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Lecture I: Introduction to Descriptive Complexity.
® Proving inexpressibility in Logics.
® Characterizing complexity classes.

® FPC and the Cai-Firer-Immerman construction.

Lecture 2: FPC and its connections with:
® circuit complexity
® extension polytopes

® hardness of approximation
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Descriptive Complexity

Descriptive Complexity provides an alternative perspective on
Computational Complexity.

Computational Complexity

® Measure use of resources (space, time, etc.) on a machine model of
computation;

® Complexity of a language—i.e. a set of strings.
Descriptive Complexity
® Complexity of a class of structures—e.g. a collection of graphs.

® Measure the complexity of describing the collection in a formal logic,
using resources such as variables, quantifiers, higher-order operators,
etc.

There is a fascinating interplay between the views.
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First-Order Logic

Consider first-order predicate logic.

Fix a vocabulary o of relation symbols (R, ..., R,,) and
a collection X of variables.

The formulas are given by

Ri(x)|z=y oAy |oV|-p|Irp|Vap
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First-Order Logic

For a first-order sentence ¢, we ask what is the computational complexity
of the problem:

Given: a structure A
Decide: if A = ¢

In other words, how complex can the collection of finite models of ¢ be?

In order to talk of the complexity of a class of finite structures, we need
to fix some way of representing finite structures as strings.

Anuj Dawar June 2019



Encoding Structures

We use an alphabet ¥ = {0, 1, #}.
For a structure A = (A, Ry,..., R,,), fix a linear order < on

A={ay,...,an}.
R; (of arity k) is encoded by a string [R;]~ of Os and 1s of length n*.

[A]< =1 1#[R1]<# #[ nJ

n

The exact string obtained depends on the choice of order.
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Invariance

Note that the decision problem:
Given a string [A]. decide whether A |= ¢

has a natural invariance property.
It is invariant under the following equivalence relation

Write w1 ~ wq to denote that there is some structure A and
orders <1 and <y on its universe such that

wy = [A]<, and wy = [A],

Note: deciding the equivalence relation ~ is just the same as deciding
structure isomorphism.
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Naive Algorithm

Back to evaluating A | ¢.
The straightforward algorithm proceeds recursively on the structure of ¢:

® Atomic formulas by direct lookup.
® Boolean connectives are easy.
® |f ¢ = Jx 1 then for each a € A check whether

(Ax —a) E .

This runs in time O(In?) and O(plogn) space, where [ is the length of ¢
and p is the nesting depth of quantifiers in ¢.

Mod(p) = {A[A ¢}

is in logarithmic space and polynomial time.
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Limitations of First-Order Logic

There are computationally easy properties that are not definable in
first-order logic.

® There is no sentence ¢ of first-order logic such that A = ¢ if, and
only if, |A] is even.

® There is no formula ¢(E, x,y) that defines the transitive closure of
a binary relation F.

® There is no sentence ¢ of first-order logic such that for any graph
G, G = ¢ if, and only if, G is 2-colourable.
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Quantifier Rank

The quantifier rank of a formula ¢, written qr(y) is defined inductively
as follows:

1. if ¢ is atomic then qr(¢) =0,

2. if o = =) then qr(y) = qr(v),

3. if o =11 V by or ¢ =11 A1)y then

qr(e) = max(qr(¢1), ar(vz2)).

4. if ¢ = Jarh or p = Var) then qr(p) = qr(v)) + 1
It is easily proved that in a finite vocabulary, for each p, there are (up to
logical equivalence) only finitely many sentences ¢ with qr(¢) < p.
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Finitary Elementary Equivalence

For two structures A and B, we say A =, B if for any sentence ¢ with

ar(y) < p,
A E ¢ if, and only if, B = ¢.

Key fact:

a class of structures S is definable by a first order sentence ff,
and only if, S is closed under the relation =,, for some p.

In a finite relational vocabulary, for any structure A there is a sentence

6% such that
B =6} if andonlyif, A=,B
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Partial Isomorphisms

The equivalence relations =, can be characterised in terms of sequences
of partial isomorphisms
(Fraissé 1954)
or two player games.
(Ehrenfeucht 1961)

A partial isomorphism is an injective partial function f from A to B such
that:

e for any constant c:  f(c*) = c%; and

® for any tuple a of elements of A such that all elements of a are in
dom(f) and any relation R we have

R%(a) <«  R(f(a))
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Ehrenfeucht-Fraissé Game

The p-round Ehrenfeucht game on structures A and B proceeds as
follows:

There are two players called Spoiler and Duplicator

At the ith round, Spoiler chooses one of the structures (say B) and
one of the elements of that structure (say b;).

