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Complexity of the Satisfaction Relation

We are interested in the complexity of the satisfaction relation for first-order logic.

That is, given a graphG

and a formula ϕ of first-order logic in the language of graphs:

E(x, y) | ϕ ∧ ψ | ϕ ∨ ψ | ¬ϕ | ∃xϕ | ∀xϕ

decide whetherG |= ϕ

What is the complexity of this, parameterized by the length of ϕ?

In the rest of this talk, we use n for the size of G, l for the length of ϕ and m for the depth

of nesting of quantifiers in ϕ.
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Complexity of Satisfaction

The satisfaction relation is AW[⋆]-complete.

The naive algorithm takes time O(lnm).

Restricted to formulas with at most t alternations of quantifiers, the problem is

W [t]-hard.

It subsumes many natural parameterized graph problems (where, fixing the

parameter, we can express the problem in first-order logic).

• Vertex Cover;

• Independent Set;

• Dominating Set;

• Network Centres (distance-d dominating set).
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Restricted Classes

One way to get a handle on the complexity of first-order satisfaction is to consider

restricted graph classes.

Given: a first-order formula ϕ and a graphG ∈ C

Decide: if G |= ϕ

For many classes C, this problem has been shown to be FPT.

1. Tk—the class of graphs of tree-width at most k.

Courcelle (1990) shows that MSO satisfaction is fixed parameter linear time

on this class.

2. Dk—the class of graphs of degree bounded by k. Seese (1996) shows that

FO satisfaction is fixed-parameter linear time.
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Some Results

3. LTWt—the class of graphs of local tree-width bounded by a function t. Frick

and Grohe (2001) show that FO satisfaction is fixed parameter quadratic

time.

4. Mk—the class of graphs excludingKk as a minor. Flum and Grohe (2001)

show that FO satisfaction is O(f(l)n5).

5. LEMt—the class of structures with locally excluded minors given by t. D.,

Grohe and Kreutzer (2007) show that FO satisfaction is O(f(l)n6).

6. On any class of bounded expansion Dvořak, Kr ál and Thomas; D. and

Kreutzer (2010) show that FO satisfaction is fixed parameter linear time.

7. On any class of graphs that is nowhere dense, D. and Kreutzer (2009) show

that some independence and domination problems are decidable in fixed

parameter linear time.
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Map of Restrictions

excluded minors bounded local treewidth

planar graphs bounded degree

bounded expansion locally excluded minors

acyclic graphs

bounded genus

bounded treewidth

nowhere dense
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Automata and Locality

The methods of proof for all but the last two of the above results are combinations

of two general techniques:

• Methods of automata or decompositions; and

• Methods based on the locality of first-order logic.

The last two are based on new techniques:

• A method based on low-depth colourings.

• A method based on wideness of the classes.

In the rest of the talk, I’ll give a brief overview of the first two methods and then

discuss classes of bounded expansion and nowhere dense classes.
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Courcelle’s Theorem

Theorem (Courcelle)

MSO (or MS2) satisfaction is fixed parameter linear time on Tk.

Write G, ū ≡m H, v̄ to denote that any formula of FO that is true of the tuple of

vertices ū in G is true of v̄ in H and vice versa.

For each k, there is a finite collection of operations such that any G ∈ Tk can be

built up from graphs with ≤ k vertices using these operations. Moreover, ≡m is a

congruence for each of them.
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Pointed Sum

G1 ⊕X G2

|X | ≤ k

G1 G2

X

If G1, X ≡m H1, Y and G2, X ≡m H2, Y then

G1 ⊕X G2, X ≡m H1 ⊕Y H2, Y.

Anuj Dawar December 2010



10

The Method of Decompositions

Suppose FO satisfaction is FPT on a class B

and C is a class of graphs such that there is a finite collection Op of operations

such that:

• C is contained in the closure of B under the operations in Op;

• there is a polynomial-time algorithm which computes, for any G ∈ C, an

Op-decomposition of G over B; and

• for eachm, the equivalence class ≡m is an effective congruence with

respect to to all operations o ∈ Op (i.e., the ≡m-type of o(G1, . . . , Gs) can

be computed from the ≡m-types of G1, . . . , Gs).

Then, FO satisfaction is fixed-parameter tractable on C.
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Bounded Degree Graphs

Dk—the class of graphsG in which every element has degree at most k.

Theorem (Seese)

For every sentence ϕ of FO and every k there is a linear time algorithm which,

given a graphG ∈ Dk determines whetherG |= ϕ.

Note: this is not true for MSO unless P = NP.

A proof is based on locality of first-order logic.
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Gaifman’s Theorem

We write δ(x, y) > d for the formula of FO that says that the distance between x

and y is greater than d.

We write ψr(x) to denote the formula obtained from ψ(x) by relativising all

quantifiers to the set Nr = {y | δ(x, y) < r}.

