
Finite Model Theory and Graph Isomorphism. II.

Anuj Dawar

University of Cambridge Computer Laboratory
visiting RWTH Aachen

Beroun, 13 December 2013

Recapitulation

Finite Model Theory aims to study the expressive power of logic on finite
structures.

The expressiblity of classes of finite structures is closely related to their
computational complexity.

To prove that properties are not definable in a logic, we seek examples of
graphs that are distinguished by the property but not by the logic.

Anuj Dawar December 2013

Recapitulation. II.

This leads to an exploration of notions of indistinguishability that stratify
the graph isomorphism relation.

We looked at two stratifications, in terms of quantifier rank (≡p) and
number of variables (≡k).

These have characterisations in terms of two-player games.

Anuj Dawar December 2013

Deciding Graph Isomorphism

Graph Isomorphism: Given graphs G ,H, decide whether G ∼= H is

• not known to be in P

• not expected to be NP-complete.

In practice and on average, graph isomorphism is efficiently decidable.

Anuj Dawar December 2013

Tractable Approximations of Isomorphism

A tractable approximation of graph isomorphism is a polynomial-time
decidable equivalence ≡ on graphs such that:

G ∼= H ⇒ G ≡ H.

Practical algorithms for testing graph isomorphism typically decide such
an approximation.

If this fails to distinguish a pair of graphs G and H, more discriminating
tests are deployed.

Anuj Dawar December 2013

Vertex Classification

The following problem is easily seen to be computationally equivalent to
graph isomorphism:

Given a graph G and a pair of vertices u and v, decide if there
is an automorphism of G that takes u to v.

Given G and H, let G + u denote the graph extending G with a new
vertex u adjacent to all vertices in G , and similarly for H + v .

Then, G ∼= H if, and only if, in the graph (G + u)⊕ (H + v), there is an
automorphism taking u to v .

Anuj Dawar December 2013

Equivalence Relations

The algorithms we study aim to decide equivalence relations on vertices
(or tuples of vertices) that approximate the orbits of the automorphism
group.

For such an equivalence relation ≡, we also write G ≡ H to indicate that
G and H are not distinguished by the corresponding isomorphism test.

For connected graphs, this means that for every u in G, there is
a v in H so that u ≡ v in the disjoint union of G and H.

Anuj Dawar December 2013

Partition Refinement

For a pair of k-tuples a,b ∈ V (G)k , we write a ≡k b to denote that
there is no formula of Lk that distinguishes the two tuples.

The equivalence relation ≡k on V (G)k can be obtained through a series
of refinements:

≡k
0 ⊇ ≡k

1 ⊇ · · · ⊇ ≡k
i · · ·

where a ≡k
0 b iff the map a 7→ b is a partial isomorphism and

a ≡k
i+1 b iff for each j(1 ≤ j ≤ k) and each u ∈ V (G), there is a

v ∈ V (G) such that
a[u/aj] ≡k

i b[v/bj]

and vice versa.

Anuj Dawar December 2013

Computing Partition Refinements

a ≡k
i b iff Duplicator has a strategy for i moves of the k-pebble game

starting from position a,b.

We obtain the relation ≡k by starting with the classsification of k-tuples
given by ≡k

0 and iteratively refining it.

Each step requires nO(k) work and there are at most nk steps of
refinement.

Thus, ≡k is decidable in time nO(k).

Anuj Dawar December 2013

Is There a Logic for P?

The question of whether or not there is a logic expressing exactly the P
properties of (unordered) relational structures is the central problem in
Descriptive Complexity.

If we assume structures are ordered, then FP, the extension of first-order
logic with least fixed points suffices. (Immerman; Vardi 1982)

In the absence of order FP fails to express simple cardinality properties
such as evenness.

