential quantifiers; view the *resulting matrix* as a structure on the set of variables.

To minimize the number of variables required to write  $\varphi$  it is useful to look at natural *connectivity properties* of  $M_{\varphi}$ .



# Treewidth

The *treewidth* of an undirected graph is a measure of how tree-like the graph is.

A graph has treewidth k if it can be covered by subgraphs of at most k + 1 nodes in a tree-like fashion.





## Treewidth and the Number of Variables

The *treewidth* of a graph is an important combinatorial parameter much studied in *structural graph theory* and *parameterized algorithms*.

We are interested in the following property: If  $M_{\varphi}$  has treewidth less than k then  $\varphi$  can be equivalently written with at most k variables.

(Dalmau, Kolaitis, Vardi 2002)

This is useful in *query optimization*.

## Fixed-Point Logic

FP—*fixed-point logic* is the extension of first-order logic with a *recursion* mechanism.

A query on finite *ordered* structures is definable in FP if, and only if, it is computable in *polynomial time*. (Immerman, Vardi 1982/1986)

In the absence of order, FP cannot express simple *counting* properties. This leads to the study of FPC—*fixed-point logic with counting* 

Just as FP formulas can be translated into  $L^{\omega}_{\infty\omega}$ , so formulas of FPC translate to  $C^{\omega}_{\infty\omega}$ —*infinitary logic with counting* 

The key is that recursion can be unfolded into an infinitary disjunction while keeping the number of variables bounded.



# Logics with Counting

 $C^k$  is the logic obtained from *first-order logic* by allowing:

- counting quantifiers:  $\exists^i x \varphi$ ; and
- only the variables  $x_1, \ldots, x_k$ .

Every formula of  $C^k$  is equivalent to a formula of first-order logic, albeit one with more variables.

For every sentence  $\varphi$  of FPC, there is a k such that  $\varphi$  is equivalent to an *infinite disjunction* of formulas of  $C^k$ .

In particular, structures which cannot be distinguished in  $C^k$  cannot be be distinguished by  $\varphi$ .

#### Weisfeiler-Leman

For a pair of structures  $\mathbb{A}$  and  $\mathbb{B}$ , we write  $\mathbb{A} \equiv^k \mathbb{B}$  to denote that they are not distinguished by any sentence of  $C^k$ .

 $\mathbb{A} \equiv^k \mathbb{B}$  is decidable in time  $n^{O(k)}$ .

This is an equivalence relation that has been much studied in connection with the *graph isomorphism problem* It has many equivalent characterisations arising from *combinatorics; logic; algebra; linear optimization* 

It was proved (Cai, Fürer, Immerman 1992) that there is no k such that  $\equiv^k$  is the same as *isomorphism*.

## Homomorphism Counts

For two finite  $\tau$ -structures  $\mathbb{A}$  and  $\mathbb{B}$ , we have:  $\mathbb{A} \equiv^k \mathbb{B}$  *if, and only if,* for every finite  $\tau$ -structure  $\mathbb{C}$  of *treewidth* less than k,

$$|\{h: \mathbb{C} \xrightarrow{\mathsf{hom}} \mathbb{A}\}| = |\{h: \mathbb{C} \xrightarrow{\mathsf{hom}} \mathbb{B}\}|$$

(Dvořák 2010)

If A and B are distinguished by *any* formula of  $C^k$ , then they are distinguished by one of the form  $\exists^{\geq t} \mathbf{x} \theta$  where  $\theta$  is the matrix (in prenex normal form) of a conjunctive query that can be written with at most k variables.

Any formula of  $C_{\infty\omega}^{\omega}$  is an infinite *Boolean combination* of such formulas.

## Pebbling Comonad

The *pebbling comonads* (defined in (Abramsky, D, Wang 2017) place much of this in a *categorical* framework.

For each k, we have a map that takes a structure  $\mathbb{A}$  to  $\mathbb{P}_k\mathbb{A}$ . We can think of  $\mathbb{P}_k\mathbb{A}$  as a width k tree unfolding of  $\mathbb{A}$ .

There is a morphism from  $P_k \mathbb{A}$  to  $\mathbb{B}$  *if, and only if,* every width k conjunctive query satisfied in  $\mathbb{A}$  is satisfied in  $\mathbb{B}$ .

There is an isomorphism between  $P_k \mathbb{A}$  and  $P_k \mathbb{B}$  if, and only if,  $\mathbb{A} \equiv^k \mathbb{B}$ .

There is a coalgebra  $\mathbb{A} \to \mathbb{P}_k \mathbb{A}$  if, and only if, the treewidth of  $\mathbb{A}$  is less than k.



