
Symmetric Circuits

Anuj Dawar

University of Cambridge Computer Laboratory

joint work with Matthew Anderson

IMSc, Chennai, 8 January 2015

Circuit Complexity
A language L ⊆ {0, 1}∗ can be described by a family of Boolean
functions:

(fn)n∈ω : {0, 1}n → {0, 1}.

Each fn may be computed by a circuit Cn made up of

• Gates labeled by Boolean operators: ∧,∨,¬,

• Boolean inputs: x1, . . . , xn, and

• A distinguished gate determining the output.

If there is a polynomial p(n) bounding the size of Cn, i.e. the number of
gates in Cn, the language L is in the class P/poly.

If, in addition, the function n 7→ Cn is computable in polynomial time, L
is in P.

Note: For these classes it makes no difference whether the circuits only use

{∧,∨,¬} or a richer basis with threshold or majority gates.

Anuj Dawar January 2015

Circuit Lower Bounds

It is conjectured that NP 6⊆ P/poly.

Lower bound results have been obtained by putting further restrictions on
the circuits:

• No constant-depth (unbounded fan-in), polynomial-size family of
circuits decides parity. (Furst, Saxe, Sipser 1983).

• No polynomial-size family of monotone circuits decides clique.
(Razborov 1985).

• No constant-depth, O(n
k
4)-size family of circuits decides k-clique.

(Rossman 2008).

No known result separates NP from constant-depth, polynomial-size
families of circuits with majority gates.

Anuj Dawar January 2015

Circuits for Graph Properties

We want to study families of circuits that decide properties of graphs (or
other relational structures—for simplicity of presentation we restrict
ourselves to graphs).

We have a family of Boolean circuits (Cn)n∈ω where there are n2 inputs
labelled (i , j) : i , j ∈ [n], corresponding to the potential edges.
Each input takes value 0 or 1;

Graph properties in P are given by such families where:

• the size of Cn is bounded by a polynomial p(n); and

• the family is uniform, so the function n 7→ Cn is in P (or
DLogTime).

Anuj Dawar January 2015

Invariant Circuits

Cn is invariant if, for every input graph, the output is unchanged under a
permutation of the inputs induced by a permutation of [n].

That is, given any input G : [n]2 → {0, 1}, and a permutation π ∈ Sn,

Cn accepts G if, and only if, Cn accepts the input πG given

(πG)(i , j) = G (π(i), π(j)).

This defines a class of Boolean functions far more general than the
symmetric ones, including all isomorphism-invariant graph properties such
as connectivity, perfect matching, Hamiltonicity, 3-colourability.

Anuj Dawar January 2015

Symmetric Circuits

Say Cn is symmetric if any permutation of [n] applied to its inputs can be
extended to an automorphism of Cn.

i.e., for each π ∈ Sn, there is an automorphism of Cn that takes
input (i , j) to (πi , πj).

Any symmetric circuit is invariant, but not conversely.

Consider the natural circuit for deciding whether the number of
edges in an n-vertex graph is even.

Any invariant circuit can be converted to a symmetric circuit, but with
potentially exponential blow-up.

Anuj Dawar January 2015

First-Order Logic

We consider logic as a language for specifying properties of graphs and
the translation of these specifications.

First-order Logic:

A collection X of variables, and formulas:

E (x , y) | φ ∧ ψ | φ ∨ ψ | ¬φ | ∃xφ | ∀xφ

A formula φ without free variables specifies a property of graphs.

∃x∃y∃z(x 6= y ∧ y 6= z ∧ x 6= z ∧ ¬E (x , y) ∧ ¬E (x , z) ∧ ¬E (y , z))

defines the graphs that have an independent set of size 3.

Anuj Dawar January 2015

Logic and Circuits

Any formula of φ first-order logic translates into a uniform family of
circuits Cn

For each subformula ψ(x) and each assignment a of values to
the free variables, we have a gate.
Existential quantifiers translate to big disjunctions, etc.

The circuit Cn is:

• of constant depth (given by the depth of φ);

• of size at mose c · nk where c is the number of subformulas of φ and
k is the maximum number of free variables in any subformula of φ.

• symmetric by the action of π ∈ Sn that takes ψ[a] to ψ[π(a)].

Anuj Dawar January 2015

Fixed-Point Logic

The logic FP is formed by adding to first-order logic a mechanism for
inductive definitions.

The formula

∀u∀v [lfpT ,xy (x = y ∨ ∃z(E (x , z) ∧ T (z , y)))](u, v)

is satisfied in a graph (V ,E) if, and only if, it is connected.

On structures which come equipped with a linear order FP expresses
exactly the classes that are decidable in polynomial time.

(Immerman; Vardi)

In the absence of order, there is no formula of FP that defines

• the graphs with an even number of vertices.

• the graphs with an even number of edges.

Anuj Dawar January 2015

FP and Circuits

For every sentence φ of FP and every n, there is a formula φn of
first-order logic that is equivalent to φ on all graphs with at most n
vertices.

