Definability in Counting Logics

Anuj Dawar

University of Cambridge Computer Laboratory

Amsterdam, 21 June 2016

Descriptive Complexity

Descriptive Complexity provides an alternative perspective on
Computational Complexity.

Computational Complexity

e Measure use of resources (space, time, etc.) on a machine model of
computation;

e Complexity of a language—i.e. a set of strings.
Descriptive Complexity
o Complexity of a class of structures—e.g. a collection of graphs.

e Measure the complexity of describing the collection in a formal logic,
using resources such as variables, quantifiers, higher-order operators,
etc.

There is a fascinating interplay between the views.

Anuj Dawar June 2016

First-Order Logic

Consider first-order predicate logic.

Fix a vocabulary o of relation symbols (Ry, ..., R,,) and
a collection X of variables.

The formulas are given by

Rix)|lz=y oAy |V || 3re|Vrp

Anuj Dawar June 2016

First-Order Logic

For a first-order sentence ¢, we ask what is the computational complexity
of the problem:

Given: a structure A
Decide: if A = ¢

In other words, how complex can the collection of finite models of ¢ be?

In order to talk of the complexity of a class of finite structures, we need
to fix some way of representing finite structures as strings.

Anuj Dawar June 2016

Encoding Structures

We use an alphabet ¥ = {0, 1, #}.
For a structure A = (A, Ry,..., R,,), fix a linear order < on
A={ay,...,an}.

R; (of arity k) is encoded by a string [R;]~ of Os and 1s of length n*.

[A]< =1 1,#[R1]<# T #[Rm]<

n

The exact string obtained depends on the choice of order.

Anuj Dawar June 2016

Invariance

Note that the decision problem:
Given a string [A]« decide whether A = ¢

has a natural invariance property.
It is invariant under the following equivalence relation

Write w1 ~ woy to denote that there is some structure A and
orders <1 and <5 on its universe such that

wy = [A]<, and wa = [A],

Note: deciding the equivalence relation ~ is just the same as deciding
structure isomorphism.

Anuj Dawar June 2016

Naive Algorithm

The straightforward algorithm proceeds recursively on the structure of ¢:

e Atomic formulas by direct lookup.
e Boolean connectives are easy.
o |f o = Jx) then for each a € A check whether

(A>C = a) ‘: 1/}[0/.%]

where ¢ is a new constant symbol.

This runs in time O(In™) and O(mlogn) space, where [is the length of
@ and m is the nesting depth of quantifiers in .

Mod(p) = {A | A F ¢}

is in logarithmic space and polynomial time.

Anuj Dawar June 2016

Second-Order Logic

There are computationally easy properties that are not definable in
first-order logic.

e There is no sentence ¢ of first-order logic such that A = ¢ if, and
only if, |A| is even.

e There is no formula ¢(E, x,y) that defines the transitive closure of
a binary relation F.

Consider second-order logic, extending first-order logic with relational
quantifiers — X ¢

Anuj Dawar June 2016

Examples

Evennness
This formula is true in a structure if, and only if, the size of the domain
is even.
3B3S VaIyB(x,y) AVaVyVzB(z,y) A B(z,2) >y ==z
VaVyVzB(z,z) AN B(y,z) =y
VavyS(x) A B(z,y) — =S(y)
VaVy—S(z) A B(z,y) — S(y)

Anuj Dawar June 2016

Examples

Transitive Closure
Each of the following formulas is true of a pair of elements a,b in a
structure if, and only if, there is an E-path from a to b.

VS(S(a) AVaVy[S(z) A E(z,y) — S(y)] — S(b))

3P VaVy P(z,y) — E(x,y)
JzP(a,z) A JzP(x,b) A —=FxP(x,a) A =FzP(b, x)
VaVy(P(z,y) = Vz(P(x,2) =y = 2))
Vavy(P(z,y) — Vz2(P(z,y) = © = 2))
Va((x # a A JyP(x,y)) — JzP(z, 7))
Va((x #bAJyP(y,z)) — 2P (x, 2))

Anuj Dawar June 2016

Examples

3-Colourability
The following formula is true in a graph (V, E) if, and only if, it is

3-colourable.
JRIBIG Vz(Rx V Bz V Gz)A

Va(—(Rx A Bx) A —(Bxz A Gx) AN —~(Rx A Gz))A
VaVy(Exy — (—(Rxz A Ry)A
—(Bxz A By)A
~(Gz A Gy)))

Anuj Dawar June 2016

Fagin's Theorem

Theorem (Fagin)

A class C of finite structures is definable by a sentence of existential
second-order logic if, and only if, it is decidable by a nondeterminisitic
machine running in polynomial time.