## **Combinatorial Categories**

#### Def.

A *locally finite* category A is *combinatorial* if two objects a, b in A are *isomorphic* if, and only if,

 $|\mathsf{hom}(c,a)| = |\mathsf{hom}(c,b)|$  for all c in  $\mathcal{A}$ 

#### Theorem

Every locally finite category with *pushouts* and a *proper factorization* system iscombinatorial. (D, Jakl, Reggio 2021)



## Pebble Games

The *pebbling* comonads were inspired by *pebble games*.

These are *model-comparison games* played on a pair of structures  $\mathbb{A}$  and  $\mathbb{B}$  by two players *Spoiler* and *Duplicator* using pebbles  $a_1, \ldots, a_k$  on  $\mathbb{A}$  and  $b_1, \ldots, b_k$  on  $\mathbb{B}$ . There is a *one-sided* version.

- *Spoiler* chooses a pair of pebbles  $a_i$  and  $b_i$ ;
- Duplicator chooses a function  $h : A \to B$  such that for pebbles  $a_j$ and  $b_j (j \neq i)$ ,  $h(a_j) = b_j$ ;
- Spoiler chooses  $a \in A$  and places  $a_i$  on a and  $b_i$  on h(a).

*Duplicator* loses if the partial map  $a_i \mapsto b_i$  is not a partial *homorphism*.

## Pebble Games

The *pebbling* comonads were inspired by *pebble games*.

These are *model-comparison games* played on a pair of structures A and B by two players *Spoiler* and *Duplicator* using pebbles  $a_1, \ldots, a_k$  on A and  $b_1, \ldots, b_k$  on B. There is a one-sided two-sided version.

- *Spoiler* chooses a pair of pebbles  $a_i$  and  $b_i$ ;
- Duplicator chooses a function bijection h : A → B such that for pebbles a<sub>j</sub> and b<sub>j</sub>(j ≠ i), h(a<sub>j</sub>) = b<sub>j</sub>;
- Spoiler chooses  $a \in A$  and places  $a_i$  on a and  $b_i$  on h(a).

*Duplicator* loses if the partial map  $a_i \mapsto b_i$  is not a partial homorphism isomorphism.

## Notions of Width

variables in a conjunctive query
treewidth of graphs
pebbles in a one-sided game
Homomorphism

*variables* in a counting logic formula *Weisfeiler-Leman dimension* of graphs *pebbles* in a two-sided bijection game



## Circuits

A language  $L \subseteq \{0,1\}^*$  can be described by a family of *Boolean* functions:

 $(f_n)_{n \in \omega} : \{0, 1\}^n \to \{0, 1\}.$ 

Each  $f_n$  may be computed by a *circuit*  $C_n$  made up of

- Gates labeled by Boolean operators: ∧, ∨, ¬,
- Boolean inputs:  $x_1, \ldots, x_n$ , and
- A distinguished gate determining the output.



## Circuits for Graph Properties

We want to study families of circuits that decide properties of *graphs* (or other relational structures—for simplicity of presentation we restrict ourselves to graphs).

We have a family of Boolean circuits  $(C_n)_{n \in \omega}$  where there are  $n^2$  inputs labelled  $(i, j) : i, j \in [n]$ , corresponding to the *potential edges*. Each input takes value 0 or 1;

Graph properties in P are given by such families where:

- the size of  $C_n$  is bounded by a polynomial p(n); and
- the family is uniform, so the function  $n \mapsto C_n$  is in P (or DLogTime).



#### Invariant Circuits

 $C_n$  is *invariant* if, for every input graph, the output is unchanged under a permutation of the inputs induced by a permutation of [n].

That is, given any input  $G : [n]^2 \to \{0, 1\}$ , and a permutation  $\pi \in S_n$ ,  $C_n$  accepts G if, and only if,  $C_n$  accepts the input  $\pi G$  given

 $(\pi G)(i,j) = G(\pi(i),\pi(j)).$ 

Say  $C_n$  is symmetric if any permutation of [n] applied to its inputs can be extended to an automorphism of  $C_n$ .

*i.e.*, for each  $\pi \in Sym_n$ , there is an automorphism of  $C_n$  that takes input (i, j) to  $(\pi i, \pi j)$ .

Any symmetric circuit is invariant, but *not* conversely.

## Symmetric Circuits

Example:  $\bigoplus_{1 \le i \le n} x_i$ .





## Logic and Circuits

A graph property is definable in FPC *if, and only if,* it is decided by a P-uniform family of *symmetric* circuits using *AND*, *OR*, *NOT* and *MAJ* gates. (Anderson, D. 2017)

A graph property is definable in  $C_{\infty\omega}^{\omega}$  if, and only if, it is decided by a family of symmetric circuits using AND, OR, NOT and MAJ gates with polynomial size orbits.

The *width* (number of variables) of a formula translates into a natural property of the circuits we call the *support size*.