The formula φn has

• depth nc for some constant c;

• at most k free variables in each sub-formula for some constant k.

It follows that every graph property definable in FP is given by a family of
polynomial-size, symmetric circuits.

Note: the inexpressibility results for evenness really show that it is not definable

by any family of formulas with a constant number of variables.

Anuj Dawar January 2015

Fixed-Point Logic with Counting

FPC is a logic formulated to add the ability to count to FP.
It was once proposed as a candidate logic for expressing all properties in
P.

Two sorts of variables:

• x1, x2, . . . which range over |A|—the domain of the structure, and

• ν1, ν2, . . . which range over the numbers 0, 1, . . . , |A|.
If φ(x) is a formula with free variable x , then ν = #xφ denotes that ν is
the number of elements of A that satisfy the formula φ.

Anuj Dawar January 2015

Counting Quantifiers

C k is the logic obtained from first-order logic by allowing:

• counting quantifiers: ∃ix φ; and

• only the variables x1,xk .

Every formula of C k is equivalent to a formula of first-order logic, albeit
one with more variables.

For every sentence φ of FPC, there is a k such that for any fixed n, there
is a formula of C k equivalent to φ on structures with at most n elements.

It follows that any graph property expressible in FPC is given by a
polynomial-size family of symmetric, circuits with counting (or threshold)
gates.

Anuj Dawar January 2015

Expressive Power of FPC

Most “obviously” polynomial-time algorithms can be expressed in FPC.

This includes P-complete problems such as CVP—the Circuit Value
Problem as well as 2-colourability and 2-SAT (all expressible in FP).

Many non-trivial polynomial-time algorithms can be expressed in FPC:

• FPC captures all of P over any proper minor-closed class of graphs
(Grohe 2010)

• FPC can express linear programming problems; max-flow and
maximum matching on graphs. (Anderson, D., Holm 2013)

Anuj Dawar January 2015

Limitations of FPC

There are polynomial-time decidable properties of graphs that are not
definable in FPC. (Cai, Fürer, Immerman, 1992)

Other inexpressiblity results for FPC follow, either as a consequence of
(Cai, Fürer, Immerman, 1992) or by similar methods:

• Hamiltonian Cycle and Satisfiability are not definable in FPC.

• 3-Colourability is not definable in FPC.
(D. 1998)

• Solvability of systems of linear equations (over any fixed finite
Abelian group) is not definable in FPC

(Atserias, Bulatov, D. 2009)

All of these are shown, in fact, to be not definable by any (even
non-uniform) family of C k formulas, for any k.

Anuj Dawar January 2015

Main Results

Theorem
A class of graphs is accepted by a P-uniform, polynomial-size, symmetric
family of Boolean circuits if, and only if, it is definable by an FP formula
interpreted in G] ([n], <).

Theorem
A class of graphs is accepted by a P-uniform, polynomial-size, symmetric
family of threshold circuits if, and only if, it is definable in FPC.

Anuj Dawar January 2015

Some Consequences

We get a natural and purely circuit-based characterisation of FPC
definability.

Inexpressibility results for FP and FPC yield lower bound results against
natural circuit classes.

• There is no polynomial-size family of symmetric Boolean circuits
deciding if an n vertex graph has an even number of edges.

• Polynomial-size families of uniform symmetric threshold circuits are
more powerful than Boolean circuits.

• Invariant circuits cannot be translated into equivalent symmetric
threshold circuit, with only polynomial blow-up.

Anuj Dawar January 2015

Technical Tools – Rigidity

For a symmetric circuit Cn we can assume w.l.o.g. that the
automorphism group is the symmetric group Sn acting in the natural way.

On the one hand, as long as each element of [n] appears as a label of
some input gate of Cn, distinct permutations in Sn give rise to distinct
autmorphisms of Cn

On the other hand, we can in polynomial time transform a symmetric
circuit into a rigid symmetric circuit—whose only automorphisms are
those induced by Sn.

Anuj Dawar January 2015

Technical Tools – Support

For a gate g in Cn, Stab(g) denotes the stabilizer group of g , i.e.,

Stab(g) = {π ∈ Sn | π(g) = g}.

Say a set X ⊆ [n] supports g if

Stab•(X) ⊆ Stab(g),

where Stab•(X) := {π ∈ Sn | π(x) = x for all x ∈ X} is the pointwise
stabilizer of X .

Note: For the family of circuits (Cn)n∈ω obtained from an FPC formula
there is a constant k such that all gates in each Cn have a support of size
at most k.

Anuj Dawar January 2015

Technical Tools—Supporting Partitions

We want to to show that in a symmetric circuit of polynomial size, each
gate has support of bounded size. To this end, we introduce supporting
partitions.

For a permutation group G ⊆ Sn, say that a partition P of [n] supports
G if every permutation that fixes each P ∈ P is in G :

Lemma: There is a coarsest partition (denote it SP(G)) that supports G .

