
Descriptive Complexity: Part 2

Anuj Dawar

University of Cambridge Computer Laboratory

Caleidoscope, Paris, 19 June 2019

Outline

Lecture 1: Introduction to Descriptive Complexity.

• Proving inexpressibility in Logics.

• Characterizing complexity classes.

• FPC and the Cai-Fürer-Immerman construction.

Lecture 2: FPC and its connections with:

• circuit complexity

• extension polytopes

• hardness of approximation

Anuj Dawar June 2019

Review

Fagin: ESO = NP

Immerman-Vardi: FP = P on ordered structures.

We are building up tools for proving inexpressibility in ever more powerful
logics.

We used Ehrenfeucht games to show that first-order logic cannot define
Evenness, Connectivity, 2-Colourability.

We used pebble games to show that FP cannot define Evenness, Perfect
Matchings, Hamiltonicity.

We want to use games to show that FPC cannot define Solv(Z2).

Anuj Dawar June 2019

Constructing systems of equations

Take G a 4-regular, connected graph.
Define equations EG with two variables xe0, x

e
1 for each edge e.

For each vertex v with edges e1, e2, e3, e4 incident on it, we have 16
equations:

Ev : xe1a + xe2b + xe3c + xe4d ≡ a+ b+ c+ d (mod 2)

ẼG is obtained from EG by replacing, for exactly one vertex v, Ev by:

E′v : xe1a + xe2b + xe3c + xe4d ≡ a+ b+ c+ d+ 1 (mod 2)

We can show: EG is satisfiable; ẼG is unsatisfiable.

Anuj Dawar June 2019

Satisfiability

Lemma EG is satisfiable.

by setting the variables xei to i.

Lemma ẼG is unsatisfiable.

Consider the subsystem consisting of equations involving only the
variables xe0.
The sum of all left-hand sides is

2
∑
e

xe0 ≡ 0 (mod 2)

However, the sum of right-hand sides is 1.

Now we show that, for each k, we can find a graph G such that

EG ≡C
k

ẼG.

Anuj Dawar June 2019

Counting Game

Immerman and Lander (1990) defined a pebble game for Ck.
This is again played by Spoiler and Duplicator using k pairs of pebbles
{(a1, b1), . . . , (ak, bk)} on a pair of structures A and B

At each move, Spoiler picks i and a set of elements of one struc-
ture (say X ⊆ B)

Duplicator responds with a set of vertices of the other structure
(say Y ⊆ A) of the same size.

Spoiler then places ai on an element of Y and Duplicator must
place bi on an element of X.

Spoiler wins at any stage if the partial map from A to B defined
by the pebble pairs is not a partial isomorphism

If Duplicator has a winning strategy for p moves, then A and B
agree on all sentences of Ck of quantifier rank at most p.

Anuj Dawar June 2019

Bijection Games

≡Ck

is also characterised by a k-pebble bijection game. (Hella 96).
The game is played on graphs A and B with pebbles a1, . . . , ak on A and
b1, . . . , bk on B.

• Spoiler chooses a pair of pebbles ai and bi;

• Duplicator chooses a bijection h : A→ B such that for pebbles aj
and bj(j 6= i), h(aj) = bj ;

• Spoiler chooses a ∈ A and places ai on a and bi on h(a).

Duplicator loses if the partial map ai 7→ bi is not a partial isomorphism.

Duplicator has a strategy to play forever if, and only if, A ≡Ck B.

Anuj Dawar June 2019

Equivalence of Games

It is easy to see that a winning strategy for Duplicator in the bijection
game yields a winning strategy in the counting game:

Respond to a set X ⊆ A (or Y ⊆ B) with h(X) (h−1(Y),
respectively).

For the other direction, consider the partition induced by the equivalence
relation

{(a, a′) | (A,a[a/ai]) ≡C
k

(A,a[a′/ai])}

and for each of the parts X, take the response Y of Duplicator to a
move where Spoiler would choose X.
Stitch these together to give the bijection h.