Duplicator must respond with an element of the other structure (say
01)

If, after p rounds, the map a; — b; is a partial isomorphism, then
Duplicator has won the game, otherwise Spoiler has won.

Theorem (Fraissé 1954; Ehrenfeucht 1961)

Duplicator has a strategy for winning the p-round Ehrenfeucht game on
A and B if, and only if, A =, B.
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Proof by Example

Suppose A #3 B, in particular, suppose 6(x,y, z) is quantifier free, such
that:
AEdaVy320  and B VadyVz—6

round 1: Spoiler chooses a1 € A such that A |= VYy3z0[a1].
Duplicator responds with b; € B.

round 2: Spoiler chooses by € B such that B |= Vz—0[b1, ba].
Duplicator responds with as € A.

round 3: Spoiler chooses a3z € A such that A |= 0[a1, az, as).
Duplicator responds with bz € B.

Spoiler wins, since B }= 0[by, ba, bs].
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Using Games

To show that a class of structures S is not definable in FO, we find, for
every p, a pair of structures A, and B, such that

°* A,eS, B,€eS;and

® Duplicator wins a p-round game on A, and B,,.

Example:
C,,—a cycle of length n.
Duplicator wins the p-round game on Car & Cor and Cop 1.

® 2-Colourability is not definable in FO.
® Even cardinality is not definable in FO.
® Connectivity is not definable in FO.
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Using Games

An illustration of the game for undefinability of connectivity and
2-colourability.

Duplicator's strategy is to ensure that after » moves, the distance
between corresponding pairs of pebbles is either equal or > 2P~
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Second-Order Logic

Second-Order Logic extends first-order logic with quantification over
relations.

X ¢

where X has arity m is true in a structure A if, and only if, A can be
expanded by an m-ary relation interpreting X to satisfy (.

ESO or X}—existential second-order logic consists of those formulas of
second-order logic of the form:

X, - 3Xn e

where ¢ is a first-order formula.
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Examples

Evennness
This formula is true in a structure if, and only if, the size of the domain
is even.
IB3S VaIJyB(z,y) AVaVyVzB(z,y) A B(z,2) =y =2
VaVyVzB(x,z) N B(y,z) >z =y
VaVyS(z) A B(z,y) — —S(y)
VaVy—S(z) A B(z,y) — S(y)
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Examples

Transitive Closure
Each of the following formulas is true of a pair of elements a,b in a
structure if, and only if, there is an E-path from a to b.

VS (S(a) AV2Vy[S(z) A E(z,y) — S(y)] = S(b))

3P VaVy P(x,y) = E(x,y)
JzP(a,x) A JxP(x,b) AN ~FxP(z,a)
VaVy(P(z,y) = Vz(P(z,z) =y = 2)
VaVy(P(z,y) — Vz(P(z, ) —x=2z)
Va((z # a A 3yP(x,y)) — I2P(z, 1))
Vol A TPl ) o 3P
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Examples

3-Colourability
The following formula is true in a graph (V, E) if, and only if, it is

3-colourable.
JRIB3AG Va(Rx V Bz V Gx)A
)

Va( —(Rx A Bx) A —(Bx AGzx) AN —~(Rx A Gz))A
VaVy(Exy — ( —(Rz A Ry)A
—(Bx A By)A
~(Gz A Gy)))
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Fagin's Theorem

Theorem (Fagin)
A class C of finite structures is definable by a sentence of existential

second-order logic if, and only if, it is decidable by a nondeterminisitic
machine running in polynomial time.

ESO =NP

S = Mod(y) for some ¢ in ESO if, and only if, {[A]< | A € S} is in NP
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Fagin's Theorem

If pis IRy ---3AR,,0 for a first-order 6.

To decide A = ¢, guess an interpretation for the relations Ry,..., R,
and then evaluate 6 in the expanded structure.

Given a nondeterministic machine M and a polynomial p:

3 < a linear order
JH, T, S that code an accepting computation of M of length p

starting with [A]<.
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Is there a logic for P?

The major open question in Descriptive Complexity (first asked by
Chandra and Harel in 1982) is whether there is a logic £ such that

for any class of finite structures C, C is definable by a sentence
of L if, and only if, C is decidable by a deterministic machine
running in polynomial time.

