
The Limits of Symmetric Computation

Anuj Dawar

Department of Computer Science and Technology, University of Cambridge

Archimedeans, 22 November 2019

P vs. NP

The P vs. NP problem is the most famous problem in theoretical
computer science.

It is one of six remaining Clay Millenium Prize problems.

Research motivated by this question has spawned a vast field of work in
Complexity Theory.

Anuj Dawar November 2019

Algorithmic Problems

P the class of problems solvable efficiently.

the number of steps required by an algorithm to solve it grows
polynomially in the instance size.

NP the class of problems for which a solution can be checked efficiently.

there is an algorithm, given an instance and a candidate solution
can check it using a number of steps that grows polynomially in
the the instance size.

Anuj Dawar November 2019

Example

Consider a system of linear equations:

a11x1 + · · · a1nxn = b1
a21x1 + · · · a2nxn = b2

...
...

am1x1 + · · · amnxn = bm

The instance is the matrix A and the vector b, and we wish to know if
there is an x such that Ax = b.

Anuj Dawar November 2019

What do the variables range over?

Given a matrix A and vector b over the rationals Q, does there exist a
rational vector x with Ax = b?

The problem is in P using the Gaussian elimination algorithm.
This requires proving that the bit complexity of the solution is
bounded by a polynomial in that of the instance.

The same argument works for A, b and x over a finite field K.

Given a matrix A and vector b over the integers Z, does there exist an
integer vector x with Ax = b?

Now Gaussian elimination does not work.
Nonetheless the problem is in P by other algorithms.

The same argument works for A, b and x over a finite ring R.

Anuj Dawar November 2019

The Natural Numbers

Given a matrix A and vector b over N, does there exist a non-negative
integer vector x with Ax = b?

The problem is in NP because we can bound the value of a
solution by an exponential function of the instance.
We know of no polynomial-time algorithm for the problem.

Indeed, the problem is NP-complete meaning that a polynomial-time
algorithm would imply P = NP.

The problem is already NP-complete even if we are looking for solutions
in {0, 1}.

Anuj Dawar November 2019

NP-completeness

A problem in NP has an exponential size search space of possible
solutions.

E.g., the 2n possible {0, 1}-values of the n unknowns in the
vector x.

Sometimes the algebraic structure of the problem means we can converge
quickly to a solution, and so the problem is in P.

E.g, systems Ax = b where addition and multiplication are taken
modulo 2.

Sometimes the lack of structure means we can code any problem in NP
in the solution space of an instance, and the problem is NP-complete.

E.g., any set of the 2n {0, 1}-vectors can occur as the solution
set of Ax = b over the integers.

Anuj Dawar November 2019

Graph Problems

Among the most commonly studied algorithmic problems are problems on
graphs.

Some problems in P:

Eulerian Graphs: Given a graph G = (V,E), is there a walk
starting at a vertex v, returning to v and passing through every
edge exactly once.

Perfect Matching: Given a graph G = (V,E), is there a subset
M ⊆ E such that each v ∈ V is incident on exactly one edge in
M .

Anuj Dawar November 2019

Graph Problems

Some NP-complete graph problems:

Hamiltonicity: Given a graph G = (V,E), is there a cycle starting
at a vertex v, returning to v and passing through every vertex
exactly once.

3-colourability: Given a graph G = (V,E), is there a function
χ : V → {1, 2, 3} such that (u, v) ∈ E ⇒ χ(u) 6= χ(v)

Anuj Dawar November 2019

Circuit Models

How could we prove the
impossibility of an algo-
rithm?

Any polynomial-time algo-
rithm gives, for each input
size a circuit:

Circuits are just the un-
foldings of the behaviour
of an algorithm on in-
puts of a fixed size n
into simple actions such
as Boolean AND, OR and
NOT operations.

x1 x2 xn· · ·

OR

OR OR

ORAND AND

AND

NOT

Anuj Dawar November 2019

P/poly

P/poly is the class of problems for which, for each value of n, there is a
circuit of size polynomial in n which correctly decides the problem.

It is conjectured that NP 6⊆ P/poly.

This means that it is not possible to solve an NP-complete problem even
if we allow

• an arbitrary amount of computation based on the size of the input;

• followed by a polynomial amount of computation given the actual
input.

Anuj Dawar November 2019

Monotone Problems

Some graph problems are naturally monotone.

If G = (V,E) and H = (V,E′) are graphs with E ⊆ E′ and G contains a
Hamiltonian cycle, then so does H.

3-colourability is not monotone but its complement is:

If G = (V,E) is not 3-colourable, then neither is H = (V,E′)
when E ⊆ E′.

In principle, these can be decided by families of monotone circuits, i.e.
using only AND and OR gates.