Anuj Dawar June 2019

Cops and Robbers

A game played on an undirected graph G = (V,E) between a
player controlling k cops and another player in charge of a robber.

At any point, the cops are sitting on a set X ⊆ V of the nodes and the
robber on a node r ∈ V .
A move consists in the cop player removing some cops from X ′ ⊆ X
nodes and announcing a new position Y for them. The robber responds
by moving along a path from r to some node s such that the path does
not go through X \X ′.
The new position is (X \X ′) ∪ Y and s. If a cop and the robber are on
the same node, the robber is caught and the game ends.

Anuj Dawar June 2019

Cops and Robbers on the Grid

If G is the k × k toroidal grid, than the robber has a winning strategy in
the k-cops and robbers game played on G.

To show this, we note that for any set X of at most k vertices, the graph
G \X contains a connected component with at least half the vertices of
G.

If all vertices in X are in distinct rows then G \X is connected.
Otherwise, G \X contains an entire row and in its connected component
there are at least k − 1 vertices from at least k/2 columns.

Robber’s strategy is to stay in the large component.

Anuj Dawar June 2019

Cops, Robbers and Treewidth

Actually, the cops and robbers game characterizes tree-width.

A connected graph G has tree-width ≥ k if, and only if, robber
has a winning strategy against a team of k cops on G.

Anuj Dawar June 2019

Cops, Robbers and Bijections

Suppose G is such that the robber has a winning strategy in the 2k-cops
and robbers game played on G.

We use this to construct a winning strategy for Duplicator in the
k-pebble bijection game on EG and ẼG.

• A bijection h : EG → ẼG is good bar v if it is an isomorphism
everywhere except at the variables xea for edges e incident on v.

• If h is good bar v and there is a path from v to u, then there is a
bijection h′ that is good bar u such that h and h′ differ only at
vertices corresponding to the path from v to u.

• Duplicator plays bijections that are good bar v, where v is the
robber position in G when the cop position is given by the currently
pebbled elements.

Anuj Dawar June 2019

Restricted Graph Classes

If we restrict the class of structures we consider, FPC may be powerful
enough to express all polynomial-time decidable properties.

1. FPC captures P on trees. (Immerman and Lander 1990).

2. FPC captures P on any class of graphs of bounded treewidth.
(Grohe and Mariño 1999).

3. FPC captures P on the class of planar graphs. (Grohe 1998).

4. FPC captures P on any proper minor-closed class of graphs.
(Grohe 2010).

In each case, the proof proceeds by showing that for any G in the class, a
canonical, ordered representaton of G can be interpreted in G using FPC.

Anuj Dawar June 2019

Beyond FPC

How do we define logics extending FPC while remaining inside P?

FPrk is fixed-point logic with an operator for matrix rank over finite fields.
(D., Grohe, Holm, Laubner, 2009)

Choiceless Polynomial Time with counting (C̃PT(Card)) is a class of
computational problems defined by (Blass, Gurevich and Shelah 1999).
It is based on a machine model (Gurevich Abstract State Machines) that
works directly on a graph or relational structure (rather than on a string
representation).
C̃PT(Card) is the polynomial time and space restriction of the machines.

Both of these have expressive power strictly greater than FPC.
Their relationship to each other and to P remains unknown.

We need new tools to analyze the expressive power of these logics.

Anuj Dawar June 2019

Circuit Complexity
A language L ⊆ {0, 1}∗ can be described by a family of Boolean
functions:

(fn)n∈ω : {0, 1}n → {0, 1}.

Each fn may be computed by a circuit Cn made up of

• Gates labeled by Boolean operators: ∧,∨,¬,

• Boolean inputs: x1, . . . , xn, and

• A distinguished gate determining the output.

If there is a polynomial p(n) bounding the size of Cn, i.e. the number of
gates in Cn, the language L is in the class P/poly.

