Finite Model Theory and Graph Isomorphism. IV.

Anuj Dawar

University of Cambridge Computer Laboratory visiting RWTH Aachen

Beroun, 14 December 2013

Recapitulation

Finite Model Theory gives rise to notions of *indistinguishability* on finite structures, such as graphs. These are used to prove inexpressibility results for various logics.

These *equivalences* are often characterised by games.

When the relations of indistinguishability are computable in *polynomial time*, they give rise to *tractable approximations* of graph isomorphism.

In many cases, they give a *structural explanation* of when certain *graph classes* admit polynomial time isomorphism tests.

Recapitulation. II

The equivalences \equiv^{C^k} correspond (as a family) to the *k*-dimensional *Weisfeiler-Lehman* ismorphism test.

This family of equivalences has a number of different *characterisations* in combinatorics, logic and linear programming.

It captures isomorphism in many significant *graph classes* including, most generally, any graph class excluding a minor.

There are graphs (of *degree* bounded by 3 and *colour-class size* bounded by 4) in which \equiv^{C^k} fails to capture isomorphism.

This can be used to show that FPC does not express *all* polynomial-time properties of graphs.

Solvability of Linear Equations

It has been shown by similar methods that the problem of solving linear equations over the two element field \mathbb{Z}_2 is not definable in FPC. (Atserias, Bulatov, D. 09)

The question arose in the context of definability of *Constraint Satisfaction Problems*.

The problem is clearly solvable in polynomial time by means of Gaussian elimination.

Undefinability in FPC

Take *G* a 3-regular, connected graph with treewidth > k. Define equations $\mathbf{E}_{\mathcal{G}}$ with two variables x_0^e, x_1^e for each edge *e*. For each vertex *v* with edges e_1, e_2, e_3 incident on it, we have eight equations:

$$E_{v}: \qquad x_{a}^{e_{1}} + x_{b}^{e_{2}} + x_{c}^{e_{3}} \equiv a + b + c \pmod{2}$$

 $\tilde{\mathbf{E}}_{\mathcal{G}}$ is obtained from $\mathbf{E}_{\mathcal{G}}$ by replacing, for exactly one vertex v, E_v by:

$$E'_{v}: \qquad x_{a}^{e_{1}} + x_{b}^{e_{2}} + x_{c}^{e_{3}} \equiv a + b + c + 1 \pmod{2}$$

We can show: $\mathbf{E}_{\mathcal{G}}$ is satisfiable; $\tilde{\mathbf{E}}_{\mathcal{G}}$ is unsatisfiable; $\mathbf{E}_{\mathcal{G}} \equiv^{C^{k}} \tilde{\mathbf{E}}_{\mathcal{G}}$ follows by the same proof as for **Cai**, Fürer, Immerman graphs.

Satisfiability

 E_G is satisfiable.

by setting the variables x_i^e to *i*.

 $\tilde{\mathbf{E}}_{G}$ is unsatisfiable.

Consider the subsystem consisting of equations involving only the variables x_0^e . The sum of all left-hand sides is

$$2\sum_e x_0^e \equiv 0 \pmod{2}$$

However, the sum of right-hand sides is 1.

Rank Operators

This motivates the introduction of an operator for *matrix rank* into the logic.

We have, as with FPC, terms of *element sort* and *numeric sort*.

We interpret $\eta(x, y)$ —a term of numeric sort—in *G* as defining a matrix with rows and columns indexed by elements of *G* with entries $\eta[a, b]$. rk_{x,y} η is a term denoting the number that is the rank of the matrix defined by $\eta(x, y)$.

To be precise, we have, for each finite field $\mathbb{GF}(q)$ (q prime), an operator rk^{q} which defines the rank of the matrix with entries $\eta[a, b](\mathrm{mod} q)$. (D., Grohe, Holm, Laubner, 2009)

FPrk vs. FPC

Adding rank operators to FP, we obtain a proper extension of FPC.

 $\# x \varphi = \operatorname{rk}_{x,y}[x = y \land \varphi(x)]$

In FPrk we can express the solvability of linear systems of equations, as well as the Cai-Fürer-Immerman graphs.

FOrk

More generally, for each prime p and each arity m, we have an operator $\operatorname{rk}_{m}^{p}$ which binds 2m variables and defines the rank of the $n^{m} \times n^{m}$ matrix defined by a formula $\varphi(\mathbf{x}, \mathbf{y})$.

FOrk, the extension of first-order logic with the rank operators is already quite powerful.

- it can express deterministic transitive closure;
- it can express symmetric transitive closure;
- it can express solvability of linear equations.

Games for Logics with Rank

Define the equivalence relation $G \equiv^{\mathbb{R}^{h}_{\Omega,m}} H$ to mean that G and H are not distinguished by any formula of FOrk using operators $\operatorname{rk}^{p}_{m}$ (for $p \in \Omega$) and with at most k variables.

This equivalence relation has a characterisation in terms of *games*. (D., Holm 2012)

What can we say about the approximations of isomorphism given by $\equiv R_{\Omega,m}^k$?

