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Finite Model Theory

In the 1980s, the term finite model theory came to be used to describe
the study of the expressive power of logics (from first-order to
second-order logic and in between), on the class of all finite structures.

The motivation for the study is that problems in computer science
(especially in complexity theory and database theory) are naturally
expressed as questions about the expressive power of logics.

And, the structures involved in computation are finite.
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Example - Vertex Cover

For each k, we can write a first-order formula in the language of graphs
which says that there is a vertex cover of size at most k.

Ixy - I (VyVz(E \/ y=x; V \/ z=x;)
1§:§k 1<i<k

Here, quantifiers range over vertices of the graph
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Example - 3-Colourability

3-colourability of graphs can be expressed by a formula when we allow
quantification over sets of vertices.

JRCVIBCVIGCV
Vx(Rx V Bx V Gx)A
Vx(=(Rx A Bx) A =(Bx A Gx) A =(Rx A Gx))A
VxVy(Exy — (=(Rx A Ry)A
—(Bx A By)A
=(Gx A Gy)))
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Model Theoretic Questions

The kind of questions we are interested in are about the expressive power
of logics. Given a formula ¢, its class of models is the collection of finite
relational structures A in which it is true.

Mod(p) = {A [ A = ¢}

What classes of structures are definable in a given logic L?

How do syntactic restrictions on ¢ relate to semantic
restrictions on Mod(p)?

How does the computational complexity of Mod () relate to
the syntactic complexity of ¢?
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Descriptive Complexity

A class of finite structures is definable in existential
second-order logic if, and only if, it is decidable in NP.
(Fagin 1974)

A class of ordered finite structures is definable in least
fixed-point logic if, and only if, it is decidable in P.
(Immerman; Vardi 1982)

Open Question: ls there a logic that captures P without order?

Can model-theoretic methods cast light on questions of computational
complexity?
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Expressive Power of Logics

We are interested in the expressive power of logics on finite structures.

We consider finite structures in a relational vocabulary.
A finite set A, with relations Ry, ..., R, and constants
Cly...,Cp.
A property of finite structures is any isomorphism-closed class of
structures.

For a logic (i.e., a description or query language) L, we ask for which
properties P, there is a sentence ¢ of the language such that

Ae P if andonlyif, AE .
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Graphs

For concreteness, we consider finite graphs.

These are structures in a vocabulary with just one binary relation E,
which is interpreted as an irreflexive, symmetric relation.

We will also have occasion to look at vocabularies with additional
constants (s, t) in addition to the binary relation E.

Occasionally, we also consider coloured graphs. These may be

e structures in a vocabulary with one binary relation E and some
number of unary relations Cy, ..., C,; or

e structures in a vocabulary with two binary relations: E and <. The
latter is a linear pre-order.
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First-Order Logic

terms — ¢, x

atomic formulae — E(ty, t2), ty = to, t; = tp, C(t)
boolean operations —p N, o V 1, —p

first-order quantifiers — Ixp, Vx¢
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Examples

A vertex cover of size k:

Ix - I(WV2(E(y,2) = (\) y=xVv \/ z2=x)
1<l<k 1<i<k

Graphs which contain a triangle:

IxTyIz(x Ay Ay #zAx#y NE(x,y) NE(y,z) N E(x,2))

Unions of cycles:
Vx(3yE(x,y) ATzE(z,y))

Can we define the class of connected graphs or 3-colourable
graphs? No, but how to prove it?
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Model Comparison Games

Inexpressiblity results in Finite Model Theory are often proved by means
of games.

In this tutorial, we examine a number of Model Comparison Games.

These are typically two-player games played on a pair of graphs G and H.

The games are used to establish that G and H cannot be distinguished in
some logic under consideration.
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Spoiler and Duplicator

The two players in our games are generally called Spoiler and Duplicator.
The game board consists of two graphs G and H.

Spoiler tries to prove that G and H are different.
Duplicator tries to pretend that they are really the same

We say the two graphs are indistinguishable (according to the rules of the
game) if Duplicator has a winning strategy.

If the structures are the same (i.e. they are isomorphic), then Duplicator
necessarily has a winning strategy.

