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1 Introduction

In mathematical logic, the notions of mathematical structure, language and proof
themselves become the subject of mathematical investigation, and are treated as
first class mathematical objects in their own right. Model theory is the branch
of mathematical logic that is particularly concerned with the relationship between
structure and language. It seeks to establish the limits of the expressive power of
our formal language (usually the first order predicate calculus) by investigating what
can or cannot be expressed in the language. The kinds of questions that are asked
are:

What properties can or cannot be formulated in first order logic?
What structures or relations can or cannot be defined in first order logic?
How does the expressive power of different logical languages compare?

Model Theory arose in the context of classical logic, which was concerned with
resolving the paradoxes of infinity and elucidating the nature of the infinite. The
main constructions of model theory yield infinite structures and the methods and
results assume that structures are, in general, infinite. As we shall see later, many,
if not most, of these methods fail when we confine ourselves to finite structures
Many questions that arise in computer science can be seen as being model theoretic
in nature, in that they investigate the relationship between a formal language and a
structure. However, most structures of interest in computer science are finite. The
interest in finite model theory grew out of questions in theoretical computer science
(particularly, database theory and complexity theory).
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Before we proceed further, let us formalise our notions of structure and language.
A signature (or vocabulary) o is a finite sequence of relation and constant symbols:

o= (Ry,...,Rn,c1,...,¢p)

where, associated with each relation symbol R; is an arity a;.
A structure A over the signature o is a tuple:

A= (ARN .. RA .Y,

=
where
e A is a set, the universe of the structure A;
e cach R# is a relation over this set of arity a;, i.e. R#* C A%; and
e cach ¢! is an element of A.

Note, in particular, that we do not have function symbols in our vocabularies.

The formal languages most commonly studied in model theory is some variant of
first order predicate logic, with which I will assume the reader is familiar. For the
purpose of this lecture, it is the only logic we will consider. Thus, in the following,
formula always means first order formula, and a sentence is a formula without free
variables. The crucial link between structure and formula is the satisfaction relation.
A structure that satisfies a sentence is said to be a model of that sentence.

Example 1 Consider the signature (E), where E is a binary relation symbol. Finite
structures (V, E) of this signature are directed graphs, i.e. E is a binary relation on
V.

Moreover, the class of such finite structures satisfying the sentence
Ve-Ezx ANVaVy(Ery — Eyx)
is the class of (loop-free, undirected) graphs.

Note, as in the above example, we do not distinguish between a relation symbol and
the relation interpreting it in a structure, when this causes no confusion.

2 From Infinite to Finite Structures

As remarked above, if we confine ourselves to finite structures, many of the results
and methods of model theory fail. By “confine ourselves”, I mean that we constrain
the definition of structure given above so that the universe A must be a finite set.
As an example, consider the compactness theorem. This is arguably the most fun-
damental theorem of model theory, as it is the foundation on which the rest of the
subject is built.



Theorem 2 (Compactness) IfY is a set of sentences such that every finite subset
of ¥ has a model, then ¥ has a model.

If we understand “model” to mean “finite model”, then this statement is false. As
a counterexample, consider the sentences:

Ap = 3dzy ... J2y, /\ (x; # xj).

1<i<j<n

That is, A, is true in exactly those structures in which there are at least n distinct
elements.
Thus, the set of sentences

A={\ | new}

has the following properties:

e cvery finite subset A of A has a finite model. In fact, it is true in any structure
with more than m elements, where m = max{n | A, € A}.

e A does not have a finite model.

Another crucial foundational theorem in classical logic is the completeness theo-
rem. This theorem links the semantic notion of truth with the syntactic notion of
provability. Recall the following definition:

Definition 3 A sentence is valid if, and only if, it is true in all structures.

The completeness theorem tells us that validity has a purely syntactic characterisa-
tion in an appropriate proof system. Seen abstractly, i.e. shorn of any reference to
a particular proof system, the theorem says:

Theorem 4 (Completeness) The set of valid sentences is recursively enumerable.

If Val is the set of valid sentences, then its “dual” set, in some sense is Sat—the set
of satisfiable sentences, i.e. those sentences that have a model. Clearly, Sat is the
set of negations of those sentences that are in Val. Since these sets are essentially
complements of each other, and since Val is r.e. but not decidable, it follows that
Sat is co-r.e. but not r.e.

The situation is rather different when we confine ourselves to finite structures. That
is, we define Valgp to be the set of all sentences true in all finite structures, and
we define Saty to be the set of those sentences that have a finite model. In this
case, it is quite clear that Saty is r.e. Indeed, a semi-decision procedure for Satp is
obtained by enumerating, for any sentence ¢, all finite structures until we find one
that satisfies . Thus, a proof that Satz is not decidable immediately yields the
result that Valg is not r.e. Such a result was established by Trakhtenbrot:

Theorem 5 (Trakhtenbrot) Satp is not decidable.



