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Relational Databases

Cinema = {Movies[3], Location[3], Guide[3]}

Movies Title Director Actor

Magnolia Anderson Moore

Magnolia Anderson Cruise

Spiderman Raimi Maguire

Spiderman Raimi Dunst

...

Rocky Avildsen Stallone

RockyII Stalone Stallone

Guide Title Cinema Time

Rocky Warner 12:00

Spiderman Picturehouse 19:00

...

Spiderman Phoenix 19:00

Magnolia Picturehouse 22:00

Location Cinema Address Tel

Picturehouse Cambridge 504444

Phoenix Oxford 512526

Warner Cambridge 560225
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Relational Algebra

In relational algebra, queries are built up from

Base relations: R

Singleton constant relations: {〈a〉}
using

select: σj=a(q) or σj=k(q)

project: πj1,...,jk(q)

join: q1 ./ q2

union: q1 ∪ q2

difference: q1 − q2
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SPJU Algebra

All the operators of relational algebra other than difference are

monotone:

Adding new facts to the database cannot remove a tuple

from the result.

Most queries actually used are written using only SPJU

(select-project-join-union).

The answers do not rely on a closed-world assumption.

Does allowing difference allow us to express any new monotone

queries?
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Relational Calculus

Codd in 1972 introduced the relational calculus (based on

first-order logic) and equivalent to the relational algebra.

Conjunctive Queries:

q(x, y)← Movies(z1, “Almodovar”, z2),Guide(x, z1, z3),Location(x, y, z4)

expresses the query

{x, y | ∃z1, . . . , z4 Movies(z1, “Almodovar”, z2)∧Guide(x, z1, z3)∧Location(x, y, z4)}

Disjunction is expressed by multiple rules.
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Existential Positive Logic

Adding negation and universal quantification gives us the

full-power of relational algebra.

The existential-positive fragment is exactly equivalent to the SPJU

algebra. (also known as recursion-free Datalog).

The closed-world assumption is even more important to the

semantics of negation, as answers may by infinite.

Issues of safety and domain independence.

Assume finite domain?
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Homomorphism

A first-order query is interpreted over some structure (or database

state):

A = (A,RA1 , . . . , R
A
m)

where A is the domain and the RAi are relations over A,

interpreting the symbol Ri.

Given A = (A,RA1 , . . . , R
A
m) and B = (B,RB1 , . . . , R

B
m), a function

f : A→ B is a homomorphism if:

RAi (a) implies RBi (f(a))
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Restrictions

A homomorphism f : A→ B may or may not be injective.

It may or may not be surjective.

If it is injective and

RAi (a) if, and only if, RBi (f(a))

we say it is an embedding, or that B is an extension of A.

q is preserved under homomorphisms if

a ∈ q(A) implies f(a) ∈ q(B)
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Preservation Properties

Classical theorems of model theory tell us that these various

restrictions have syntactic counterparts:

If q is a query of the relational calculus then:

q is equivalent to an existential-positive query if, and only

if, it is preserved under homomorphisms.

q is equivalent to a positive query if, and only if, it is

preserved under surjective homomorphisms. Lyndon.

q is equivalent to an existential query if, and only if, it is

preserved under embeddings. ÃLoś-Tarski
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Finite Structures

Does this mean that the relational calculus is conservative over the

SPJU algebra for monotone queries?

Unfortunately, the preservation results do not carry over if we

assume that the domain is finite.

q is preserved under homomorphisms

implies

q is equivalent to an existential-positive query.

Restriction to finite structures weakens both hypothesis and

consequent.
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Preservation in the Finite

Both the Lyndon and ÃLoś-Tarski properties are known to fail when

we restrict ourselves to finite structures.

The status of the homomorphism preservation property in the finite

is a long-standing open question, with extensive literature.
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Datalog

Datalog extends conjunctive rules with recursion

T (x, y) ← E(x, y)

T (x, y) ← E(x, z), T (z, y).

defines the transitive closure T of a relation E.

This is not definable in the first-order logic.

Every query definable in Datalog is preserved under

homomorphisms.
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Datalog vs. First-Order

Ajtai and Gurevich (1994) showed that every query that is

expressible in both Datalog and first-order logic is equivalent to an

existential-positive query.

