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Is There a Logic for P?

The question of whether or not there is a logic expressing exactly the PTime

properties of (unordered) relational structures is the central problem in Descriptive

Complexity.

If we assume structures are ordered, then LFP, the extension of first-order logic

with least fixed points suffices. (Immerman; Vardi 1982)

In the absence of order LFP fails to express simple cardinality properties such as

evenness.
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Fixed-point Logic with Counting

Immerman had proposed FP + C—the extension of LFP with a mechanism for

counting

Two sorts of variables:

• x1, x2, . . . range over |A|—the domain of the structure;

• ν1, ν2, . . . which range over numbers in the range 0, . . . , |A|

If ϕ(x) is a formula with free variable x, then ν = #xϕ denotes that ν is the

number of elements of A that satisfy the formula ϕ.

We also have the order ν1 < ν2, which allows us (using recursion) to define

arithmetic operations.
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Infinitary Logic with Counting

Sentences of FP + C can be translated into Cω
∞ω—an infinitary logic with

counting.

Cω
∞ω is obtained from first-order logic by allowing:

• infinitary conjunctions and disjunctions:
∨
{ϕ | ϕ ∈ S}

∧
{ϕ | ϕ ∈ S}

• counting quantifiers: ∃ix ϕ

• only finitely many distinct variables in any formula.

Ck
∞ω is the fragment of Cω

∞ω where each formula has at most k variables.

FP + C is the PTime-uniform fragment of Cω
∞ω (Otto 96) .
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Cai-Fürer-Immerman Graphs

There are polynomial-time decidable properties of graphs that are not definable in

FP + C (Cai, Fürer, Immerman, 1992)

More precisely, we can construct a sequence of pairs of graphs Gk, Hk(k ∈ ω)

such that:

• Gk ≡Ck

∞ω Hk for all k.

• There is a polynomial time decidable class of graphs that includes all Gk and

excludes all Hk.

Still, FP + C is a natural level of expressiveness within PTime.
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Constructing Gk and Hk

Given any graph G, we can define a graph XG by replacing every edge with a

pair of edges, and every vertex with a gadget.

The picture shows the gadget for a ver-

tex v that is adjacent in G to vertices

w1, w2 and w3.

The vertex vS is adjacent to avwi
(i ∈

S) and bvwi
(i 6∈ S) and there is one

vertex for all even size S.

The graph X̃G is like XG except that

at one vertex v, we include V S for odd

size S.

avw1
bvw1

avw2

bvw2
avw3

bvw3

v∅ v{1,2} v{1,3}v{2,3}
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Properties

1. For any graph G, XG 6∼= X̃G.

2. If G has no balanced separator of fewer than k vertices, then

XG ≡Ck

∞ω X̃G.

(Cai, Fürer, Immerman)

Indeed, it suffices that G is connected and has treewidth at least k.

(D., Richerby 07)

The latter condition is also necessary.

(1) allows us to construct a polynomial time property separating XG and X̃G.

(2) is proved by a game argument.
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Bijection Games

Ck
∞ω is characterised by a k-pebble bijection game. (Hella 96) .

The game is played on structures A and B with pebbles a1, . . . , ak on A and

b1, . . . , bk on B.

• Spoiler chooses a pair of pebbles ai and bi;

• Duplicator chooses a bijection h : A → B such that for pebbles aj and

bj(j 6= i), h(aj) = bj ;

• Spoiler chooses a ∈ A and places ai on a and bi on h(a).

Duplicator loses if the partial map ai 7→ bi is not a partial isomorphism.

Duplicator has a strategy to play forever if, and only if, A ≡Ck

∞ω B.
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Cops and Robbers

If G has treewidth k or more, than the robber has a winning strategy in the

k-cops and robbers game played on G. (Seymour-Thomas 93)

We use this to construct a winning strategy for Duplicator in the k-pebble bijection

game on XG and X̃G.

• A bijection h : XG → X̃G is good bar v if it is an isomorphism everywhere

except at the vertices vS .

• If h is good bar v and there is a path from v to u, then there is a bijection h′

that is good bar u such that h and h′ differ only at vertices corresponding to

the path from v to u.

• Duplicator plays bijections that are good bar v, where v is the robber position

in G when the cop position is given by the currently pebbled elements.
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Undefinability Results for C
ω

∞ω

Other undefinability results for Cω
∞ω have been obtained:

• Isomorphism on multipedes—a class of structures defined by

(Gurevich-Shelah 96) to exhibit a first-order definable class of rigid

structures with no order definable in FP + C.

• 3-colourability of graphs. (D. 1998)

Both proofs rely on gadgets very similar to those of Cai-Fürer-Immerman.

Question: Is there a natural polynomial-time computable property that is not

definable in FP + C?
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Solvability of Linear Equations

It has recently been shown that the problem of solving linear equations over the

two element field Z2 is not definable in Cω
∞ω . (Atserias, Bulatov, D. 07)

The question arose in the context of classification of Constraint Satisfaction

Problems.

The problem is clearly solvable in polynomial time by means of Gaussian

elimination.

We see how to represent systems of linear equations as unordered

relational structures.
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Systems of Linear Equations – 2

Consider a system of linear equations over Z2 where each equation has three

variables:

x1 + x2 + x3 = a (a = 0 or 1).

We consider this system as a structure over the domain {x1, . . . , xn} of

variables with two ternary relations:

R0 = {(xi, xj , xk) | xi + xj + xk = 0 is an equation}

R1 = {(xi, xj , xk) | xi + xj + xk = 1 is an equation}

Let Solv3(Z2) be the class of those structures representing solvable systems.
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Systems of Linear Equations – 3

Alternatively,

Consider structures over the domain {x1, . . . , xn, e1, . . . , em}, (where

e1, . . . , em are the equations) with relations:

• unary E0 for those equations e whose r.h.s. is 0.