Proof (sketch): The proof proceeds by a reduction from the Halting problem for
Turing machines. Given such a machine M, we construct a first order sentence ¢,
such that

A pu
if, and only if,

e there is a discrete linear order on the universe of A with minimal and maximal
elements;

e cach element of A (along with appropriate relations) encodes a configuration
of the machine M;

e the minimal element encodes the starting configuration of M on empty input;

e for each element a of A the configuration encoded by its successor is the
configuration obtained by M in one step starting from the configuration in a;
and

e the configuration encoded by the maximal element of A is a halting configu-
ration.

[ |
For pointers to a detailed proof, see the bibliographic notes below.
The proof of Theorem 5 contains the germ of the idea which came to dominate re-
search in finite model theory: the encoding of computations into formulas. The very
same construction is at the heart of many results relating computational complexity
to definability in various logics.
Besides the compactness and completeness theorems, a large number of other basic
results of model theory have been shown to fail on finite structures. Among them
are:

the Beth Definability Theorem:;

the Craig Interpolation Theorem;
e various preservation theorems;
e the Lowenheim-Skolem Theorem.

To a large extent, classical model theory can be described as the study of the struc-
ture of the elementary equivalence relation. Two structures A and B are said to be
elementarily equivalent, denoted A = B, if for every sentence o,

A | ¢ if, and only if, B |= ¢.



This is crucial to establishing inexpressibility results. For instance, by proving that
all dense linear orders without endpoints are elementarily equivalent, we show that
other properties that might distinguish two such orders (such as cardinality) are not
definable.

On finite structures, the elementary equivalence relation is trivial, in that any two
elementarily equivalent structures are isomorphic:

A =B if, and only if, A= B

Indeed, any finite structure is completely described up to isomorphism by a single
sentence. Given a structure A = (A, Ry, ..., R;,), where A is a set of n elements,
we construct a sentence

pa=3z.. Az, (W AVy \/ y=um)

1<i<n

where, 1(z1,...,x,) is the conjunction of all atomic and negated atomic formulas
that hold in A.

This means that first order logic can make all the distinctions that are to be made
between finite structures. Still, the expressive power of first order logic on finite
structures is weak. For any first order sentence ¢, Mod(p) € DSPACE(logn),
where Mod(¢) is the set of all finite models of . What accounts for this disparity?
Essentially, classical model theory is concerned with the expressive power of theories,
i.e. (possibly infinite) sets of sentences. Two structures that are elementarily equiva-
lent cannot be distinguished by any first order theory. In contrast, any isomorphism
closed class of finite structures S can be defined by a theory:

{—pa| AgS}.

To establish inexpressibility results for first order sentences, we need to weaken the
relation of elementary equivalence.

3 Ehrenfeucht-Fraissé Games

One way to stratify the relation of elementary equivalence is by quantifier rank.
The quantifier rank of a formula is the depth of nesting of quantifiers within it. It
is formally defined by induction as follows:

1. if ¢ is atomic then ¢r(p) =0,
2. if ¢ = =) then qr(p) = qr(v),
3. if o =11 V4hy or ¢ = 9y A1)y then gr(yp) = max(gr(v1), qr(2)), and

4. if ¢ = Jap or p = Vap then qr(p) = qr(v) + 1.



For two structures A and B, we say

A

» B
if for any sentence ¢ with qr(¢) < p,
A |= ¢ if, and only if, B = ¢.
The crucial observation about the relation =, that we use is:

Proposition 6 A class of structures S is definable by a first order sentence if, and
only if, S is closed under the relation =, for some p.

In one direction, it is clear that if S = Mod(p) for some ¢, then S is closed under
the relation =,, where p = ¢qr(y). In fact, this is the only direction of Proposition 6
we shall use. To establish the other direction, one has to note that there are, up to
logical equivalence, only finitely many sentences of any fixed quantifier rank. Here,
we make crucial use of the fact that there are no function symbols in our vocabulary.
What makes the equivalence relations =, useful to consider is that they have an
elegant characterisation in terms of two player games. In order to introduce these
games, we first need a definition.

Definition 7 A map f is a partial isomorphism between structures A and B, if:
e the domain dom(f) C A;
e the range rng(f) C B; and

e f is an isomorphism between the substructure of A generated by its domain
and the substructure of B generated by its range.

The p-round Ehrenfeucht game on structures A and B proceeds as follows:
There are two players called Spoiler and Duplicator.

At the ith round, Spoiler chooses one of the structures (say B) and one of the
elements of that structure (say b;).

Duplicator must respond with an element of the other structure (say a;).

If, after p rounds, the map a; — b; is a partial isomorphism, then Duplicator
has won the game, otherwise Spoiler has won.

