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Review

Games are used to establish inexpressibility results for first-order logic and its

extensions.

The equivalence relations defined by the games define stratifications of the

relation of isomorphism, based on limiting resources.

• quantifier rank ≡q

• number of variables ≡k

• number of variables in the presence of counting quantifiers ≡Ck

.
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Stratifications of Isomorphism

≡q has finitely many equivalence classes for each q.

≡k has infinitely many classes for k ≥ 2, but for each k, there is a monster class

that includes almost all graphs.

≡Ck

, already for k = 2 distinguishes between most graphs.

For two randomly chosen graphs G1 and G2 of the same size, with high

probability G1 6≡C2

G2.
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Linear Algebra in IFPC

The limitations on the expressive power of IFPC, and of ≡Ck

as an approximation

of graph isomorphism, are based on coding linear algebra over finite fields.

A considerable amount of linear algebra can be expressed in IFPC.

Over the rational numbers, we can

• define the determinant, characteristic polynomial; inverse and rank of a

matrix;

• test a system of linear equations for solvability; and (Holm 2010)

• test feasibility of linear programs by the ellipsoid method.

(Anderson, D., Holm 2013)

Over finite fields, we can define the determinant and characteristic polynomial, but

not the rank.

We cannot determine solvability of systems of equations.
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Rank Operators

The limitations of IFPC identify a source of new operators.

We can introduce an operator for matrix rank into the logic.

We have, as with IFPC, terms of element sort and numeric sort.

We interpret η(x, y)—a term of numeric sort—in A as defining a matrix

with rows and columns indexed by elements of A with entries η[a, b].

rkx,yη is a term denoting the number that is the rank of the matrix

defined by η(x, y).

To be precise, we have, for each finite field GF(q) (q prime), an operator rkq

which defines the rank of the matrix with entries η[a, b](modq).

(D., Grohe, Holm, Laubner, 2009)
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IFPrk vs. IFPC

Adding rank operators to IFP, we obtain a proper extension of IFPC.

#xϕ = rkx,y[x = y ∧ ϕ(x)]

Rank operators are a generalized form of counting, as they count the dimension

of a vector space rather than the cardinality of a set.

In IFPrk we can express the solvability of linear systems of equations, as well as

the Cai-Fürer-Immerman graphs and the order on multipedes.
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FO(rk)

More generally, for each prime p and each arity m, we have an operator rkp
m

which binds 2m variables and defines the rank of the nm × nm matrix defined

by a formula ϕ(x,y).

FO(rk), the extension of first-order logic with the rank operators is already quite

powerful.

• it can express deterministic transitive closure;

• it can express symmetric transitive closure;

• it can express solvability of linear equations.
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Symmetric Transitive Closure

Let G = (V, E) be an undirected graph and let s and t be vertices in V .

Define the system of equations EG,s,t over GF(2) with variables xv for each

v ∈ V , and equations

• for each edge e = u, v ∈ E: xu + xv = 0;

• xs = 1 xt = 0.

EG,s,t is solvable if, and only if, there is no path from s to t in G.
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Arity Hierarchy

In the case of IFPC, adding counting operators of arities higher than 1 does not

increase expressive power. These can all already be defined in IFPC with unary

counting.

This is not the case with IFPrk:

For each m, there is a property definable in FO(rk2
m+1) that is not

definable in IFP(rkm).

The proof is based on a construction due to Hella, and requires vocabularies of

increasing arity.

It is conceivable that over graphs, the arity hierarchy collapses.
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Games for Logics with Rank

Define the equivalence relation A ≡R
k,Ω,m B to mean that A and B are not

distinguished by any formula of FO(rk) with at most k variables using operators

rkp
m for p in the finite set of primes Ω.

This equivalence relation has a characterisation in terms of games.

(D., Holm 2012 )

This game can been used to show that for distinct primes p, q, solvability of linear

equations mod q cannot be defined in IFP with operators rk
p
1.
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Partition Games

We can formulate a general framework of partition games, played with k pebbles.

First consider a simple version.

• Spoiler picks a pebble from A and the corresponding pebble from B.

• Duplicator reponds with

– a partition P of A

– a partition Q of B

– a bijection f : P → Q such that a condition (*) holds.

• Spoiler chooses a part P ∈ P and places the chosen pebbles on an element

in P and the matching pebble on an element in f(P ).

With no restriction (*), we have a game for ≡k .

If we require P and f(P ) to have the same size for all P ∈ P, we have a game

for ≡Ck

.
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Games for Rank Quantifiers

Since the rank quantifier rk
p
1 binds two variables, we have the following variation.