Partition Games

We formulate a general framework of *partition games*, played with k pebbles.

First consider a simple version.

- Spoiler picks a pebble from G and the corresponding pebble from H.
- Duplicator reponds with
 - a partition **P** of V(G)
 - a partition \mathbf{Q} of V(H)
 - a bijection $f : \mathbf{P} \to \mathbf{Q}$ such that a condition (*) holds.
- Spoiler chooses a part $A \in \mathbf{P}$ and places the chosen pebbles on an element in A and the matching pebble on an element in f(A).

With no restriction (*), we have a game for \equiv^k . If we require A and f(A) to have the same size for all $A \in \mathbf{P}$, we have a game for \equiv^{C^k} .

Stable Partitions

The equivalence defined by the game is the *stable partition* of k-tuples reached by refining equivalences:

$\equiv_0^k \supseteq \equiv_1^k \supseteq \cdots \supseteq \equiv_i^k \cdots$

Each tuple **a** and each \equiv_p^k induce a partition of V where u and v are in the same part if any way of substituting them into **a** gives \equiv_p^k -tuples.

Two tuples are \equiv_{p+1}^{k} -equivalent iff they induce *similar* partitions.

Games for Rank Quantifiers

Since the rank quantifier ${\rm rk}_1^{\it p}$ binds *two* variables, we have the following variation.

- Spoiler picks 2 pebbles from G and the corresponding pebbles from H and $p \in \Omega$.
- Duplicator reponds with
 - a partition **P** of $V(G) \times V(G)$
 - a partition **Q** of $V(H) \times V(H)$
 - a bijection $f: \mathsf{P} \to \mathsf{Q}$ such that for all labellings $\gamma: \mathsf{P} \to \mathbb{GF}(\rho)$

$$\operatorname{rank}(\sum_{A \in \mathbf{P}} \gamma(A) M_A) = \operatorname{rank}(\sum_{A \in \mathbf{P}} \gamma(A) M_{f(A)})$$

Spoiler chooses a part A ∈ P and places the chosen pebbles on a pair in A and the matching pebbles on a pair in f(A).

This characterises the equivalence $\equiv_{k,\Omega,1}^{R}$.

Games for Logics with Rank

The *arity hierarchy* does not collapse for rank logics, so the general game is defines as follows.

- *Spoiler* picks 2m pebbles from V(G) and from V(H) and $p \in \Omega$.
- Duplicator reponds with
 - a partition **P** of $V(G)^m \times V(G)^m$
 - a partition **Q** of $V(H)^m \times V(H)^m$
 - a bijection $f: \mathbf{P} \to \mathbf{Q}$ such that for all labellings $\gamma: \mathbf{P} \to \mathbb{GF}(p)$

$$\operatorname{rank}(\sum_{A \in \mathbf{P}} \gamma(A) M_A) = \operatorname{rank}(\sum_{A \in \mathbf{P}} \gamma(A) M_{f(A)})$$

Spoiler chooses a part A ∈ P and places the chosen pebbles on an m-tuple in A and the matching pebbles on an m-tuple in f(A).

This characterises the equivalence $\equiv_{k,\Omega,m}^R$.

Limitations of the Game

The arbitrary arity *m* and the *matrix-equivalence* condition make the game unwieldy. It's difficult to prove inexpressibility results with it.

- the relation \equiv^k can itself be defined in FP; and
- the relation \equiv^{C^k} can itself be defined in FPC.

Both of these follow by an inductive definition of the game winning positions.

Is $\equiv_{k,\Omega,m}^{R}$ definable in FPrk?

Is it even decidable in *polynomial time*?

Stable Rank Partitions

In the stepwise refinement of equivalences converging to $\equiv_{k,\Omega,m}^{R}$

$$\equiv_0 \supseteq \equiv_1 \supseteq \cdots \supseteq \equiv_i \cdots$$

to decide if **a** and **a**' are equivalent at stage p + 1, we can compute the partitions of $V^m \times V^m$ induced using the equivalence \equiv_p by **a** and **a**' respectively.

We then need to compute the rank of the matrices formed by taking *all linear combinations* of parts of the partitions. There are potentially *exponentially* many of these.

Invertible Map Game

We define a variant parition game with a *stronger* condition:

There is an invertible matrix S such that for all labellings $\gamma : \mathbf{P} \to \mathbb{GF}(p), \sum_{A \in \mathbf{P}} \gamma(A)M_A = S(\sum_{A \in \mathbf{P}} \gamma(A)M_{f(A)})S^{-1}$

Since this (unlike the rank function) is *linear* on the space of matrices, it is sufficient to check it on a basis, which is given by the individual parts of P.

That is, it suffices to check, for each $A \in \mathbf{P}$ that $M_A = SM_{f(A)}S^{-1}$.

A result of (Chistov, Karpinsky, Ivanyov 1997) guarantees that *simultaneous similarity* of a collection of matrices is decidable in polynomial time.

