
1

On Datalog, LFP and MSO

Anuj Dawar

University of Cambridge

joint work with Stephan Kreutzer (Oxford)

LIAFA, 20 March 2009

Anuj Dawar March 2009

2

Datalog

Datalog is a language originally introduced for defining deductive databses. It is

also alternatively viewed as a query language for relational databases.

It is the language of function-free Horn clauses or equivalently, the closure of

existential positive first-order logic under recursive definitions.

A database is a finite relational structure in some vocabulary ore relations σ. The

relations in σ are the extensional database predicates (EDBs).

In addition, a number of intensional database predicates (IDBs) are defined by

means of a Datalog program.

Anuj Dawar March 2009

3

Datalog Programs

A Datalog program is a series of rules of the form

H(x)← B1(x1), . . . , Bm(xm)

where H is an IDB predicate, each Bi is an EDB or an IDB predicate (possibly

H itself) and x and xi are tuples of variables and constants.

The semantics defines the interpretation of an IDB predicate H on a given

structure A to be the set of tuples that can be placed in H by a finite sequence of

application of the rules.

To define a fixed query, we specify one IDB predicate to be the goal predicate

Anuj Dawar March 2009

4

Example

Given one binary EDB predicate E, the following program defines its transitive

closure.

T (x, y) ← E(x, y)

T (x, y) ← E(x, z), T (z, y)

To formulate the query that there is an E-path from s to t, we could add the 0-ary

goal predicate G and the rule.

G← T (s, t)

Anuj Dawar March 2009

5

LFP

Datalog can be seen as allowing recursive definitions by means of formulas

involving

• conjunction (in the form of the comma);

• disjunction (in the form of multiple rules); and

• existential quantification (in the form of projection of variables)

If we allow other operations of first-order logic, including universal quantification

and negation (but only on EDB predicates and equalities), we get LFP.

By disallowing negation on IDBs, we ensure that the recursion is still well-defined.

Anuj Dawar March 2009

6

Example

On a relational structure with unary relations E (for existential nodes) and A

(universal nodes) and a binary relation S, the following program defines the pairs

of elements (x, y) with an alternating S-path.

AP(x, y) ← x = y

AP(x, y) ← E(x) ∧ ∃z(S(x, z) ∧ AP(z, y))

AP(x, y) ← A(x) ∧ ∀z(S(x, z)→ AP(z, y))

Anuj Dawar March 2009

7

LFP and PTIME

An important reason for the interest in LFP is its connection to polynomial-time

computation.

Every query definable in LFP is computable in P.

If we consider structures with a linear order as a built-in relation, then every query

computable in P is definable in LFP.

Anuj Dawar March 2009

8

Homomorphisms

Given two structures A and B over a vocabulary σ, a homomorphism h is a map

from A to B such that

• h(cA) = cB for each constant symbol c in σ;

• RA(a)⇒ RB(h(a)) for each relation symbol R in σ and each tuple of

elements a.

Every existential-positive first-order formula ϕ is preserved under

homomorphisms, i.e.

A |= ϕ[a] ⇒ B |= ϕ[h(a)]

And the same easily follows for all Datalog queries.

Anuj Dawar March 2009

9

Preservation Theorems

A classical preservation theorem of model theory tells us that every first-order

formula that is preserved under homomorphisms is equivalent to an

existential-positive formula.

A result by (Rossman 2005) states that this remains true, even when restricted to

finite structures.

Atserias (MathCSP 2006) asked whether a similar result could be shown for

fixed-point logics:

Is every query that is definable in LFP and closed under homomorphisms

definable in Datalog?

Anuj Dawar March 2009

10

Failure of Preservation

The answer is no (D.-Kreutzer, ICALP 08) .

If we admit infinite structures, we can construct an LFP formula,

preserved under homomorphisms, which we can show is not Datalog

definable by a method of diagonalisation.

Establshing the result when only finite structures are permitted is more of a

challenge.

Anuj Dawar March 2009

11

Finite Structures

For any set S ⊆ N, we define the class of directed source-target graphs (i.e.

structures over (E, s, t))

CS : the class of graphs (G, s, t) such that either G contains a cycle, or

there is a path from s to t of length p for some p ∈ S.

We prove:

• CS is closed under homomorphisms.

• If S is decidable in P (with numbers represented in unary), then CS is

definable in LFP.

• CS is not definable in Datalog when

S = {n | n = 22
m

2

for some m ∈ N} .

Anuj Dawar March 2009

12

Closure under Homomorphisms

CS : the class of graphs (G, s, t) such that either G contains a cycle, or

there is a path from s to t of length p for some p ∈ S.

If h is a homomorphism from (G, s, t) to (H, s, t) then

• If G contains a cycle, the image of this cycle under h is a cycle in H .

• If G contains a simple path of length p from s to t, the image of this path

under h either contains a cycle, or is a simple path of length p.

Anuj Dawar March 2009

13

Definability in LFP

There is an LFP formula that defines graphs that contain a cycle.

For an acyclic graph G, let nG denote the length of the longest simple path in G.

We can show that there are LFP formulas that interpret, in any acyclic G a linear

order of length nG along with the relation

(u, v, p) : there is a path of length p from u to v.

By the fact that LFP capture P on ordered structures, we get:

If S is decidable in P (with numbers represented in unary), then CS is

definable in LFP.

Anuj Dawar March 2009

14

A Pumping Lemma for Datalog

To show: CS is not definable in Datalog when

S = {n | n = 22
m

2

for some m ∈ N} .