Formally, we require £ to be a recursively enumerable set of sentences,

with a computable map taking each sentence to a Turing machine M and

a polynomial time bound p such that (M, p) accepts a class of structures.
(Gurevich 1988)
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Inductive Definitions

Let o(R,x1,...,2x) be a first-order formula in the vocabulary o U { R}
Associate an operator ¢ on a given o-structure A:

O(R") ={a| (A, R", ) F ¢(R,x)}
We define the non-decreasing sequence of relations on A:
o0 =
ot — pmy (™)
The inflationary fixed point of @ is the limit of this sequence.

On a structure with n elements, the limit is reached after at most n*
stages.
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FP

The logic FP is formed by closing first-order logic under the rule:

If ¢ is a formula of vocabulary o U {R} then [ifpr ,¢](t) is a
formula of vocabulary o.

The formula is read as:
the tuple t is in the inflationary fixed point of the operator defined
by ¢

LFP is the similar logic obtained using least fixed points of monotone
operators defined by positive formulas.

LFP and FP have the same expressive power (Gurevich-Shelah 1986;
Kreutzer 2004).
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Transitive Closure

The formula

ifpr., (v =y Vv I2(E(z,2) AT(z,9)))l(u, v)

defines the transitive closure of the relation
The expressive power of FP properly extends that of first-order logic.

Still, every property definable in FP is decidable in polynomial time.

On a structure with n elements, the fixed-point of an induction
of arity k is reached in at most n* steps.
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Immerman-Vardi Theorem

Theorem
On structures which come equipped with a linear order FP expresses
exactly the properties that are in P.

(Immerman; Vardi 1982)

Recall from Fagin's theorem:

3 < a linear order

dH,T,S that code an accepting computation of M of length p
starting with [A]<.
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FP vs. Ptime

The order cannot be built up inductively.
It is an open question whether a canonical string representation of a
structure can be constructed in polynomial-time.

If it can, there is a logic for P (and also graph isomorphism is in
P).
If not, then P # NP.

All P classes of structures can be expressed by a sentence of FP with <,
which is invariant under the choice of order. The set of all such sentences
is not r.e.

FP by itself is too weak to express all properties in P.
Evenness is not definable in FP.
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Finite Variable Logic

We write L* for the first order formulas using only the variables
T1yeoey, Tkt

A first order formula ¢ is equivalent to one of L* if no sub-formula of ¢
contains more than k free variables.

A=rB

denotes that A and B agree on all sentences of L*.
For any k, A=FB = A=.B
However, for any p, there are A and B such that

A=,B and A#’B.
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Definability and Invariance

A class of structures is closed under =, (for some p) if, and only if, it is
defined by a FO sentence.

A class of finite structures is closed under =* if, and only if, it is
axiomatizable in L* (possibly by an infinite collection of sentences).

In a finite, relational vocabulary, there are only finitely many sentences of
quantifier rank at most p.

Thus, the relation =, has only finitely many equivalence classes.

The relation =* has infintiely many classes for all k& > 2.
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Finite Variable Logic

If o(R,x) has k variables all together, then each of the relations in the
sequence:

(I)O — (Z),. q,m—&-l = pmy (I)((Pm)
is definable in L2*.

Proof by induction, using substitution and renaming of bound variables.

On structures of a fixed size n, [ifpy ¢](t) is equivalent to a formula of
L2k_ '

For any sentence ¢ of FP there is a k such that the property defined by

¢ is invariant under =*.
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Pebble Games

The k-pebble game is played on two structures A and B, by two
players—Spoiler and Duplicator—using k pairs of pebbles

{(al, b1)7 ey (ak7 bk)}

Anuj Dawar

Spoiler moves by picking a pebble and placing it on an element
(a; on an element of A or b; on an element of B).

Duplicator responds by picking the matching pebble and placing
it on an element of the other structure

Spoiler wins at any stage if the partial map from A to B defined
by the pebble pairs is not a partial isomorphism

If Duplicator has a winning strategy for p moves, then A and
B agree on all sentences of L* of quantifier rank at most p.
(Barwise)
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Using Pebble Games

To show that a class of structures S is not definable in first-order logic:
Vk Vp 3A, B (AES/\IB%S/\AE’;]B%)

To show that S is not axiomatisable with a finite number of variables:
vk 3A,B Vp (AeSAB%S/\AE,’; B)
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Evenness

Evenness is not axiomatizable with a finite number of variables.
for every k, there are structures Ay, and By, such that Ay has an
even number of elements, B;, has an odd number of elements

and
A =FB.