Approximations of Isomorphism

This gives us a family of polynomial-time isomorphism tests $\equiv_{k,\Omega,m}^{\text{IM}}$.

•
$$\equiv_{k,\Omega,m}^{\text{IM}}$$
 refines $\equiv_{k,\Omega,m}^{R}$

- $\equiv_{k,\Omega,m}^{\text{IM}}$ gets finer as we increase any of k, m or Ω .
- The *CFI* graphs are distinguished by $\equiv_{4,\{2\},1}^{IM}$

(D., Holm 2012)

Coherent Algebras

Weisfeiler and Lehman presented their algorithm in terms of *cellular algebras*.

These are algebras of matrices on the *complex numbers* defined in terms of *Schur multiplication*:

 $(A \circ B)(i,j) = A(i,j)B(i,j)$

They are also called *coherent configurations* in the work of Higman.

Definition:

A *coherent algebra* with index V is an algebra \mathcal{A} of $V \times V$ matrices over \mathbb{C} that is:

closed under Hermitian adjoints; closed under Schur multiplication; contains the identity I and the all 1's matrix J.

Coherent Algebras

One can show that a coherent algebra has a *unique basis* A_1, \ldots, A_m (i.e. every matrix in the algebra can be expressed as a linear combination of these) of 0-1 matrices which is closed under *adjoints* and such that

 $\sum_i A_i = J.$

One can then derive structure constants p_{ii}^k such that

$$A_i A_j = \sum_k p_{ij}^k A_k.$$

Associate with any graph G, its *coherent invariant*, defined as the smallest coherent algebra \mathcal{A}_G containing the adjacency matrix of G.

Weisfeiler-Lehman method

Say that two graphs *G* and *H* are *WL*-equivalent if there is an isomorphism between their *coherent invariants* A_G and A_H . *G* and *H* are *WL*-equivalent if, and only if, $G \equiv C^3 H$.

Friedland (1989) has shown that two coherent algebras with standard bases A_1, \ldots, A_m and B_1, \ldots, B_m are isomorphic if, and only if, there is an invertible matrix S such that

 $SA_iS^{-1} = B_i$ for all $1 \le i \le m$.

Complex Invertible Map Game

Define the *k*-pebble *complex invertible map game*.

- *Spoiler* picks 2 pebbles from *G* and the corresponding pebbles from *H*.
- Duplicator reponds with
 - a partition **P** of $V(G) \times V(G)$
 - a partition **Q** of $V(H) \times V(H)$
 - a bijection $f : \mathbf{P} \to \mathbf{Q}$ and an invertible matrix S over \mathbb{C} such that for all $A \in \mathbf{P}$: $M_A = SM_{f(A)}S^{-1}$.
- Spoiler chooses a part A ∈ P and places the chosen pebbles on a pair in A and the matching pebbles on a pair in f(A).

The game defines an equivalence $\equiv_{C,k}^{IM}$ over graphs.

We can show $\equiv_{\mathbb{C},k+1}^{\mathrm{IM}} \subseteq \equiv^{C^k} \subseteq \equiv_{\mathbb{C},k-1}^{\mathrm{IM}}$.

Invertible Map Games

The *complex invertible map game* gives us essentially the same family of approximations of isomorphism as the *Weisfeiler-Lehman* method and the *bijection games*.

The *invertible map game* we defined in connection with rank logics can then be seen as the tightening of these approximations to a game where *Duplicator* is required to choose the invertible map S not over \mathbb{C} but over a *finite field* whose *characteristic* has been chosen by *Spoiler*.

Proviso: we defined the latter game with partitions of higher arity. These seem to be unnecessary in the complex invertible map game.

Colour Class Size 4

Isomorphism for graphs of colour class size 3 is captured by \equiv^{C^3} .

Isomorphism for graphs of colour class size 4 is captured by $\equiv_{4,\{2\},1}^{IM}$. This is proved by a reduction to the solvability of a system of equations over $\mathbb{GF}(2)$.

(D., Holm 2014)

Inexpressibility

Similarly to the **Cai**, **Fürer and Immerman** construction, we can construct a sequence of graphs to show that there is no fixed k and no finite set of primes Ω for which $\equiv_{k,\Omega,1}^{\text{IM}}$ is the same as isomorphism.

(D., Holm 2014)

Doing this for $\equiv_{k,\Omega,m}^{\text{IM}}$ for m > 1 remains a challenge as the games become very unwieldy.

Research Questions

Is the *arity hierarchy* really strict on graphs? Could it be that $\equiv_{k,\Omega,m}^{\text{IM}}$ is subsumed by $\equiv_{k',\Omega,1}^{\text{IM}}$ for sufficiently large k'?

Show that no fixed $\equiv_{k,\Omega,m}^{\text{IM}}$ is the same as isomorphism on graphs.

Are the relations $\equiv_{k,\Omega,m}^{IM}$ definable in FPrk?

Does some $\equiv_{k,\Omega,m}^{\text{IM}}$ capture isomorphism on graphs of *bounded colour class size*?

What about graphs of *bounded degree*?