We prove the following:

If there is a Datalog program which accepts (G, s, t) if, and only if, G

contains a path from s to t of length p for some p ∈ S, then there is a

constant c and an increasing sequence (ai)i∈N of numbers such that:

1. ai+1 < ac
i for all i; and

2. S ∩ [ai, ai+1] 6= ∅ for all i.

In contrast, note that we can define a Datalog program that accepts a simple path

(P, s, t) iff its length is in S.

Anuj Dawar March 2009

15

Unfoldings of Datalog Programs

We illustrate unfoldings of a Datalog program with an example.

Among the (infinitely many) unfoldings of

T (x, y) ← E(x, y)

T (x, y) ← E(x, z), T (z, y)

G ← T (s, t)

are:

E(s, t)

E(s, z1), E(z1, t)

E(s, z1), E(z1, z2), E(z2, t)

More formally, an unfolding is obtained from the goal by repeatedly replacing an

occurrence of an IDB predicate by the right-hand side of a rule defining it (while

renaming bound variables) until only EDB predicates remain.

Anuj Dawar March 2009

16

Facts about Unfoldings

• Each unfolding of a program π can be itself seen as a relational structure A

on the variables. We call such structures expansions of π.

• A structure B is accepted by π if, and only if, there is some expansion A of π

with a homomorphism h : A→ B.

• There is a k depending only on π such that all expansions of π have

treewidth≤ k. Indeed, the number of distinct variables in π provides an

upper bound, with the unfolding yielding a decomposition.

Anuj Dawar March 2009

17

Decorated Expansions

We can represent an unfolding of π as a labelled tree.

G

T (x, y)

E(x, z1)

E(z1, z2)

T (z1, y)

T (z2, y)

E(z2, y)

In the labels of the nodes, it suffices

to record the rule of the program used,

and the equalities between variables in

the node and those in its children.

As there are at most k variables per

rule, there are only finitely many labels

(depending on π).

Anuj Dawar March 2009

18

MSO definability

For any Datalog program π we can write an MSO formula that defines those

labelled trees that are decorated expansions of π.

We can also say in MSO that the underlying expansion is an acyclic graph.

Thus, there is a finite tree automaton that accepts the decorated expansions of π

with acyclic underlying expansion, and we will use this for our pumping argument.

Anuj Dawar March 2009

19

Simple Paths

Suppose the program π accepts a simple path of length p.

If the expansion accepting the path is also a simple path, and p is large enough,

we can pump, obtaining another expansion that is also a simple path but whose

length l is strictly between p and p + c.

(Afrati, Cosmadakis, Yannakakis)

Anuj Dawar March 2009

20

Acyclic Graph Expansions

In general, the expansion witnessing that π accepts a simple path will not itself be

a simple path. It may be a some other graph that maps homomorphically to the

simple path.

Pumping the decorated expansion corresponding to such a graph is not

guaranteed to increase the length of all paths from s to t.

Indeed, it may even introduce shorter paths.

Anuj Dawar March 2009

21

Pumping at Multiple Points

We show that in any decorated expansion witnessing that π accepts a simple

path of length p (for large enough values of p), we can find a set of pairs of points

{(x1, y1), . . . , (xm, ym)} such that:

• for each i, the subtree rooted at xi has the same type as the one at yi;

• every long enough path has an edge (in a precise sense) in “the portion of the

decorated expansion between” xi and yi.

We define a way of pumping the tree at all pairs (xi, yi) at the same time, and

show that if this is done n times then:

• any path from s to t has length at least n;

• there is a c (depending only on the branching degree and the width of the

decomposition), so that the total size of the expansion has size at most nc.

Anuj Dawar March 2009

22

Pumping Result

If there is a Datalog program which accepts (G, s, t) if, and only if, G

contains a path from s to t of length p for some p ∈ S, then there is a

constant c and an increasing sequence (ai)i∈N of numbers such that:

1. ai+1 < ac
i for all i; and

2. S ∩ [ai, ai+1] 6= ∅ for all i.

CS is not definable in Datalog when

S = {n | n = 22
m

2

for some m ∈ N} .

Question: Can we replace ac
i in the statement by c · ai or even c + ai?

This would allow us to define CS with n = 2m2

or n = m2.

Anuj Dawar March 2009

23

On Datalog and MSO

For a formula ϕ of MSO, letMk
ϕ denote the collection of structures A with

tw(A) ≤ k and A |= ϕ.

WriteHk
ϕ for the closure ofMk

ϕ under homomorphisms, i.e. the class of

structures B with a homomorphism h : A→ B for some A ∈Mk
ϕ.

Fact: Hk
ϕ is Datalog-definable.

This can be shown using Courcelle’s construction to obtain from ϕ an

automaton that works on tree-decompositions of structures of treewidth at

most k and accepts those that are inMk
ϕ. The transitions of the

automaton can then be defined by Datalog rules, yielding a program that

definesHk
ϕ.

Could it be that every Datalog-definable class is of the formHk
ϕ for some k and

some MSO ϕ?

Anuj Dawar March 2009

24

Defining Expansions

In our pumping argument, we used the fact that the class of decorated

expansions of a Datalog program π is MSO definable.

Could it be that the class of expansions of π is itself MSO definable?

This would allow for an elegant result tying the expressive power of Datalog to

that of MSO on classes of bounded treewidth:

A class of structures C is Datalog definable if, and only if, the

homomorphism closure of some MSO-definable class of bounded

treewidth.

Anuj Dawar March 2009