If, in addition, the function n 7→ Cn is computable in polynomial time, L
is in P.

Note: For these classes it makes no difference whether the circuits only use

{∧,∨,¬} or a richer basis with threshold or majority gates.

Anuj Dawar June 2019

Circuits for Graph Properties

We want to study families of circuits that decide properties of graphs (or
other relational structures—for simplicity of presentation we restrict
ourselves to graphs).

We have a family of Boolean circuits (Cn)n∈ω where there are n2 inputs
labelled (i, j) : i, j ∈ [n], corresponding to the potential edges.
Each input takes value 0 or 1;

Graph properties in P are given by such families where:

• the size of Cn is bounded by a polynomial p(n); and

• the family is uniform, so the function n 7→ Cn is in P (or
DLogTime).

Anuj Dawar June 2019

Invariant Circuits

Cn is invariant if, for every input graph, the output is unchanged under a
permutation of the inputs induced by a permutation of [n].

That is, given any input G : [n]2 → {0, 1}, and a permutation π ∈ Sn,

Cn accepts G if, and only if, Cn accepts the input πG given

(πG)(i, j) = G(π(i), π(j)).

Note: this is not the same as requiring that the result is invariant under
all permutations of the input. That would only allow us to define
functions of the number of 1s in the input.
This requirement is simpy that the circuit recognises an
encoding-invariant graph property.

Anuj Dawar June 2019

Symmetric Circuits

Say Cn is symmetric if any permutation of [n] applied to its inputs can
be extended to an automorphism of Cn.

i.e., for each π ∈ Sn, there is an automorphism of Cn that takes
input (i, j) to (πi, πj).

Any symmetric circuit is invariant, but not conversely.

Consider the natural circuit for deciding whether the number of
edges in an n-vertex graph is even.

Any invariant circuit can be converted to a symmetric circuit, but with
potentially exponential blow-up.

Anuj Dawar June 2019

Logic and Circuits

Any formula of ϕ first-order logic translates into a uniform family of
circuits Cn

For each subformula ψ(x) and each assignment a of values to
the free variables, we have a gate.
Existential quantifiers translate to big disjunctions, etc.

The circuit Cn is:

• of constant depth (given by the depth of ϕ);

• of size at mose c · nk where c is the number of subformulas of ϕ and
k is the maximum number of free variables in any subformula of ϕ.

• symmetric by the action of π ∈ Sn that takes ψ[a] to ψ[π(a)].

Anuj Dawar June 2019

FP and Circuits

For every sentence ϕ of FP there is a k such that for every n, there is a
formula ϕn of Lk that is equivalent to ϕ on all graphs with at most n
vertices.

The formula ϕn has

• depth nc for some constant c;

• at most k free variables in each sub-formula for some constant k.

It follows that every graph property definable in FP is given by a family
of polynomial-size, symmetric circuits.

Anuj Dawar June 2019

FPC and Counting

For every sentence ϕ of FP there is a k such that for every n, there is a
formula ϕn of Ck that is equivalent to ϕ on all graphs with at most n
vertices.

The formula ϕn has

• depth nc for some constant c;

• at most k free variables in each sub-formula for some constant k.

It follows that every graph property definable in FP is given by a family
of polynomial-size, symmetric circuits in a basis with threshold gates.

Note: we could also alternatively take a basis with majority gates.

Anuj Dawar June 2019

Main Result

The following is established in (Anderson, D. 2017):

Theorem
A class of graphs is accepted by a P-uniform, polynomial-size, symmetric
family of threshold circuits if, and only if, it is definable in FPC.

We could jut use majority instead of threshold gates. Or we could through in

all fully symmetric Boolean functions.

We get a natural and purely circuit-based characterisation of FPC
definability.

Inexpressibility results for FPC can be seen as lower bound results against
a natural circuit class.