Proof sketch: For two partitions P and P ′, let E(P,P ′) denote the finest
partition that is coarser than P and P ′.
Then, any permutation that fixes each part in E(P,P ′) can be expressed
as a composition of permutations fixing all parts in P and P ′ respectively.

Anuj Dawar January 2015

Technical Tools – Supporting Partitions

Writing Stab•(SP(G)) for the the group of permutations that fix each
part in SP(G) and Stab(SP(G)) for the group of permutations that fix
the partition SP(G) setwise, we have:

Stab•(SP(G)) ⊆ G ⊆ Stab(SP(G)).

The first inclusion is by definition. The second follows from the fact that
for any permutation π ∈ Sn, πSP(G) is the coarsest supporting partition
of the group πGπ−1.

By the orbit-stabilizer theorem, the size of the orbit of any gate g in Cn

is n!
|Stab(g)| .

So, an upper bound on Stab(g) gives us a lower bound on the orbit of g .

Conversely, knowing that the orbit of g is at most polynomial in n gives
us bounds on SP(Stab(g)).

Anuj Dawar January 2015

Support Theorem

Our main technical theorem shows that in sub-exponential size symmetric
circuits, all gates have small support.

Theorem
For any 1 > ε ≥ 2

3 , let C be a symmetric s-gate circuit over [n] with

n ≥ 2
56
ε2 , and s ≤ 2n1−ε

. Then every gate g of C has a support of size at
most 33

ε
log s
log n .

We prove this by bounding the supporting partitions of the stabliser
groups of gates.

Corollary
Polynomial-size symmetric circuits have constant support.

Anuj Dawar January 2015

Proof Sketch of Support Theorem – 1

Fix a permutation group G with [Sn : G] ≤ s.

Claim: If k is the number of parts in SP(G) then min{k, n − k} ≤ 8
ε
log s
log n .

This is a computation of the number of permutations that setwise fix a
partition P with k parts.

We can show that, unless min{k, n − k} ≤ 8
ε
log s
log n ,

n!

|Stab(P)|
> s.

so, [Sn : G] = n!
|G | ≥

n!
|Stab(SP(G))| > s.

Say that SP(G) is small if it has at most 8
ε
log s
log n parts and big otherwise.

Anuj Dawar January 2015

Proof Sketch of Support Theorem – 2

Claim: If SP(G) is small then the largest part has size at least n− 33
ε

log s
log n .

This is again proved by showing that if P has fewer than 8
ε
log s
log n parts and

all of them are smaller than n − 33
ε

log s
log n , then there are too few

permutations in Stab(P), i.e.

n!

|Stab(P)|
> s

Anuj Dawar January 2015

Proof Sketch of Support Theorem – 3

Claim: For a gate g in Cn, SP(Stab(g)) is small.

Suppose that g is a minimal gate (in the DAG-order of the circuit) with
SP(Stab(g)) large.

We can show that this implies that g has a large number of immediate
predecessors which (by assumption) have small supporting partitions.

Using the bounds from the previous claims, we can find a large enough
subset of these, and independently combine automorphisms that move
them.

This is used to show that Orb(g) must be bigger than s.

Anuj Dawar January 2015

Small Supports

Thus, for each g in C , SP(Stab(g)) has a part with n− 33
ε

log s
log n elements.

The complement of this large part is a support of the gate g , which gives
us the support theorem:

Theorem
For any 1 > ε ≥ 2

3 , let C be a symmetric s-gate circuit over [n] with

n ≥ 2
56
ε2 , and s ≤ 2n1−ε

. Then every gate g of C has a support of size at
most 33

ε
log s
log n .

We write sp(g) for the small support of g given by this theorem and note
that it can be computed in polynomial time from a symmetric circuit C .

Anuj Dawar January 2015

Translating Symmetric Circuits to Formulas

Given a polynomial-time function n 7→ Cn that generates symmetric
circuits:

1. There are formulas of FP interpreted on ([n], <) that define the
structure Cn.

2. We can also compute in polynomial time (and therefore in FP on
([n], <)) sp(g) for each gate g .

3. For an input structure A and an assignment γ : [n]→ A of the
inputs of Cn to elements of A, whether g is made true depends only
on γ(sp(g)).

4. We define, by induction on the structure of Cn, the set of tuples
Γ(g) ⊆ Asp(g) that represent assignments γ making g true.

5. This inductive definition can be turned into a formula (of FP for a
Boolean circuit, of FPC for one with threshold gates.)

Anuj Dawar January 2015

Upper and Lower Bounds
The class of properties decided by symmetric, polynomial size, threshold
circuits is FPC—a proper subset of FPC.
This has interesting upper and lower bounds which makes it an
interesting object of study.

Upper Bounds Lower Bounds

CVP SAT

2-Colourability 3-Colourability

2-SAT 3-SAT

Perfect Matching Hamiltonian Cycle

Linear Programming XOR-SAT

Isomorphism on planar graphs Isomorphism on bounded-degree
graphs

Anuj Dawar January 2015