This can be seen as a partial result towards the goal of

showing the homomorphism preservation property.
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Minimal Models

Say that a structure A is a minimal model of a query q if, for some

a ∈ q(A) there is no proper submodel B of A with a ∈ q(B).

The collection of minimal models of q “generates”, through

homomorphisms, all models of q.

If q has finitely many minimal models, it can be expressed as an

existential-positive query.
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Ajtai-Gurevich

The Ajtai-Gurevich proof can be naturally broken into two parts:

1. the collection of minimal models of a first-order q which is

closed under homomorphisms satisfy a certain combinatorial

condition C; and

2. if the minimal models of a Datalog query satisfy C, then there

are only finitely many of them.

We generalise this to many other interesting cases.
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Combinatorial Condition

The combinatorial condition C:

Lemma (Ajtai-Gurevich)

For any first-order ϕ whose models are closed under

homomorphisms and any positive integer s there are d and m such

that if A is a minimal model of ϕ and B ⊂ A has |B| < s then

A−B does not contain a d-scattered set of m elements.
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Tree-Width

The collection of minimal models of a Datalog query have bounded

tree-width.

Tree-width is a measure of how a tree-like a structure is.

It is originally defined for graphs, though easily extends to other

relational structures.

It has proved extremely useful in algorithm design and analysis,

including algorithms for database query evaluation.
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Tree-Width

For a graph G = (V,E), a tree decomposition of G is a relation

D ⊂ V × T with a tree T such that:

• for each v ∈ V , the set {t | (v, t) ∈ D} forms a connected

subtree of T ; and

• for each edge (u, v) ∈ E, there is a t ∈ T such that

(u, t), (v, t) ∈ D.

The tree-width of G is the least k such that there is a tree T and a

tree-decomposition D ⊂ V × T such that for each t ∈ T ,

|{v ∈ V | (v, t) ∈ D}| ≤ k + 1.
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Examples

• Trees have tree-width 1.

• Cycles have tree-width 2.

• The clique Kk has tree-width k − 1.

• The m× n grid has tree-width min(m,n).

For a general relational structure A, we define its tree-width to be

the tree-width of the graph ΓA in which a ∼ b if a and b occur in

the same tuple of some relation.
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Result and Consequences

We show that, if a collection of structures has property C, and has

bounded-tree width, then there are only finitely many of them.

Consequences:

• the Ajtai-Gurevich result (also to infinitary extension).

• for any k, if Tk is the collection of structures of tree-width less

than k, then the homomorphism preservation property holds

on Tk
• If q is a first-order query preserved under homomorphisms, q is

equivalent to an existential-positive query if, and only if, the

collection of its minimal models has bounded tree-width.
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Graph Minors

We say that a graph G = (V,E) is a minor of graph H = (U,F ),

(written G ≺ H) if there is a graph H ′ = (U ′, F ′) with U ′ ⊆ U and

F ′ ⊆ F and a surjective map

M : U ′ → V

such that

• for each v ∈ V , M−1(v) is a connected subgraph of H ′; and

• for each edge (u, v) ∈ E, there is an edge in F ′ between some

x ∈M−1(u) and some y ∈M−1(v).
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Graph Minors

Less formally, a a graph G = (V,E) is a minor of graph

H = (U,F ), (written G ≺ H) if we can get G from H by a sequence

of operations of:

• delete a node

• delete an edge

• contract an edge.
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Facts about Graph Minors

G is planar if, and only if, K5 6≺ G and K3,3 6≺ G.

If G ≺ H, then tree-width(G) ≤ tree-width(H).

The relation ≺ is transitive.

If tree-width(G) < k − 1, then Kk 6≺ G.

Kk ≺ Kk−1,k−1.

A class of graphs C has bounded tree-width if, and only if,

there is some grid G such that G 6≺ H for any H ∈ C.

Theorem (Robertson-Seymour)

In any infinite collection {Gi | i ∈ ω} of graphs, there are i, j with

Gi ≺ Gj .
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Result and Consequences

We show that, if a collection G of graphs has property C, and for

some graph H, H is not a minor of any graph in G, then there are

only finitely many graphs in G.

Consequences:

• If C is a class of structures such that there is a graph H with

H 6≺ ΓA for all A ∈ C and C is closed under taking minors, then

the homomorphism preservation property holds on C.

• A first-order query q preserved under homomorphisms is

equivalent to an existential-positive query if, and only if, the

collection of its minimal models excludes some minor.
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