#### Width and Supports

For a group  $\Gamma \leq \text{Sym}_n$ , we say that a set  $X \subseteq [n]$  is a *support* of  $\Gamma$  if For every  $\pi \in \text{Sym}_n$ , if  $\pi(x) = x$  for all  $x \in X$ , then  $\pi \in \Gamma$ .

In other words,  $\Gamma$  contains all permutations that pointwise fix X.

Say that a circuit has support size k if every gate has a stabilizer group with a support of size at most k.

Circuit families with *bounded support size* have polynomial-size orbits and *vice versa*.



#### Algebraic Circuits



## Algebraic Circuits

*Algebraic Circuits* over a field *K* are given by:

- A directed acyclic graph.
- Inputs labelled by a *variable*  $x \in X$ , or constant  $c \in K$ .
- Internal gates labelled by + or  $\times$ .
- A designated *output*.

Each circuit computes (or represents) a *polynomial* in K[X].

**Valiant's** conjecture  $VP \neq VNP$  is the *algebraic analogue* of  $P \neq NP$ .



#### Matrix Inputs

We are often interested in inputs which are entries of *a matrix*.

 $X = \{x_{ij} \mid 1 \le i \le m; 1 \le j \le n\}$ 

Especially, when the input is a square matrix, so m = n.

$$\operatorname{Det}(X) = \sum_{\sigma \in \operatorname{Sym}_n} \operatorname{sgn}(\sigma) \prod_{i \in [n]} x_{i\sigma(i)}$$

$$\operatorname{Per}(X) = \sum_{\sigma \in \operatorname{Sym}_n} \prod_{i \in [n]} x_{i\sigma(i)}$$

Valiant's conjecture is equivalent to the statement Per(X) cannot be expressed by circuits of polynomial size.

## Symmetric Algebraic Circuits

Suppose C is a circuit computing a polynomal  $p \in K[X]$ . Sym<sub>X</sub>—the group of *permutations* of X.

For  $\Gamma \leq \text{Sym}_X$ , p is  $\Gamma$ -symmetric if for all  $\pi \in \Gamma$ ,  $p^{\pi} = p$ .

*C* is  $\Gamma$ -symmetric if the action of  $\Gamma$  on the inputs *X* extends to an *automorphism* of *C*.

## Symmetric Polynomials

The matrix polynomials Det(X) and Per(X) are both square symmetric, i.e. invariant under the action of  $Sym_n$  given by

 $x_{ij}^{\pi} = x_{\pi(i)\pi(j)}.$ 

i.e., simultaneous row and column permutations.

Per(X) is also matrix symmetric, i.e. invariant under independent row and column permutations:

the action of  $\mathsf{Sym}_n\times\mathsf{Sym}_n$  given by

$$x_{ij}^{(\sigma,\pi)} = x_{\sigma(i)\pi(j)}.$$

Det(X) is not matrix symmetric.

# Polynomial-size Symmetric Circuits

There are *polynomial-size* square symmetric circuits for computing Det(X).

Any square symmetric circuits for computing Per(X) are of *exponential orbit size*.

(D, Wilsenach 2020)

We can, in fact, get a complete characterization of *matrix symmetric* polynomials that are computable by symmetric circuits with polynomial orbit size.

## Homomorphism Polynomials

An  $a \times b$  matrix can be seen as a *weighted bipartite graph* on the set of vertices  $[a] \uplus [b]$ .

Given such a matrix M and the matrix of variables  $X = \{x_{ij} \mid i \in [m], j \in [n]\}$ , we define the *homomorphism polynomial of* M as:

$$\hom_{M,m,n} = \sum_{f:[a] \to [m], g:[b] \to [n]} \prod_{i \in [a], j \in [b]} M_{i,j} x_{f(i), g(j)}.$$

When M is the biadjacency matrix of a graph F, this gives an expression such that substituting for X the biadjaceny matrix of a graph G, evaluating to the *number of homomorphisms* from F to G.

## Characterization

#### Theorem

A family of polynomials  $p_{m,n}(X)$  is computed by a family of *matrix* symmetric circuits of *polynomial circuit size* 

#### if, and only if,

there is a k such that each  $p_{m,n}$  is a linear combination of homomorphism polynomials  $\hom_{M,m,n}$  of graphs of treewidth less than k. (D,Pago,Seppelt 2025)

## Conclusions

How many variables are needed to express a formula?

This is a measure of *complexity* that ties in to many *natural* and *independently discovered* measures in combinatorics, logic and complexity.

Proving lower bounds yields *surprising* and *unconditional* lower bounds in circuit complexity and other areas.

Closely related notions of width arise in other areas, e.g. *constraint satisfaction problems*; *submodular width* ...