A basic local sentence is a sentence of the form

∃x1 · · · ∃xs





∧

i 6=j

δ(xi, xj) > 2r ∧
∧

i

ψr(xi)





Theorem (Gaifman)

Every first-order sentence is equivalent to a Boolean combination of basic local

sentences.
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Method of Locality

• Suppose we have a function, associating a parameter kG ∈ N with each

graphG.

• Suppose we have an algorithm which, givenG and ϕ decidesG |= ϕ in time

g(l, kG)n
c

for some computable function g and some constant c.

• Let C be a class of graphs of bounded local k, i.e.

there is a computable function t : N → N such that for every G ∈ C

and v ∈ G, kNr(a) < t(r).

Then, there is an algorithm which, given G ∈ C and ϕ decides whetherG |= ϕ

in time

f(l)nc+1

for some computable function f .
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Bounded Local Treewidth

Let t : N → N be a non-decreasing function.

LTWt—the class of graphsG such that for every v ∈ V (G):

NG
r (v) has tree-width at most t(r). (Eppstein; Frick-Grohe) .

We say that C has bounded local tree-width if there is some function t such that

C ⊆ LTWt.

Examples:

1. Tk has local tree-width bounded by the constant function t(r) = k.

2. Dk has local tree-width bounded by t(r) = kr + 1.

3. Planar graphs have local tree-width bounded by t(r) = 3r.
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Excluded Minor Classes

Write Mk for the class of graphsG such that Kk 6� G.

Grohe shows that graphs in Mk can be decomposed over graphs of almost

bounded local tree-width.

By suitable definitions of congruences (non-trivial) we get an application of the

method of decompositions.

First-order logic is fixed-parameter tractable on Mk .

(Flum-Grohe)

Anuj Dawar December 2010



16

Locally Excluded Minors

Say a class of graphs C locally excludes minors if there is some non-decreasing

function t : N → N such that for any G ∈ C and any v ∈ G,

Kt(r) 6� Nr(v)

Theorem (D., Grohe, Kreutzer)

First-order logic is fixed-parameter tractable on every class C that locally excludes

minors.

The result would be an easy application of the locality method except that the

proof of Flum and Grohe relies on non-constructive methods.

A new decomposition of Mk is needed.
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Map of Restrictions

excluded minors bounded local treewidth

planar graphs bounded degree

bounded expansion locally excluded minors

acyclic graphs

bounded genus

bounded treewidth

nowhere dense
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Sparse Classes

For a graphG, we write |G| for the number of vertices in G and ||G|| for the

numer of edges in G.

If G has degree at most d, then ||G|| ≤ d
2 |G|.

If G has tree-width at most k, then ||G|| ≤ k|G|.

Theorem

There exists a function f such that, for every r, every graphG of average degree

d ≥ f(r) containsKr as a minor.
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Sparse Classes

Say a class C of graphs is sparse if there is a c so that for all G ∈ C,

||G|| ≤ c|G|.

Equivalently, C has bounded average degree.

There are pathological sparse classes.

Take the class that contains, for every finite graphG the graph consisting

of the union of G with ||G|| isolated vertices.
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Hereditarily Sparse Classes

Say a class C of graphs is hereditarily sparse if there is a c so that for all G ∈ C,

and every subgraphH ⊂ G we have ||H|| ≤ c|H|.

With any graphG = (V,E), we associate its incidence graph

I(G) = (V ∪ E,F ) where

F = {(v, e) | v ∈ V, e ∈ E and e is incident with v}.

The collection of all incidence graphs is hereditarily sparse but has all the

complexity of the class of all graphs since the map G 7→ I(G) is an easy

first-order reduction.
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Shallow Minors

Recall that H = (U, F ) is a minor of G = (V,E), if we can find a collection of

disjoint, connected subgraphs of G: (Bu | u ∈ U) such that whenever

(u1, u2) ∈ F , there is an edge between some vertex in Bu1
and some vertex in

Bu2
.

The graphsBu are called branch sets witnessing that H � G.

If the branch sets can be chosen so that for each u there is b ∈ Bu and

Bu ⊆ NG
r (b), we say that H is a minor at depth r of G and write H �r G
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Bounded Expansion

A class C of graphs is said to have bounded expansion if, for each r, there is a

∇r such that if H �r G for some G ∈ C then ||H|| ≤ ∇r|H|.

In other words, C has bounded expansion if, for every r, the collection of

depth-r minors of graphs in C is sparse.

Mk has bounded expansion, with ∇r depending only on k.

Dk has bounded expansion by taking ∇r = kr .
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FO on Bounded Expansion Classes

A very recent result (FOCS 2010) by Dvořak, Kr ál and Thomas states:

If C is a class of bounded expansion then FO satisfaction on C is in fixed

parameter linear time.

Note: this improves the O(n5) bound for excluded minor classes.

The technique used is quite different to the locality and decomposition techniques

we have seen. It relies on suitable graph colourings.
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Tree Depth

The tree-depth of a graphG is defined to be the smallest k such that there is

directed forest F of height k and

G is a subgraph of the undirected graph underlying the transitive closure

of F .