ESO =NP

Anuj Dawar June 2016

Is there a logic for P?

The major open question in Descriptive Complexity (first asked by
Chandra and Harel in 1982) is whether there is a logic £ such that

for any class of finite structures C, C is definable by a sentence
of L if, and only if, C is decidable by a deterministic machine
running in polynomial time.

Formally, we require £ to be a recursively enumerable set of sentences,

with a computable map taking each sentence to a Turing machine M and

a polynomial time bound p such that (M, p) accepts a class of structures.
(Gurevich 1988)

Anuj Dawar June 2016

Inductive Definitions

Let o(R, z1,...,xk) be a first-order formula in the vocabulary o U {R}
Associate an operator ® on a given o-structure A:

O(R*) ={a| (A, R" a) F ¢(R,x)}
We define the non-decreasing sequence of relations on A:
PO =)
ol = o™y ¢(P™)
The inflationary fixed point of ® is the limit of this sequence.

On a structure with n elements, the limit is reached after at most n*
stages.

Anuj Dawar June 2016

FP

The logic FP is formed by closing first-order logic under the rule:

If ¢ is a formula of vocabulary o U {R} then [ifpp](t) is a
formula of vocabulary o.

The formula is read as:
the tuple t is in the inflationary fixed point of the operator
defined by ¢

LFP is the similar logic obtained using least fixed points of monotone
operators defined by positive formulas.

LFP and FP have the same expressive power (Gurevich-Shelah 1986;
Kreutzer 2004).

Anuj Dawar June 2016

Transitive Closure

The formula

1,0, (z = v 32(B (2, 2) A T(2,9)))(u,v)

defines the transitive closure of the relation F

The expressive power of FP properly extends that of first-order logic.

Theorem
On structures which come equipped with a linear order FP expresses
exactly the properties that are in P.

(Immerman; Vardi 1982)

Anuj Dawar June 2016

FP vs. Ptime

The order cannot be built up inductively.
It is an open question whether a canonical string representation of a
structure can be constructed in polynomial-time.

If it can, there is a logic for P.
If not, then P # NP.

All P classes of structures can be expressed by a sentence of FP with <,
which is invariant under the choice of order. The set of all such sentences
is not r.e.

FP by itself is too weak to express all properties in P.
Evenness is not definable in FP.

Anuj Dawar June 2016

Finite Variable Logic

We write L* for the first order formulas using only the variables
T1yeooy, Tk
(A,a) =" (B,b)

denotes that there is no formula ¢ of L* such that A |= ¢[a] and

B = ¢[b]

If o(R,x) has k variables all together, then each of the relations in the
sequence:

(I)O — (Z),. q,m—&-l = pmy (I)((Pm)
is definable in L2F.

Proof by induction, using substitution and renaming of bound variables.

Anuj Dawar June 2016

Pebble Game

The k-pebble game is played on two structures A and B, by two
players—Spoiler and Duplicator—using k pairs of pebbles

{(a1,b1), ..., (ar,bi)}.

Spoiler moves by picking a pebble and placing it on an element
(a; on an element of A or b; on an element of B).

Duplicator responds by picking the matching pebble and placing
it on an element of the other structure

Spoiler wins at any stage if the partial map from A to B
definedby the pebble pairs is not a partial isomorphism

If Duplicator has a winning strategy for ¢ moves, then A and B
agree on all sentences of L* of quantifier rank at most g.
(Barwise)

A =F B if, for every q, Duplicator wins the ¢ round, k pebble game on A
and B. Equivalently (on finite structures) Duplicator has a strategy to
play forever.