It is easily seen that Duplicator has a strategy to play forever when one
structure is a set containing k elements (and no other relations) and the
other structure has k + 1 elements.
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Matching

Take K, ,—the complete bipartite graph on two sets of k vertices.
and K}, r.+1—the complete bipartite graph on two sets, one of k vertices,
the other of k£ + 1.

These two graphs are =* equivalent, yet one has a perfect matching, and
the other does not. One contains a Hamiltonian cycle, the other does not.
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Inexpressibility in FP

The following are not definable in FP:

® [venness;
® Perfect Matching;,

® Hamiltonicity.

The examples showing these inexpressibility results all involve some form
of counting.
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Fixed-point Logic with Counting

Immerman proposed FPC—the extension of FP with a mechanism for
counting

Two sorts of variables:
® 1y,Zs,... range over |A|—the domain of the structure;
® 11,5, ... which range over non-negative integers.

If o(x) is a formula with free variable x, then #x¢ is a term denoting
the number of elements of A that satisfy .

We have arithmetic operations (+, x) on number terms.

Quantification over number variables is bounded: (Jx < t) ¢
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Counting Quantifiers

C* is the logic obtained from first-order logic by allowing:
® counting quantifiers: 3'x ©; and
® only the variables z1,....7L.

Every formula of C* is equivalent to a formula of first-order logic, albeit
one with more variables.

For every sentence ¢ of FPC, there is a k such that if A =C* B, then

AE oy if andonly if, BE .
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Limits of FPC

It was proved (Cai, Fiirer, Immerman 1992) that there are
polynomial-time graph properties that are not expressible in FPC.

A number of other results about the limitations of FPC followed.
In particular, it has been shown that the problem of solving linear
equations over the two element field Z5 is not definable in FPC.

(Atserias, Bulatov, D. 09)

The problem is clearly solvable in polynomial time by means of Gaussian
elimination.
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Systems of Linear Equations

We see how to represent systems of linear equations as unordered
relational structures.

Consider structures over the domain {z1,...,2,,€1,...,¢,}, (where
€1,...,en are the equations) with relations:

® unary Ey for those equations e whose r.h.s. is 0.
® unary F; for those equations e whose r.h.s. is 1.
® binary M with M (z,e) if  occurs on the I.h.s. of e.

Solv(Zs) is the class of structures representing solvable systems.
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Undefinability in FPC

To show that the satisfiability of systems of equations is not definable in
FPC it suffices to show that for each k, we can construct a two systems
of equations

Ek and Fk
such that:
® [, is satisfiable;

® [ is unsatisfiable; and
o £, =" F,
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Constructing systems of equations

Take G a 4-regular, connected graph.
Define equations E¢ with two variables xf, x{ for each edge e.
For each vertex v with edges e, €2, €3, e4 incident on it, we have 16
equations:
E,: rg 4 at+al+a =a+b+c+d (mod2)

E( is obtained from E¢ by replacing, for exactly one vertex v, E, by:

E) : rg dal+al+af=a+b+c+d+1 (mod 2)

We can show: Eg is satisfiable; E¢ is unsatisfiable.
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Satisfiability
Lemma E( is satisfiable.

by setting the variables x§ to i.

Lemma E is unsatisfiable.

Consider the subsystem consisting of equations involving only the
variables xf.
The sum of all left-hand sides is

22958 =0 (mod 2)
However, the sum of right-hand sides is 1.

Now we show that, for each k, we can find a graph G such that

Ec =" E¢.
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Counting Game

Immerman and Lander (1990) defined a pebble game for C*.
This is again played by Spoiler and Duplicator using k pairs of pebbles
{(a1,b1),..., (ak,bg)} on a pair of structures A and B
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At each move, Spoiler picks i and a set of elements of one struc-
ture (say X C B)

Duplicator responds with a set of vertices of the other structure
(sayY C A) of the same size.

Spoiler then places a; on an element of Y and Duplicator must
place b; on an element of X.

Spoiler wins at any stage if the partial map from A to B defined
by the pebble pairs is not a partial isomorphism

If Duplicator has a winning strategy for p moves, then A and B
agree on all sentences of C* of quantifier rank at most p.
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