In general, the relation of indistinguishability gives us an approximation
of isomorphism.
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Some Games

Classes of games that will come up in this tutorial include:

Ehrentfeucht-Fraissé games; pebble games; counting games;
bijection games; partition games; and invertible map games

Associated with them are various logics for which they are used to
establish inexpressiveness results.

Many of these logics arose in the long-standing quest for a logic for P.
We will also see how the indistinguishability relations defined by the

games relate to isomorphism, and look at other ways to characterise
these equivalences.
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The Power of First-Order Logic

For every finite graph G, there is a sentence ¢¢ such that

HE ¢ if,andonlyif, HXG

Given a graph G with n elements, we define

e =3dxy...3x0 AVy \/ Yy =X

1<i<n

where, ¥(x1, ..., x,) is the conjunction of all atomic and negated atomic
formulas (e.g. E(xi, x;) and =E(x;, x;)) that hold in G.
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First-Order Logic is Weak

For any first-order sentence ¢, the collection of finite graphs that satisfy

1t
Mod(g) = {G | G = ¢}

is trivially decidable (in LOGSPACE).

There are computationally easy classes that are not defined by any
first-order sentence.

e The class of graphs with an even number of vertices.

e The class of graphs that are connected.
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Quantifier Rank

The quantifier rank of a formula ¢, written qr(¢p) is defined inductively
as follows:

1. if ¢ is atomic then qr(p) =0,
2. if o = = then qr(yp) = qr(v),
3. if o =11 Vhy or p =11 A1), then
qr(e) = max(qr(1), ar(yz)).
4. if o = Ixtp or p = Vxth then qr(y) = qr(y) + 1

It is easily proved that in any finite vocabulary, for each p, there are (up
to logical equivalence) only finitely many sentences ¢ with qr(y) < p.
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Finitary Elementary Equivalence

For two graphs G and H, we say G =, H if for any sentence ¢ with

ar(y) < p,
G = @ if, and only if, H = .

Key fact:

a property of graphs P is definable by a first order sentence ff,
and only if, P is closed under the relation =, for some p.

For any graph G there is a sentence 07 such that

HE 67 if andonly if, G=, H
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Ehrenfeucht-Fraissé Game

The p-round Ehrenfeucht game on graphs G and H proceeds as follows:
e There are two players called Spoiler and Duplicator.

o At the ith round, Spoiler chooses one of the two graphs (say H) and
one of the vertices of that graph (say b;).

Duplicator must respond with an element of the other graph (say a;).

If, after p rounds, the map a; — b; is not a partial isomorphism,
then Spoiler has won the game, otherwise Spoiler has won.

Theorem (Fraissé 1954; Ehrenfeucht 1961)

Duplicator has a strategy for winning the p-round Ehrenfeucht game on
G and H if, and only if, G =, H.
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Proof by Example

Suppose G #3 H, in particular, suppose 0(x, y, z) is quantifier free, such
that:
G =3xVy3dz0 and H = Vx3IyVz—0

round 1: Spoiler chooses a; € V(G) such that G |= Vy3z0[a].
Duplicator responds with b; € V(H).

round 2: Spoiler chooses b, € V(H) such that
H ': Vzﬁﬁ[bl, bz]
Duplicator responds with a; € V(G).

round 3: Spoiler chooses a3 € V(G) such that G |= 0ay, a2, as].
Duplicator responds with bz € V(H).

Spoiler wins, since B = 0[by, by, bs].
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Using Games

To show that a property of graphs P is not definable in FO, we find, for
every p, a pair of graphs G, and H,, such that

e G, € P, Hy, € P; and

e Duplicator wins a p-round game on G, and H,,.

Example:
C,—a cycle of length n.
Duplicator wins the p round game on Cp» & Cor and Cop 1.

e 2-Colourability is not definable in FO.
e Even cardinality is not definable in FO.

o Connectivity is not definable in FO.
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Using Games

An illustration of the game for undefinability of connectivity and
2-colourability.

Duplicator's strategy is to ensure that after r moves, the distance
between corresponding pairs of pebbles is either equal or > 2P~".
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Stratifying Isomorphism

In order to study the expressive power of first-order logic on finite
structures, we considered one stratification of isomorphism:

G=, H

if G and H cannot be distinguished by any sentence with quantifier rank
at most p.