Anuj Dawar November 2019

Circuit Lower Bounds

For some monotone problems in NP, we can prove that no
polynomial-size family of monotone circuits suffices to decide the
problem.

• No polynomial-size family of monotone circuits decides clique.

• No polynomial-size family of monotone circuits decides perfect
matching.

(Razborov 1985).

Lower bounds have also been established by restricting the depth of
circuits.

• No constant-depth (unbounded fan-in), polynomial-size family of
circuits decides parity. (Furst, Saxe, Sipser 1983).

• No constant-depth, O(n
k
4)-size family of circuits decides k-clique.

(Rossman 2008).

Anuj Dawar November 2019

Circuits for Graph Problems

We want to study families of circuits that decide properties of graphs (or
other relational structures—for simplicity of presentation we restrict
ourselves to graphs).

We have a family of Boolean circuits (Cn)n∈ω where there are n2 inputs
labelled (i, j) : i, j ∈ [n], corresponding to the potential edges.
Each input takes value 0 or 1;

Graph properties in P are given by such families where:

• the size of Cn is bounded by a polynomial p(n); and

• the family is uniform, so the function n 7→ Cn is in P.

Anuj Dawar November 2019

Invariant Circuits

Cn is invariant if, for every input graph, the output is unchanged under a
permutation of the inputs induced by a permutation of [n].

That is, given any input G : [n]2 → {0, 1}, and a permutation π ∈ Sn,

Cn accepts G if, and only if, Cn accepts the input πG given

(πG)(i, j) = G(π(i), π(j)).

Note: this is not the same as requiring that the result is invariant under all

permutations of the input. That would only allow us to define functions of the

number of 1s in the input. The functions we define include all

isomorphism-invariant graph properties such as Eulerian graphs, perfect

matching, Hamiltonicity, 3-colourability.

Anuj Dawar November 2019

Symmetric Circuits

Say Cn is symmetric if any permutation of [n] applied to its inputs can
be extended to an automorphism of Cn.

i.e., for each π ∈ Sn, there is an automorphism of Cn that takes
input (i, j) to (πi, πj).

Any symmetric circuit is invariant, but not conversely.

Anuj Dawar November 2019

FPC

FPC is a class of decision problems definable in fixed-point logic with
counting.

The decision problems are (isomorphism-closed) classes (or prop-
erties) of finite structures (such as graphs, Boolean formulas,
systems of equations).

A graph property is in FPC if, and only if, it is decided by a P-uniform
family of symmetric circuits using AND, OR, NOT and MAJ gates.

Excluding MAJ gates gives us something strictly weaker.

Anuj Dawar November 2019

Symmetric Computation

Say a Boolean function f : {0, 1}n → {0, 1} is symmetric if it is invariant
under all permutations of its inputs.

A graph property is in FPC if, and only if, it is decided by a P-uniform
family of symmetric circuits using symmetric gates.

FPC gives a natural notion of polynomial-time, symmetric computation.

Anuj Dawar November 2019

Impossibility Results

Some NP-complete problems are provably not in FPC, including:

• Sat

• Hamiltonicity

• 3-colouraiblity

For some NP-complete problems, inclusion in FPC is an open problem,
equivalent to P = NP.

Anuj Dawar November 2019

The Power of FPC

Most “obviously” polynomial-time algorithms can be expressed in FPC.

Many non-trivial polynomial-time algorithms can be expressed in FPC:

FPC captures all of P over any proper minor-closed class of graphs
(Grohe 2017)

In FPC we can express the existence of a Eulerian cycle or a perfect
matching.

Solving systems of equations over the rationals or the integers.

Optimization algorithms based on linear programming and
semidefinite programming.

Anuj Dawar November 2019

But This Doesn’t Settle the Question

But some cannot be expressed:

• There are polynomial-time decidable properties of graphs that are
not definable in FPC. (Cai, Fürer, Immerman, 1992)

• XOR-Sat, or more generally, solvability of a system of linear
equations over a finite field cannot be expressed in FPC.

In particular, this means that the Gaussian elimination algorithm cannot
be made symmetric without a super-polynomial blow-up.

Anuj Dawar November 2019

Proving Impossibility

To show that some property P of graphs cannot be determined by a
family of polynomial-size symmetric circuits we use:

A support theorem: This characterizes the groups of symmetries
occuring in a symmetric circuit

Approximations of isomorphism: Certain equivalence relations
G ≡ H on graphs weaker than isomorphism.

Non-invariance: Showing that the property P is not invariant
under the equivalence relation ≡.

Anuj Dawar November 2019

Stabilizers

For a symmetric circuit C taking n-vertex graphs as input, we can
assume w.l.o.g. that the automorphism group is the symmetric group Sn

acting in the natural way.