For any graphG, tw(G) ≤ td(G),

where tw(G) is the tree-width of G and td(G) is the tree-depth of G.
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Low Tree-Depth Colourings

Nešetřil and Ossona de Mendez prove a remarkable colouring property of classes

of graphs of bounded expansion.

Theorem: (Ne šet řil, Ossona de Mendez)

Let C be a class of graphs of bounded expansion. For any p there is an N such

that any graphG ∈ C can be coloured usingN colours in such a way that if

C1, . . . , Cp is any set of p colours then G[C1 ∪ · · · ∪ Cp] has tree-depth less

than p.

Moreover, this colouring can be found efficiently—in linear time.
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Evaluating Existential Formulas

Suppose ϕ is an existential first-order formula.

That is, it is of the form

∃x1 · · · ∃xqθ

where θ is quantifier-free.

If C has bounded expansion, we can evaluate such formulas on graphs in C by

the following process.

Find a colouring ofG which guarantees that any q colours induce a graph

of tree-depth at most q.

For each set of q colours, check whether ϕ can be evaluated in the

subgraph induced by these colours.

This establishes that for existential formulas, satisfaction is FPT on C.
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Quantifier Alternation

Moreover, within a graph of tree-depth at most d, the ≡m-type of a tuple

v1, . . . , vk (k +m < d) is determined by the types of the individual vertices vi

and, for each pair i, j, the height of the least common ancestor of vi and vj in

the witnessing forest.

This allows us to turn a universal formula

∃x1 · · · ∃xpϕ(x̄, ȳ)

into an equivalent existential formula

∧

S∈[C̄]p

∃z̄ψS(ȳ, z̄)

whose length depends on Np.
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Nowhere Dense Graphs

We say that a class C of graphs is nowhere-dense if, for every r, the collection of

graphs

{H | H �r G for some G ∈ C}

is not the class of all graphs.

In other words, for each r, there is a Kk that cannot be obtained as a

depth-r minor of any graph in C.

This clearly generalizes bounded expansion classes.

It also generalizes locally excluded minor classes because if Kk �r G then

there is a v in G such that Kk � NG
3r+1(v).
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Trichotomy Theorem

Associate with any infinite class C of graphs the following parameter:

dC = lim
r→∞

lim sup
G∈Cr

log ||G||

log |G|
,

where Cr is the collection of graphs obtained as minors of a graph in C by

contracting neighbourhoods of radius at most r.

The trichotomy theorem of Nešetřil and Ossona de Mendez states that dC can

only take values 0, 1 and 2.

The nowhere-dense classes are exactly the ones where dC 6= 2.

This shows that these classes are a natural limit to one notion of sparseness.
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FO on Nowhere Dense Classes

It is still an open question whether FO satisfaction is fixed-parameter tractable on

nowhere-dense classes.

Some problems, defined by families of FO formulas, have been shown to be FPT

on such classes.

• Independent Set;

• Dominating Set;

• distance-d dominating set

The proof for these is based on a technique distinct from those we have seen so

far.
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Wide Classes

A set of vertices A in a graphG is said to be r-scattered if for any u, v ∈ A,

Nr(u) ∩Nr(v) = ∅.

Definition

A class of graphs C is said to be wide if for every r andm there is anN such that

any graph in C with more than N vertices contains a r-scattered set of size m.

Example: Classes of graphs of bounded degree.

Non-Example: Trees
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Almost Wide Classes

Definition

A class of graphs C is almost wide if there is an s such that for every r and m

there is an N such that any graph in C with more than N vertices contains s

elements whose removal leaves a r-scattered set of size m.

Example: Trees.

Examples: planar graphs?

Anuj Dawar December 2010



33

Quasi-Wide Classes

Let s : N → N be a function. A class C of graphs is quasi-wide with margin s if

for all r ≥ 0 andm ≥ 0 there exists an N ≥ 0 such that if G ∈ C and

|G| > N then there is a set S of vertices with |S| < s(r) such that G− S

contains an r-scattered set of size at leastm.

We can show that any class of nowhere-dense graphs is quasi-wide.

The proof also shows that any class that excludesKk as a minor is almost wide

with margin k − 2.
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Equivalence

A class C of graphs is uniformly quasi-wide with margin s if for all r ≥ 0 and all

m ≥ 0 there exists an N ≥ 0 such that if G = (V,E) ∈ C and W ⊆ V with

|W | > N then there is a set S ⊆ V with |S| < s(r) such thatW contains an

r-scattered set of size at least m in G− S.

Theorem: (Ne šet řil, Ossona de Mendez)

The following are equivalent for any class C that is closed under taking induced

subgraphs:

1. C is nowhere dense

2. C is quasi-wide

3. C is uniformly quasi-wide
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Review

excluded minors bounded local treewidth

planar graphs bounded degree

bounded expansion locally excluded minors

acyclic graphs

bounded genus

bounded treewidth

nowhere dense

For all classes except the last one the picture, it has been established that FO

satisfaction is FPT.

For nowhere dense classes this remains an open question.

Techniques deployed use: locality, decompositions, low tree-depth colourings and

wideness.
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