An alternative stratification that is useful in studying fixed-point logics is
based on the number of variables.

G=KH

if G and H cannot be distinguished by any sentence with at most k
distinct variables.
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Inductive Definitions

Let (R, x1,...,xk) be a first-order formula in the vocabulary o U {R}
Associate an operator ® on a given o-structure A:

®(R*) = {a| (A, R*,a) = o(R.x)}

We define the increasing sequence of relations on A:
0 =10
Ol = dm U P(d™)
The inflationary fixed point of ® is the limit of this sequence.
On a structure with n elements, the limit is reached after at most n¥
stages.
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IFP

The logic FP is formed by closing first-order logic under the rule:

If ¢ is a formula of vocabulary o U {R} then [ifpg ,](t) is a
formula of vocabulary o.

The formula is read as:
the tuple t is in the inflationary fixed point of the operator
defined by ¢
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Transitive Closure

The formula

7y (x = y v F2(E(x, 2) A T(z,)](w,v)
defines the reflexive and transitive closure of the relation E
The expressive power of FP properly extends that of first-order logic.
On structures which come equipped with a linear order FP expresses
exactly the properties that are in P.

(Immerman; Vardi)

Open Question: Is there a logic that expresses exactly the properties for
unordered structures?
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Finite Variable Logic

We write L* for the first order formulas using only the variables
X1y oowy Xk

G=FH

denotes that G and H agree on all sentences of LX.
For any k, G=fH = G=H
However, for any p, there are G and H such that

G=,H and G #*H.
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Definability and Invariance

A class of graphs is closed under =, (for some p) if, and only if, it is
defined by a FO sentence.

A class of finite structures is closed under =X if, and only if, it is
axiomatisable in L¥ (possibly by an infinite collection of sentences).

For every ¢ sentence of FP there is a k such that Mod(yp) is closed under

Indeed, for graphs of fixed size n, ¢ is equivalent to a sentence of L.
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FP and LX

Given (R, xi,...,x) € L¥, each stage of the induction 1™ can be
written as a formula in Lt/
Let the variables occurring in @ be xq,...,xx and yi,...,y; be new.

™1 is obtained from (R, x) by replacing all sub-formulas R(ty, ..., t/)
with
Jyr--- 3 ( /\ yi=1t) A" (y)
1<i<i
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Pebble Games

The k-pebble game is played on two graphs G and H, by two
players—Spoiler and Duplicator—using k pairs of pebbles
{(31, bl)a ) (aka bk)}
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Spoiler moves by picking a pebble and placing it on a vertex (a;
on a vertex in G or b; on a vertex in H).

Duplicator responds by picking the matching pebble and placing
it on an element of the other graph

Spoiler wins at any stage if the partial map from G to H
defined by the pebble pairs is not a partial isomorphism

If Duplicator has a winning strategy for p moves, then G and H
agree on all sentences of L¥ of quantifier rank at most p.
(Barwise)
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Using Pebble Games

To show that a property of graphs P is not definable in first-order logic:
VkVp 3G, H (G € P/\HQP/\ng H)

To show that P is not axiomatisable with a finite number of variables:
VkEG,HVp(GEP/\HgP/\ng H)
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Evenness

To show that Evenness is not definable in FP, it suffices to show that:

for every k, there are graphs Gy and Hy such that Gy has an
even number of vertices, H, has an odd number of elements and

Gk Ek Hk.

It is easily seen that Duplicator has a strategy to play forever when one
graph has k vertices and no edges and the other grahs has k + 1 vertices
and no edges.
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Matching

Take K x—the complete bipartite graph on two sets of k vertices.
and K x+1—the complete bipartite graph on two sets, one of k vertices,
the other of k + 1.

These two graphs are = equivalent, yet one has a perfect matching, and
the other does not.
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Stratifications of Isomorphism

In a finite, relational vocabulary, there are only finitely many sentences of
quantifier rank at most p.
Thus, the relation =, has only finitely many equivalence classes.

As approximations of isomorphism, these are very coarse.

The relation =¥ has infintiely many classes for all k > 2.

Still, for any k, and randomly chosen graphs G; and G;, we have

Gl Ek Gz.

Indeed, there is a single =*-equivalence class that contains almost all
graphs.
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