For a gate g in C, Stab(g) denotes the stabilizer group of g, i.e.,

Stab(g) = {π ∈ Sn | π(g) = g}.

By the orbit-stabilizer theorem, the size of the orbit of any gate g in C is
n!

|Stab(g)| .

So, an upper bound on Stab(g) gives us a lower bound on the orbit of g.

Conversely, knowing that the orbit of g is at most polynomial in n gives
us bounds on Stab(g).

Anuj Dawar November 2019

Supports

In a symmetric circuit C taking n-vertex graphs as input, say a set
X ⊆ [n] is a support of a gate g if

every π ∈ Sn which fixes X pointwise is in Stab(g).

For example, the output gate has empty support.

An input gate corresponding to (i, j) has support {i, j}.

We are able to show that, if C has size O(nk), then every gate in C has
a support X with |X| = O(k).

Anuj Dawar November 2019

Approximations of graph isomorphism

The graph isomorphism—given two graphs is there a bijection between
the two sets of vertices that preserves the edges—is not known to be in P.

The k-dimensional Weisfeiler-Leman equivalence relation is an
overapproximation of the isomorphism relation.

If G,H are n-vertex graphs and k < n, we have:

G ∼= H ⇔ G ≡n H ⇒ G ≡k+1 H ⇒ G ≡k H.

G ≡k H is decidable in time nO(k).

It has many equivalent characterisations arising from combinatorics;
logic; algebra; linear optimization.

Anuj Dawar November 2019

Pebble Games

Pebble Games are two-player games that are used to define equivalence
relations on structures characterising forms of indistinguishability.

We are particularly interested in the bijection game (Hella 96).

The game is played by two players Spoiler and Duplicator on structures
(e.g. graphs) A and B with pebbles a1, . . . , ak on A and b1, . . . , bk on B.

• Spoiler chooses a pair of pebbles ai and bi;

• Duplicator chooses a bijection h : V A → V B such that for pebbles
aj and bj(j 6= i), h(aj) = bj ;

• Spoiler chooses a ∈ V A and places ai on a and bi on h(a).

Duplicator loses if the partial map ai 7→ bi is not a partial isomorphism.
It turns out that G ≡k H if, and only if, Duplicator has a strategy to play
forever.

Anuj Dawar November 2019

Circuits and Pebble Games

We can use bijection games and the support theorem to establish lower
bounds for symmetric circuits.

The key is the following connection.

If C is a symmetric circuit on n-vertex graphs such that every
gate of C has a support of size at most k, and G and H are
graphs such that G ≡k H then:

C accepts G if, and only if, C accepts H.

This can be proved by showing that if C distinguishes G from H, then it
provides a winning strategy for Spoiler in the k-pebble bijection game.

Anuj Dawar November 2019

Invariance

To show that some property P of graphs cannot be determined by
symmetric, polynomial-size circuits, it suffices to show that it is not
invariant under ≡k for any fixed k.

That is, for each k, we can find a pair of graphs G and H, which differ
on P , but G ≡k H.

We can do this for many decision problems: Hamitonicity, 3-colourability,

And for some numerical parameters: minimum vertex cover, maximum
clique, number of perfect matchings.

Sometimes, even up to a multiplicative factor.

This means that none of these properties can be computed (or, in some
cases even approximated) by polynomial-time symmetric algorithms.

Anuj Dawar November 2019

Systems of equations

Given a matrix A and vector b over the field K, does there exist a vector
x with Ax = b?

This can be solved by a polynomial-time symmetric algorithm when
K = Q, but provably not for any finite field K.

The ellipsoid method for solving linear inequalities can be implemented
symmetrically, but Gaussian elimination cannot.

Anuj Dawar November 2019

Limits of Symmetric Computation

FPC defines a natural notion of symmetric polynomial-time computation.

It is remarkably powerful and able to express many non-trivial
polynomial-time algorithms.

These include some of the strongest algorithmic techniques for
approximating NP-hard optimization problems.

Since we are able to show for some NP-hard optimization problems that
no algorithm expressible in FPC can solve them exactly, we establish
limitations on commonly used approximation techniques.

For many, we are also able to prove that no algorithm in FPC can solve
them even approximately.

Anuj Dawar November 2019

A Rich Theory of Symmetry in Computation

A number of distinct strands of research are converging on a study of
symmetry in computation.

Besides those mentioned here, there is work on the complexity of
constraint satisfaction problems; of symmetry in combinatorial
optimization; of semi-structured data and abstract syntax.

The research builds on a combination of algebraic, logical and
combinatorial methods.

An exciting, emerging field in theoretical computer science, dealing with
both abstraction and complexity.

Anuj Dawar November 2019