Anuj Dawar June 2019

Counting Width

For any class of structures C, we define its counting width νC : N→ N so
that

νC(n) is the least k such that C restricted to structures with at

most n elements is closed under ≡Ck

.

Every class in FPC has counting width bounded by a constant.

3-Sat, Hamiltonicity, 3-Colourability all have counting width Ω(n).

Anuj Dawar June 2019

FPC-Reductions

We can define a notion of one class C being FPC-reducible to another D

If C ≤FPC D then
νD = Ω(ν

1/d
C).

If the reduction takes C-instances to D-instances of linear size, then

νD = Ω(νC).

Known linear lower bounds follow from νSolv(Z2) = Ω(n).

Anuj Dawar June 2019

Linear Programming

Linear Programming is an important algorithmic tool for solving a large
variety of optimization problems.

It was shown by (Khachiyan 1980) that linear programming problems can
be solved in polynomial time.
We have a set C of constraints over a set V of variables.
Each c ∈ C consists of ac ∈ QV and bc ∈ Q.

Feasibility Problem: Given a linear programming instance, determine if
there is an x ∈ QV such that:

aTc x ≤ bc for all c ∈ C

We can show that this, and the corresponding optimization problem are
expressible in FPC.

Anuj Dawar June 2019

Ellipsoid Method

The set of constraints determines a polytope

Anuj Dawar June 2019

Ellipsoid Method

x

Start at the origin and calculate an ellipsoid enclosing it.

Anuj Dawar June 2019

Ellipsoid Method

x

If the centre is not in the polytope, choose a constraint it violates.

Anuj Dawar June 2019

Ellipsoid Method

x

x′

Calculate a new centre.

Anuj Dawar June 2019

Ellipsoid Method

x

x′

And a new ellipsoid around the centre of at most half the volume.

Anuj Dawar June 2019

Ellipsoid Method in FPC

We can encode all the calculations involved in FPC.

This relies on expressing algebraic manipulations of unordered matrices.

What is not obvious is how to choose the violated constraint on which to
project.

However, the ellipsoid method works as long as we can find, at each step,
some separating hyperplane.

Anuj Dawar June 2019

Ellipsoid Method in FPC

x

Anuj Dawar June 2019

Ellipsoid Method in FPC

We can encode all the calculations involved in FPC.

This relies on expressing algebraic manilpulations of unordered matrices.

What is not obvious is how to choose the violated constraint on which to
project.

However, the ellipsoid method works as long as we can find, at each step,
some separating hyperplane.

So, we can take:
(
∑
c∈S

ac)
Tx ≤

∑
c∈S

bc

where S is the set of all violated constraints.

Anuj Dawar June 2019

Separation Oracle

More generally, the ellipsoid method can be used, even when the
constraint matrix is not given explicitly, as long as we can always
determine a separating hyperplane.

In particular, the polytope represented may have exponentially many
facets.

We can show that as long as the separation oracle can be defined in FPC,
the corresponding optimization problem can be solved in FPC.

Anuj Dawar June 2019

Graph Matching

Recall, in a graph G = (V,E) a matching M ⊂ E is a set of edges such
that each vertex is incident on at most one edge in M .

(Edmonds 1965) showed that the problem of finding a maximum weight
matching in G = (V,E), w : QE≥0 can be expressed as an exponential
size linear program.

We can show that a separation oracle for this polytope is definable by an
FPC formula interpreted in the weighted graph G.

As a consequence, there is an FPC formula defining the size of the
maximum matching in G.

Note that this does not allow us to define an actual matching.

Anuj Dawar June 2019

Lift and Project Hierarchies

Given a polytope K for integer optimization problem, we can get a better
approximation of the convex hull of the integer points by means of
lift-and-project programs.

The general idea is to add new variables yx1,...,xt to denote the product
x1 · · ·xt and add linear (or semi-definite) constraints to try and force this
meaning.