Anuj Dawar June 2016

Evenness

To show that Evenness is not definable in FP, it suffices to show that:

for every k, there are structures Ay, and By such that A has an
even number of elements, B, has an odd number of elements
and

A =FB.

It is easily seen that Duplicator has a strategy to play forever when one
structure is a set containing k elements (and no other relations) and the
other structure has k 4 1 elements.

Anuj Dawar June 2016

Matching

In a graph G = (V, E) a matching M C E is a set of edges such that
each vertex is incident on at most one edge in M.

A perfect matching is a matching M such that each vertex is incident on
exactly one edge in M

M Vz,y[M(z,y) = E(z,y)]A
Va,y, z[M(x,y) A M(x,z) =y = z]A
Vady M (z,y)

A classical result of (Edmonds, 1965) tells us that the property of having
a perfect matching is in P.

Anuj Dawar June 2016

Matching

Take K}, y—the complete bipartite graph on two sets of k vertices.
and K, ,+1—the complete bipartite graph on two sets, one of k vertices,
the other of k + 1.

These two graphs are =* equivalent, yet one has a perfect matching, and
the other does not.

Anuj Dawar June 2016

Fixed-point Logic with Counting

Immerman proposed FPC—the extension of FP with a mechanism for
counting

Two sorts of variables:
® 11,xo,...range over |A|—the domain of the structure;
® vy, Vvs,... which range over non-negative integers.

If o(z) is a formula with free variable x, then #x¢ is a term denoting
the number of elements of A that satisfy (.

We have arithmetic operations (+, X) on number terms.

Quantification over number variables is bounded: (Jz < t) ¢

Anuj Dawar June 2016

Counting Quantifiers

C* is the logic obtained from first-order logic by allowing:
e allowing counting quantifiers: 3'x ; and
e only the variables z1,x.

Every formula of C* is equivalent to a formula of first-order logic, albeit
one with more variables.

For every sentence ¢ of FPC, there is a k such that if A =C" B, then

AE ¢ if andonlyif, BE ¢.

Anuj Dawar June 2016

Limits of FPC

FPC was proposed by Immerman as a possible logic for capturing P:

It was proved (Cai, Fiirer, Immerman 1992) that there are
polynomial-time graph properties that are not expressible in FPC.

A number of other results about the limitations of FPC followed.
In particular, it has been shown that the problem of solving linear
equations over the two element field Z5 is not definable in FPC.

(Atserias, Bulatov, D. 09)

The problem is clearly solvable in polynomial time by means of Gaussian
elimination.

Anuj Dawar June 2016

Systems of Linear Equations

We see how to represent systems of linear equations as
unordered relational structures.

Consider structures over the domain {z1,...,Zn,€1,...,€mn}, (where
€1,...,€en are the equations) with relations:

e unary Ej for those equations e whose r.h.s. is 0.
e unary E; for those equations e whose r.h.s. is 1.
e binary M with M (x,e) if occurs on the L.h.s. of e.

Solv(Zs) is the class of structures representing solvable systems.

Anuj Dawar June 2016

Undefinability in FPC

To show that the satisfiability of systems of equations is not definable in
FPC it suffices to show that for each k, we can construct a two systems
of equations

FE), and I},
such that:
e [, is satisfiable;

e [is unsatisfiable; and
o F} =C* Fy,

Anuj Dawar June 2016

Constructing systems of equations

Take G a 3-regular, connected graph.
Define equations Eg with two variables zf, 2§ for each edge e.
For each vertex v with edges e1, e, e3 incident on it, we have eight
equations:
E,: it +x?+rl=a+b+c (mod?2)
Eg is obtained from Eg by replacing, for exactly one vertex v, E, by:

E! :)tttz =a+b+c+1 (mod 2)

We can show: Eg is satisfiable; Eg is unsatisfiable.

Anuj Dawar June 2016

Satisfiability
Lemma E(is satisfiable.
by setting the variables x§ to i.

Lemma E is unsatisfiable.

Consider the subsystem consisting of equations involving only
the variables x§.
The sum of all left-hand sides is

2 Z 25=0 (mod 2)
However, the sum of right-hand sides is 1.

Now we show that, for each k, we can find a graph G such that
Eg Eck Eg.

Anuj Dawar June 2016