• Spoiler picks 2 pebbles from A and the corresponding pebbles from B and

p ∈ Ω.

• Duplicator reponds with

– a partition P of A × A

– a partition Q of B × B

– a bijection f : P → Q such that for all labellings γ : P → GF(p)

rank(Mγ) = rank(Mγ◦f−1

)

• Spoiler chooses a part P ∈ P and places the chosen pebbles on a pair in P

and the matching pebbles on a pair in f(P ).

This characterises the equivalence ≡R
k,Ω,1.
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Games for Logics with Rank

Since the arity hierarchy does not collapse for rank logics, the general game we

define is as follows.

• Spoiler picks 2m pebbles from A and from B and p ∈ Ω.

• Duplicator reponds with

– a partition P of Am × Am

– a partition Q of Bm × Bm

– a bijection f : P → Q such that for all labellings γ : P → GF(p)

rank(Mγ) = rank(Mγ◦f−1

)

• Spoiler chooses a part P ∈ P and places the chosen pebbles on an m-tuple

in P and the matching pebbles on an m-tuple in f(P ).

This characterises the equivalence ≡R
k,Ω,m.
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Limitations of the Game

The arbitrary arity m and the matrix-equivalence condition make the game

unwieldy. It’s difficult to prove inexpressibility results with it.

• the relation ≡k can itself be defined in IFP; and

• the relation ≡Ck

can itself be defined in IFPC.

Both of these follow by an inductive definition of the game winning positions.

Is ≡R
k,Ω,m definable in IFPrk?

Is it even decidable in polynomial time?
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Invertible Map Game

We define a variant parition game with a stronger condition:

There is an invertible matrix S such that for all labellings

γ : P → GF(p), Mγ = S(Mγ◦f−1

)S−1

Since this (unlike the rank function) is linear on the space of matrices, it is

sufficient to check it on a basis, which is given by the individual parts of P.

That is, it suffices to check, for each P ∈ P that MP = SMf(P )S−1.

A result of (Chistov, Karpinsky, Ivanyov 1997) guarantees that simultaneous

similarity of a collection of matrices is decidable in polynomial time to get a family

of polynomial-time equivalence relations ≡IM
k,Ω,m.
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Approximations of Isomorphism

This gives us a family of polynomial-time isomorphism tests.

• ≡IM
k,Ω,m refines ≡R

k,Ω,m

• ≡IM
k,Ω,m gets finer as we increase any of k, m or Ω.

• The CFI graphs are distinguished by ≡IM
4,{2},1

(D., Holm 2012)

Could the relation ≡IM
k,Ω,m be definable in IFPrk?
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Colour Refinement

Define, on a graph G = (V, E), a series of equivalence relations:

∼0 ⊇ ∼1 ⊇ · · · ⊇ ∼i · · ·

where u ∼i+1 v if they have the same number of neighbours in each

∼i-equivalence class.

For a pair of graphs, G1 and G2, we take the maximally refined such relation on

G1 ⊎ G2 and say G1 ∼ G2 if there are vertices v1 ∈ G1 and v2 ∈ G2 such

that v1 ∼ v2.

It is not hard to see that G1 ∼ G2 if, and only if, G1 ≡C2

G2.

Some adjustment is needed if the graphs are not connected.
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Weisfeiler-Lehman method

The k-dimensional Weisfeiler-Lehman test for isomorphism (as described by

Babai ), generalises colour refinement to k-tuples.

Define a series of refining equivalence relations on k-tuples by, u ∼0 v if they

are partially isomorphic and u ∼i+1 v if, and only if, for each ∼i-class α and

each j ≤ k,

|{u | u[u/uj ] ∈ α}| = |{v | v[v/vj ] ∈ α}|

G1 ≡Ck+1

G2 if, and only if, there are u ∈ G1 and v ∈ G2 such that:

for all i, u ∼i v in G1 ⊎ G2.
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Graph Isomorphism Integer Program

Yet another way of approximating the graph isomorphism relation is obtained by

considering it as a 0/1 linear program.

If A1 and A2 are adjacency matrices of graphs G1 and G2, then G1
∼= G2 if,

and only if, there is a permutation matrix P such that:

PA1P
−1 = A2 or, equivalently PA1 = A2P

Introducing a variable xij for each entry of P and adding the constraints:

∑

i

xij = 1 and
∑

j

xij = 1

we get a system of equations that has a 0-1 solution if, and only if, G1 and G2

are isomorphic.
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Fractional Isomorphism

To the system of equations:

PA1 = A2P ;
∑

i

xij = 1 and
∑

j

xij = 1

add the inequalities

0 ≤ xij ≤ 1.