Theorem 8 (Fraissé;Ehrenfeucht) Duplicator has a strategy for winning the p-
round Ehrenfeucht game on A and B if, and only if, A =, B.



In lieu of proof, let us consider an example. Suppose A #3 B. In particular, suppose
0(z,y, z) is a quantifier free formula, such that:

A = JaVy3z0
B | Va3dyVz—0
round 1
Spoiler chooses a; € A such that
A = Vy3z0[a4]
Duplicator responds with b, € B.
round 2
Spoiler chooses b, € B such that
B = Vz=0[by, bo]
Duplicator responds with ay € A.
round 3
Spoiler chooses as € A such that
A E 0lay, as, as)
Duplicator responds with b3 € B.

Spoiler wins, since B |= —0[by, bs, bs].

It is easy enough to generalise the above example into a proof of one direction
of Theorem 8: namely that on any pair of structures which are distinguished by a
sentence of quantifier rank p, Spoiler has a strategy to win the p round game. Again,
this is the only direction of the theorem that we will use, and we will usually state

it as the contrapositive of the above: if Duplicator wins the p round game on A and
B, then A =, B.

Example 9 Consider two structures S, and S,+1 in the empty vocabulary (i.e. with-
out relation or constant symbols), one with p elements, and the other with p + 1
elements (see Figure 1). It is easy to see that Duplicator wins the p round game.
Since one of the structures has even size and the other has odd size, we conclude
that the property of having even size is not definable in first order logic, as it is not
closed under =, for any p.

Fix a signature (<) with one binary relation symbol Let L,, denote the (unique up
to isomorphism) structure in this signature that is a linear order of length n.

7
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Figure 1: The structures S, and S,

Figure 2: Lg, L7 and Lg

Example 10 Consider the structures Lg, L7 and Lg, depicted in Figure 2. It is
easily verified that Spoiler wins the 3-round game on Lg and Ly but Duplicator wins
the 3-round game on Ly and Lg.

In general, for m,n > 27 — 1,
L., =, Ly,

Duplicator’s strategy is to maintain the following condition after r rounds of the
game:
for1 <i<j<r,

o cither length(a;, a;) = length(b;, b;)
e orlength(a;, a;),length(b;,b;) > 27" —1

We conclude that evenness is not first order definable, even on linear orders. Indeed,
the above implies that the only first order definable sets of linear orders are the finite
or co-finite ones.



Now, consider a signature with two binary relations (F, <). We will consider struc-
tures G = (V, E, <) over this signature which interpret the symbol < as a linear
order. These structures can be thought of as ordered (directed) graphs. We seek to
prove that there is no sentence v in this vocabulary such that:

G = v if, and only if, (V) E) is connected.

Let 4/ be the formula obtained by replacing every occurrence of Exy in v by the
following formula

m(z,y) =y =2+2V (r =max Ay = min+1) V (z = min Ay = max+1).
In the above, the symbols “min”, “max”, “+1” and “42” are to be interpreted with
respect to the linear order in the obvious way. It can be easily checked that they
can be replaced by appropriate definitions, so that 7 is a formula in the vocabulary
(E, <). The relation defined by 7 is essentially “add 2 (mod n)”.

Thus, 7/ is a formula that uses only the vocabulary (<), and is true in a structure
L, if the graph defined by 7 on L, is connected. But, the graph defined by 7 is
either a single cycle or two disjoint cycles, depending on whether n is odd or even
(this is illustrated for n = 6 and n = 7 in Figure 3). Thus, 7' defines evenness on

SOV,
VSN,

Figure 3: The graphs defined by 7 (x,y).

linear orders, which we know is not possible.

We conclude that there is no sentence that defines connectivity on ordered graphs.
Indeed, there is no sentence that defines connectivity on graphs, as any such sentence
would also work on ordered graphs.

Note that what the above construction achieves is a reduction from the problem
of evenness of linear orders to the problem of connectivity. Since we had already
established that the former problem is not first order definable, and the reduction
is given by a first order formula (in fact, by the formula 7), we conclude that the
latter problem is not definable either.



4 0-1 Law

In Section 2, we investigated the failure of methods from classical model theory when
restricted to finite structures. Section 3 explored one method, the Ehrenfeucht-
Fraissé game, which does survive the transition to finiteness. In this section, we
look at a direction that has emerged from the study of finite structures, and does
not have a direct counterpart in the context of classical model theory. This is the
study of asymptotic probabilities and 0-1 laws.

Let S be any isomorphism closed class of o-structures. Let C, be the set of all o

structures whose universe is {0,...,n — 1}. We define p,(5) as:
card(S N Cy)
J(5) = A0 1 En)
pn(S) card(C,,)

In other words, p,(S) is the proportion of structures of size n that are in S. It is
only for the sake of concreteness that we restrict our universe to be {0,...,n — 1}.
The asymptotic probability, u(S), of S is defined as

u(S) = Tim jin(S)

n—oo

if this limit exists.