• unary E1 for those equations e whose r.h.s. is 1.

• binary M with M(x, e) if x occurs on the l.h.s. of e.

Solv(Z2) is the class of structures representing solvable systems.

Solv3(Z2) ≤FO Solv(Z2) by an easy first-order reduction.
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Undefinability in C
ω

∞ω

Take G a 3-regular, connected graph with treewidth > k.

Define equations EG with two variables xe
0
, xe

1
for each edge e.

For each vertex v with edges e1, e2, e3 incident on it, we have eight equations:

Ev : xe1

i + xe2

j + xe3

k ≡ i + j + k (mod 2)

The system of equations ẼG is obtained from EG by replacing, for exactly one

vertex v, Ev by:

E′
v : xe1

i + xe2

j + xe3

k ≡ i + j + k + 1 (mod 2)
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Facts about the Construction – I

Lemma EG ≡Ck

∞ω ẼG

This can be established by showing that Duplicator has a winning strategy in the

k-pebble bijection game played on EG and ẼG.

Alternatively, we can show a first-order reduction from the Cai-Fürer-Immerman

graphs.

There is a first-order transduction Φ such that:

• Φ : XG 7→ EG

• Φ : X̃G 7→ ẼG
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Facts about the Construction – II

Lemma EG is satisfiable.

by setting the variables xe
i to i.

Lemma ẼG is unsatisfiable.

Consider the subsystem consisting of equations involving only the

variables xe
0
.

The sum of all left-hand sides is

2
∑

e

xe
0
≡ 0 (mod 2)

However, the sum of right-hand sides is 1.
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Computational Problems from Linear Algebra

Linear Algebra is a testing ground for exploring the boundary of the expressive

power of FP + C.

It may also be a possible source of new operators to extend the logic.

For a set I , and binary relation A ⊆ I × I , take the matrix M over the two

element field Z2:

Mij = 1 ⇔ (i, j) ∈ A.

Many properties of M are invariant under permutations of I , e.g. non-singularity.

Anuj Dawar December 2007



18

Matrix Multiplication

We can write a formula prod(x, y, A, B) that defines the product of two

matrices:

∃ν1∃ν2(ν1 = #z(A(x, z) ∧ B(z, y))) ∧ (ν1 = 2 · ν2 + 1)

A simple application of lfp then allows us to define upower(x, y, ν, A) which

gives the matrix Aν .

We can, instead, represent numbers in binary, i.e. a unary relation Γ interpreted

over the number domain codes the number
∑

γ∈Γ
2γ .

Repeated squaring then allows us to define power(x, y,Γ, A) giving AN where

Γ codes a value N which may be exponential.
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Non-Singularity

(Blass-Gurevich 04) show that non-singularity of a matrix over Z2 can be

expressed in FP + C.

GL(n, Z2)—the general linear group of degree n over Z2—is the group of

non-singular n × n matrices over Z2.

The order of GL(n, Z2) divides

N =

n−1∏

i=0

(2n − 2i).

Thus, A is non-singular if, and only if, AN = I
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Inverting a Matrix

Over Z2, testing non-singularity is the same as finding the determinant (as there

is only one possible non-zero value).

This allows us to write a formula of FP + C to invert a matrix A by the rule:

(A−1)ij = 1 ⇔ Aji is non-singular,

where Aji denotes the minor matrix obtained from A by deleting row j and

column i.

One can do a fair amount of linear algebra in FP + C, but not compute the rank of

a matrix. This would allow us to define the solvability of systems of equations.
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Computational Complexity

⊕L is the complexity class containing languages L for which there is a

nondeterministic, logspace machine M such that

x ∈ L if, and only if, the number of accepting paths of M on input x is

odd.

⊕L contains L and is (as far as we know) incomparable with NL.

⊕GAP is a natural ⊕L-complete problem under logspace reductions.

⊕GAP: given an acyclic, directed graph G with vertices s, t, is the

number of distinct paths from s to t odd?
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Computational Complexity II

The following are all ⊕L-complete under logspace reductions:

• Non-singularity of matrices over Z2;

• Inverting a matrix over Z2;

• Determining the rank of a matrix over Z2.

(Buntrock, Damm, Hertrampf, Meinel 92)

Note: ⊕GAP is definable in FP + C as it amounts to checking (An
G)st, where

AG is the adjacency matrix of G.
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Representing Finite Fields

We can represent matrices M over a finite field Fq by taking, for each a ∈ Fq a

binary relation Aa ⊆ I × I with

Mij = a ⇔ (i, j) ∈ Aa.

Alternatively, we could have the elements of Fq (along with the field operations)

as a separate sort and include a ternary relation R

Mij = a ⇔ (i, j, a) ∈ R.

These two representations are inter-definable.
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Computing over Finite Fields

Over Fq ,

• non-singularity of matrices is definable;

• inverse of a matrix is definable; and

• non-solvability of systems of equations is undefinable

in FP + C by adaptations of the proofs that work over Z2.

Rossman shows that determinants can be computed in choiceless polynomial

time with counting, and this is improved to FP + C by Holm .

For q prime, these problems are all complete for modqL under logspace

reductions.
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Open Problems

If we add an operator for matrix rank to the logic FP + C, what can it express?

Could it be all of PTime? Can we find a problem in PTime that is not definable?

What might be a more general linear-algebraic operator to add to the logic?

Is the solvability of systems of linear equations expressible in choiceless

polynomial time with counting? Or in fixed-point logics with symmetric choice?

Is general graph matching definable in FP + C?

Bipartite graph matching is, by (Blass, Gurevich, Shelah 02) .
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