We get hierarchies as t increases:

• Sherali-Adams: SAt(K)

• Lovasz-Schrijver: LSt(K)

• Lasserre: Last(K)

Of these, the last is the strongest.

For many cases, we can show that the number of levelst required to get
an exact soultion can be bounded by Ω(νC).

Anuj Dawar June 2019

Hardness of Approximation

MAX 3SAT:
We are given a Boolean formula ϕ in 3CNF, i.e. a conjunction of clauses
with three literals per clause.

Say ϕ has n Boolean variables and m clauses.

Let m∗ denote the maximum number such that some assignment of
values to the Boolean variables makes m∗ clauses of ϕ true.

Algorithmic Problems:

• Find an assignment of values to the variables that makes m∗ clauses
of ϕ true;

• Determine the value of m∗;

• c-approximate m∗ for some constant 0 < c < 1, i.e. give a value m′

with a guarantee that cm∗ < m′ ≤ m∗.

Anuj Dawar June 2019

Lower Bounds

NP-completeness (Cook; Levin 1973):
Unless P = NP, there is no polynomial-time algorithm that can determine
m∗.

PCP Theorem (Arora et al. 1998):
There is a constant c < 1 such that, unless P = NP, there is no
polynomial-time algorithm that can c-approximate m∗.

(Håstad 2001):
Unless P = NP, for every ε > 0 there is no polynomial-time algorithm
that can (7

8 + ε)-approximate m∗.

Note: This is optimal since there is a trivial algorithm that can
7
8 -approximate m∗.

Anuj Dawar June 2019

MAX SNP

(Papadimitriou-Yannakakis 1991) define (in syntactic terms) a class
MAX SNP of NP optimization problems.

For every problem in MAX SNP, there is a constant d such that there is
a polynomial-time d-approximation algorithm.

They also define a notion of approximation preserving reduction under
which MAX 3SAT is MAX SNP-complete.

It is a consequence of the PCP theorem that for every
MAX SNP-complete problem, there is a constant c < 1 such that, unless
P = NP, there is no polynomial-time c-approximation algorithm.

This poses a challenge for each problem in MAX SNP, to determine the
best possible value of d.

Anuj Dawar June 2019

MAX 3XOR

We are given a Boolean formula ϕ in 3XOR, i.e. a conjunction of clauses
each of which is the exclusive or (⊕) of three literals.

Say ϕ has n Boolean variables and m clauses.

Let m∗ denote the maximum number such that some assignment of
values to the Boolean variables makes m∗ clauses of ϕ true.

• determining whether m∗ = m can be done in polynomial-time, by
Gaussian elimination;

• determining the exact value of m∗ is MAX SNP-complete.

(Håstad 2001):
Unless P = NP, for every ε > 0 there is no polynomial-time algorithm
that can (1

2 + ε)-approximate m∗.

This is optimal since there is a trivial algorithm that can 1
2 -

approximate m∗.

Anuj Dawar June 2019

Vertex Cover
In a graph G = (V,E), S ⊆ V is a vertex cover if each edge in E has at
least one endpoint in S.

vc(G) is the size of the smallest vertex cover in G.

(Dinur-Safra 2005):
Unless P = NP, there is no polynomial-time algorithm that can
approximate vc(G) up to a factor of 1.36.

Note 1: Since this is a minimization problem, the approximation ratio
is a constant c > 1.
Note 2: This has recently been improved to

√
2 (Khot, Minzer, Safra

2018+).

There are polynomial-time algorithms that can approximate vc(G) up to
a factor of 2.

Conjecture:
Unless P = NP, for every ε > 0 there is no polynomial-time algorithm
that can approximate vc(G) up to a factor of 2− ε.

Anuj Dawar June 2019

Methods
Say that a 3CNF formula is c-satisfiable if m∗ > cm.

The proof of the PCP theorem gives (for some constant c) a reduction
from 3SAT to itself which:

• maps a satisfiable formula to a satisfiable formula; and

• maps an unsatisfiable formula to one that is not c-satisfiable.