Asymptotic probabilities (particularly of graph properties) have been extensively
studied in combinatorics. It turns out that for many interesting properties S, 1(S)
is defined and is either 0 or 1. Thus, for example:

e s (connectivity) = 1

e /i(3-colourability) = 0

e u(planarity) =0
(
(
(

e u(Hamiltonicity) = 1

p(rigidity) = 1
o s(k-clique) =1 for fixed k.

In contrast, it is clear that:
e s(even number of nodes) is not defined
e s(even number of edges) = 1/2.

A very general result establishing limits on the expressive power of first order logic
on finite structures is the following:

Theorem 11 (Glebskii et al.; Fagin) For every sentence ¢ in a relational signa-
ture, p(Mod(yp)) is defined and is either 0 or 1.

10



The rest of this section is devoted to a proof of Theorem 11.
Definition 12 In a relational signature o, an atomic type
T(.Tl, N ,.CEk)

1s the congunction of a maximally consistent set of atomic and negated atomic for-
mulas.

In other words, 7 is a complete description of a k-tuple with respect to the relations
in 0. Note, that for a fixed k and o, there are a some fixed number of atomic types.
This number is exponential in k, provided ¢ contains at least one non-unary symbol.
Let 7(x1,...,2zg) and 7/(z1, . .., 2k41) be two atomic types such that 7 is consistent
with 7. The 7, 7’-extension axiom, 7, ./ is the sentence:

Vay .. Vep3eg o (r — 7).

That is, 7, asserts that every tuple of type 7 can be extended to a tuple of type
/
T’

The remarkable fact about extension axioms is that they are almost always true.

Proposition 13 For any extension axiom 1, .,

p(Mod(n,)) = 1.

Proof (idea): The following presents the intuition behind the proof, omitting
tedious combinatorial calculations:

Given a o-structure A of size n, and a k-tuple a in A satisfying 7, there is a
probability

that there is no extension of a satisfying 7/, where ¢; is some constant (depending
only on k and ¢. This is because each of the n — k elements not in the tuple a meets
the requirements for 7/ with some constant probability, independent of n.

There are roughly

nk

Ca
tuples in A satisfying 7, for some constant c,. This is because there are n* tuples
in all, and some fixed number of types.
From the above two fact, we conclude that the expected number of counterexamples
to 0y in A is

nk

~ C—
2n
for some constant c. (This ignores the fact that the events are not all independent,
but the larger n gets, the closer we are to independence.)

11



Since the expected number of counterexamples to 7, in a structure A goes to 0 as
n grows, the probability that A satisfies 7, .+ goes to 1. [ ]
Next, we note that, if S; and S, are classes of structures such that p(S;) = u(S2) = 1,
then

H(Sl N SQ) =1.

It follows that for any finite set A of extension axioms, p(Mod(A)) = 1.

Let T" be the set of all extension axioms for a fixed signature o. Since, by the above,
every finite subset of I' has a model (in fact, almost all finite structures are models),
it follows by the Compactness theorem that I' has a model. The model of I' is
necessarily an infinite one.

We next see that I' is a complete theory. That is, for every first order sentence ¢

Either I' = p or I' = —p.

Another way of saying the same thing is that any two models of I are elementarily
equivalent. We prove this by noting that if A =1" and B |= T, then, for every p,

A=, B.

This is so by an application of the Ehrenfeucht-Fraissé game. Indeed, the extension
axioms seem to be designed for playing the game, since they assert that as long as
we know the current configuration of a tuple, we can match any possible extension
to that tuple.

Now, let ¢ be any first order sentence. By the completeness of T,

1. either
I

I'E .

In the first case, by an application of the Compactness theorem, there is a finite set
A CT, such that:

AEp.
Since p(Mod(A)) = 1, it follows that u(Mod(y)) = 1.
Similarly, in the second case, u(Mod(—¢)) = 1, and therefore p(Mod(y)) = 0. We
have thus established the 0-1 law.

Note the extensive use made of the compactness theorem in establishing a result
solely about finite structures.

12



Bibliographic Notes

Trakhtenbrot’s result originally appeared in [7]. For a textbook presentation of the
proof, see [1]. For a discussion of the failure of model theoretic results on finite
structures, including definability, interpolation and various preservation theorems,
see [6].

The equivalence relations =, were characterised by Fraissé [4] in terms of sequences
of partial isomorphisms and by Ehrenfeucht [2] in terms of two player games. A full
proof of both results can be found in [1]. The application of the game given here to
finite linear orders is from [6].

The 0-1 law for first order logic was established independently by Glebskii et al. [5]
and Fagin [3]. The proof given above follows closely the proof of Fagin, bar the use
of games.
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