Anuj Dawar December 2013

Fixed-point Logic with Counting

Immerman had proposed FPC—the extension of FP with a mechanism
for counting

Two sorts of variables:

• x1, x2, . . . range over |A|—the domain of the structure;

• ν1, ν2, . . . which range over numbers in the range 0, . . . , |A|
If ϕ(x) is a formula with free variable x , then ν = #xϕ denotes that ν is
the number of elements of A that satisfy the formula ϕ.

We also have the order ν1 < ν2, which allows us (using recursion) to
define arithmetic operations.

Anuj Dawar December 2013

Expressive Power of FPC

Most “obviously” polynomial-time algorithms can be expressed in FPC.

Many non-trivial polynomial-time algorithms can be expressed in FPC:

• FPC captures all of P over any proper minor-closed class of graphs
(Grohe 2012)

• FPC can express linear programming problems; max-flow and
maximum matching on graphs. (Anderson, D., Holm 2013)

But some cannot be expressed. How do we prove this?

Anuj Dawar December 2013

Counting Quantifiers

C k is the logic obtained from first-order logic by allowing:

• counting quantifiers: ∃ix ϕ; and

• only the variables x1,xk .

Every formula of C k is equivalent to a formula of first-order logic, albeit
one with more variables.

For every sentence ϕ of FPC, there is a k such that if G ≡C k

H, then

G |= ϕ if, and only if, H |= ϕ.

Anuj Dawar December 2013

Counting Game

Immerman and Lander (1990) defined a pebble game for C k .
This is again played by Spoiler and Duplicator using k pairs of pebbles
{(a1, b1), . . . , (ak , bk)}.

At each move, Spoiler picks i and a set of vertices of one graph
(say X ⊆ V (H))

Duplicator responds with a set of vertices of the other graph
(say Y ⊆ V (G)) of the same size.

Spoiler then places ai on an element of Y and Duplicator must
place bi on an element of X .

Spoiler wins at any stage if the partial map from G to H
defined by the pebble pairs is not a partial isomorphism

If Duplicator has a winning strategy for p moves, then G and H
agree on all sentences of C k of quantifier rank at most p.

Anuj Dawar December 2013

Bijection Games

≡C k

is also characterised by a k-pebble bijection game. (Hella 96).
The game is played on graphs G and H with pebbles a1, . . . , ak on G and
b1, . . . , bk on H.

• Spoiler chooses a pair of pebbles ai and bi ;

• Duplicator chooses a bijection h : V (G)→ V (H) such that for
pebbles aj and bj(j 6= i), h(aj) = bj ;

• Spoiler chooses a ∈ V (G) and places ai on a and bi on h(a).

Duplicator loses if the partial map ai 7→ bi is not a partial isomorphism.

Duplicator has a strategy to play forever if, and only if, G ≡C k

H.

Anuj Dawar December 2013

Equivalence of Games

It is easy to see that a winning strategy for Duplicator in the bijection
game yields a winning strategy in the counting game:

Respond to a set X ⊆ V (G) (or Y ⊆ V (H)) with h(X)
(h−1(Y), respectively).

For the other direction, consider the partition induced by the equivalence
relation

{(a, a′) | (G , a[a/ai]) ≡C k

(G , a[a′/ai])}

and for each of the parts X , take the response Y of Duplicator to a
move where Spoiler would choose X .
Stitch these together to give the bijection h.

Anuj Dawar December 2013

Counting Tuples of Elements

We could consider extending the counting logic with quantifiers that
count tuples of elements.

This does not add further expressive power.

∃ixy ϕ

is equivalent to ∨
f∈F

∧
j∈dom(f)

∃f (j)x ∃jy ϕ

where F is the set of finite partial functions f on N such that
(
∑

j∈dom(f) jf (j)) = i .

Thus, there is no strengthening to the game if we allow Spoiler to move
more than one pebble in a move (with Duplicator giving a bijection
between sets of tuples.)

Anuj Dawar December 2013

Vertex Classification Algorithms

We return to vertex classification algorithms for graph ismorphism.