As a consequence, any class C of formulas that includes the satisifiable
ones and excludes the ones that are not c-satisfiable, is NP-hard to
decide.

The gap is amplified by further reductions, such as Håstad’s long-code
reductions.

In the case of 3XOR:

For any ε > 0, any class C of formulas that includes the (1 −
ε)-satisifiable ones and excludes the ones that are not (1

2 + ε)-
satisfiable, is NP-hard to decide.

Anuj Dawar June 2019

Results

For any ε > 0 there is no term of FPC which, interpreted in a 3CNF
formula ϕ, defines a number guaranteed to be within 7

8 + ε of m∗(ϕ).

For any ε > 0 there is no term of FPC which, interpreted in a 3XOR
formula ϕ, defines a number guaranteed to be within 1

2 + ε of m∗(ϕ).

There is no term of FPC which, interpreted in a graph G, defines a value
guaranteed to be within a factor 1.36 of vc(G).

Anuj Dawar June 2019

New Challenges for Duplicator

The results are estabilshed by showing definability gaps:

If C is any class of 3CNF formulas that includes the satisfiable
ones and excludes those that are not (7

8 + ε)-satisfiable, then C
has counting width Ω(nδ) for some δ > 0.

If C is any class of 3XOR formulas that includes the satisfiable
ones and excludes those that are not (1

2 + ε)-satisfiable, then C
has counting width Ω(nδ) for some δ > 0.

Anuj Dawar June 2019

Initial Gap

Unlike the PCP theorem, we establish an initial gap for 3XOR:

If C is any class of 3XOR formulas that includes the satisfiable
ones and excludes those that are not (1

2 + ε)-satisfiable, then C
has counting width Ω(n).

We then amplify the gap, and extend it to 3SAT and vertex cover by
means of reductions definable in first-order logic.

This involves showing that known polynomial-time reductions in the
literature can be done in first-order logic.

Anuj Dawar June 2019

Gap Construction

The initial gap is established by a variant of the Cai-Fürer-Immerman
construction.

For a set V of n variables, choose uniformly at random, a collection of
m > n subsets {x1, x2, x3} of V of three elements.

With high probability, the resulting bipartite graph has certain
expansion properties.

Construct a system of equations x1 + x2 + x3 = b where the left-hand
sides are the chosen sets and b is 0 or 1 based on the toss of a coin.

With high probability, the system is not (1
2 + ε)-satisfiable.

The expansion properties guarantee that it is k-locally consistent
for k = Ω(n).

A CFI construction on this then gives a system that is not

(1
2 + ε)-satisfiable but ≡Ck

-equivalent to a satisfiable one.

Anuj Dawar June 2019

Perspectives

FPC is a subclass of P that captures a natural notion of symmetric
algorithm.

We are able to show both

• that powerful algorithmic techniques are expressible in FPC; and

• unconditional inexpressibility results for many problems.

The lower bound results reveal

• fundamental structural properties of the probems; and

• lower bounds on important algorithmic techniques.

Anuj Dawar June 2019

Pointers
For the classical material in Lecture 1, you may consult a textbook such
as: L. Libkin, Elements of Finite Model Theory.

The recent work in Lecture 2 may be found in the following papers:

M. Anderson, A. Dawar:
On Symmetric Circuits and Fixed-Point Logics. Theory Comput.
Syst. (2017)

M. Anderson, A. Dawar, B. Holm:
Solving Linear Programs without Breaking Abstractions. J. ACM
(2015)

A. Dawar, P. Wang:
Definability of Semidefinite Programming and Lasserre Lower
Bounds for CSPs. LICS 2017

A. Atserias, A. Dawar:
Definable Inapproximability: New Challenges for Duplicator. CSL
2018

A. Atserias, A. Dawar, J. Ochremiak:
On the Power of Symmetric Linear Programs. LICS 2019

Anuj Dawar June 2019