Say that G1 and G2 are fractionally isomorphic (G1
∼=f G2) if the resulting

system has any real solution.

G1
∼=f G2 if, and only if, G1 ≡C2

G2.

(Ramana, Scheiermann, Ullman 1994)

Anuj Dawar February 2013



21

Sherali-Adams Hierarchy

If we have any linear program for which we seek a 0-1 solution, we can relax the

constraint and admit fractional solutions.

The resulting linear program can be solved in polynomial time, but admits

solutions which are not solutions to the original problem.

Sherali and Adams (1990) define a way of tightening the linear program by

adding a number of lift and project constraints.
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Sherali-Adams Hierarchy

The kth lift-and-project of a linear program is defined as follows:

For each constraint aT x = b in the linear program, and each set I of variables

with |I| < k and J ⊆ I , multiply the constraint by

∏

i∈I\J

xi

∏

j∈J

(1 − xj)

and then linearize by replacing x2
i by xi and

∏
j∈K xj by a new variable yK for

each set K .

Say that G1
∼=f,k G2 if the kth lift-and-project of the isomorphism program on

G1 and G2 admits a solution.
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Sherali-Adams Isomorphism

For each k

≡Ck+1

⊆ ∼=f,k ⊆≡Ck

(Atserias, Maneva 2012)

For k > 2, the inclusions are strict. (Grohe, Otto 2012)
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Coherent Algebras

Weisfeiler and Lehman presented their algorithm in terms of cellular algebras.

These are algebras of matrices on the complex numbers defined in terms of

Schur multiplication:

(A ◦ B)(i, j) = A(i, j)B(i, j)

They are also called coherent algebras in the work of Higman .

Definition:

A coherent algebra with index V is an algebra A of V × V matrices over C that

is:

closed under Hermitian adjoints; closed under Schur multiplication;

contains the identity I and the all 1’s matrix J .
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Coherent Algebras

One can show that a coherent algebra has a unique basis A1, . . . , Am (i.e.

every matrix in the algebra can be expressed as a linear combination of these) of

0-1 matrices which is closed under adjoints and such that

∑

i

Ai = J.

One can also derive structure constants pk
ij such that

AiAj =
∑

k

pk
ijAk.

Associate with any graph G, its coherent invariant, defined as the smallest

coherent algebra AG containing the adjacency matrix of G.
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Weisfeiler-Lehman method

Say that two graphs G1 and G2 are WL-equivalent if there is an isomorphism

between their coherent invariants AG1
and AG2

.

G1 and G2 are WL-equivalent if, and only if, G1 ≡C3

G2.

Friedland (1989) has shown that two coherent algebras with standard bases

A1, . . . , Am and B1, . . . , Bm are isomorphic if, and only if, there is an

invertible matrix S such that

SAiS
−1 = Bi for all 1 ≤ i ≤ m.
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Complex Invertible Map Game

Define the k-pebble complex invertible map game.

• Spoiler picks 2 pebbles from A and the corresponding pebbles from B..

• Duplicator reponds with

– a partition P of A × A

– a partition Q of B × B

– a bijection f : P → Q and an invertible matrix S over C such that for all

P ∈ P: MP = SMf(P )S−1.

• Spoiler chooses a part P ∈ P and places the chosen pebbles on a pair in P

and the matching pebbles on a pair in f(P ).

The game defines an equivalence ≡IM
C,k over graphs.

We can show ≡IM
C,k+1 ⊆ ≡Ck

⊆ ≡IM
C,k−1 .
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Invertible Map Games

The complex invertible map game gives us essentially the same family of

approximations of isomorphism as the Weisfeiler-Lehman method and the

bijection games.

The invertible map game we defined in connection with rank logics can then be

seen as the tightening of these approximations to a game where Duplicator is

required to choose the invertible map S not over C but over a finite field whose

characteristic has been chosen by Spoiler.

Proviso: we defined the latter game with partitions of higher arity. These

seem to be unnecessary in the complex invertible map game.

Anuj Dawar February 2013



29

Research Questions

Is the arity hierarchy really strict on graphs? Could it be that ≡IM
k,Ω,m is subsumed

by ≡IM
k′,Ω,1 for sufficiently large k′?

Show that no fixed ≡IM
k,Ω,m is the same as isomorphism on graphs.

Are the relations ≡IM
k,Ω,m definable in IFPrk?

Use the games to prove undefinability results for rank logics.

• Separate FO(rk) from IFPrk

• Show for some concrete problem that it is not definable in IFPrk.
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