Recall,

The algorithms we study aim to decide equivalence relations on
vertices (or tuples of vertices) that approximate the orbits of
the automorphism group.

For such an equivalence relation ≡, we also write G ≡ H to indicate that
G and H are not distinguished by the corresponding isomorphism test.

For connected graphs, this means that for every u in G, there is
a v in H so that u ≡ v in the disjoint union of G and H.

Anuj Dawar December 2013

Equitable Partitions

An equivalence relation ≡ on the vertices of a graph G = (V ,E) induces
an equitable partition if

for all u, v ∈ V with u ≡ v and each ≡-equivalence class S,

|{w ∈ S | (u,w) ∈ E}| = |{w ∈ S | (v ,w) ∈ E}|.

The naive vertex classification algorithm finds the coarsest equitable
partition of the vertices of G .

Anuj Dawar December 2013

Colour Refinement

Define, on a graph G = (V ,E), a series of equivalence relations:

≡0 ⊇ ≡1 ⊇ · · · ⊇ ≡i · · ·

where u ≡i+1 v if they have the same number of neighbours in each
≡i -equivalence class.

This converges to the coarsest equitable partition of G .

The coarsest equitable partition can be computed in quadratic time.

Anuj Dawar December 2013

Almost All Graphs

Naive vertex classification provides a simple test for isomorphism that
works on almost all graphs:

For graphs G on n vertices with vertices u and v, the
probability that u ≡ v goes to 0 as n→∞.

But the test fails miserably on regular graphs.

Anuj Dawar December 2013

Weisfeiler-Lehman Algorithms

The k-dimensional Weisfeiler-Lehman test for isomorphism (as described
by Babai), generalises naive vertex classification to k-tuples.

For a graph G , let ≡WLk

be the coarsest equivalence relation on k-tuples

of vertices so that for k-tuples u and v, if u ≡WLk

v, then:

u and v induce isomorphic subgraphs

and for each k-tuple α1, . . . , αk of ≡WLk

-classes,

|{u |
∧
j

u[u/uj] ∈ αj}| = |{v |
∧
j

v[v/vj] ∈ αj}|

Anuj Dawar December 2013

Induced Partitions

In other words,

Given an equivalence relation ≡ on V k , each k-tuple u induces a labelled
partition of V .
The labels of the partition are k-tuples α1, . . . , αk of ≡-equivalence
classes, and the corresponding part is the set:

{u |
∧
j

u[u/uj] ∈ αj}.

Define ≡′ to be the equivalence relation where u ≡′ v if, in the partitions
they induce, the corresponding parts have the same cardinality.

Then, ≡WLk

is the limit of the sequence:

≡0 ⊇ ≡1 ⊇ · · · ⊇ ≡i · · ·

where u ≡0 v if, and only if, they induce isomorphic subgraphs and ≡i+1

is ≡′i .

Anuj Dawar December 2013

Weisfeiler-Lehman Algorithms

If G ,H are n-vertex graphs and k < n, we have:

G ∼= H ⇔ G ≡WLn

H ⇒ G ≡WLk+1

H ⇒ G ≡WLk

H.

G ≡WLk

H is decidable in time nO(k).

The equivalence relations ≡WLk

form a family of tractable approximations
of graph isomorphism.

It is not difficult to show that G ≡C k+1

H if, and only if, G ≡WLk

H.

Anuj Dawar December 2013

Graph Isomorphism Integer Program

Yet another way of approximating the graph isomorphism relation is
obtained by considering it as a 0/1 linear program.

If A and B are adjacency matrices of graphs G and H, then G ∼= H if,
and only if, there is a permutation matrix P such that:

PAP−1 = B or, equivalently PA = BP

Introducing a variable xij for each entry of P and adding the constraints:∑
i

xij = 1 and
∑
j

xij = 1

we get a system of equations that has a 0-1 solution if, and only if, G
and H are isomorphic.

Anuj Dawar December 2013

