Model Theory of Tame Classes of Finite Structures Part 3: Stability and Independence

Anuj Dawar

Department of Computer Science and Technology, University of Cambridge

(with assistance from Ioannis Eleftheriadis)

Logic Colloquium, Gothenburg 25 June 2024

Locality

Gaifman's Theorem: Every first-order sentence is equivalent to a Boolean combination of *basic local sentences*.

To evaluate a formula φ in a structure \mathbb{A} it suffices to look at *local neighbourhoods* of elements of \mathbb{A} .

If the local neighbourhoods are strucurally simpler, this can allow for a *recursive* procedure for evaluating a formula efficiently.

But, sometimes the local neighbourhoods are *not* simpler.

Complete Graphs

Consider the class of *complete graphs*. K_n : the complete graph on n vertices.

 $N_1(v)$ is the *whole graph* for each v. So, Gaifman's theorem provides no simplification.

Yet, evaluating *first-order sentences* in complete graphs is *easy*.

For a first-order formula φ in the *language* of graphs, let $\overline{\varphi}$ be the formula obtained by from φ by replacing every subformula E(x, y) by $x \neq y$.

Then $K_n \models \varphi$ if, and only if, $\overline{K_n} \models \overline{\varphi}$ where $\overline{K_n}$ is the *edgeless graph* on *n* vertices.

Neighbourhood Covers

For a graph G = (V, E) and $r \in \mathbb{N}$, a family \mathcal{X} of subsets of V is a *distance-r neighborhood cover* of G if for every $v \in V$, there is an $X \in \mathcal{X}$ with $N_r(v) \subseteq X$.

The *radius* of \mathcal{X} is the largest *diameter* of any connected component in a graph induced by $X \in \mathcal{X}$.

The *overlap* of \mathcal{X} is the largest m such that some $v \in V$ appears in m distinct sets in \mathcal{X} .

The complete graph K_n has a neighboorhood cover of radius 1 and overlap 1.

Interpretations

A graph interpretation \mathcal{I} is a pair of formulas $\delta(x), \varepsilon(x, y)$.

For a structure A, define $\mathcal{I}(\mathbb{A})$ to be the graph with: vertices $\{a \in \mathbb{A} \mid \mathbb{A} \models \delta[a]\}$; and edges $\{\{a, b\} \subseteq \mathbb{A} \mid a \neq b \text{ and } \mathbb{A} \models \varepsilon[a, b]\}.$

We say a class C interprets D (or D is interpretable in C) if there is an interpretation I with $D \subseteq I(C)$.

For $G \in \mathcal{D}$, with $G = \mathcal{I}(\mathbb{A})$, $G \models \varphi$ *if, and only if,* $\mathbb{A} \models \hat{\varphi}$ where $\hat{\varphi}$ is obtained from φ by replacing E(x, y) with $\varepsilon(x, y)$ and relativizing quantifiers to $\delta(x)$.

Transductions

Say that a class C of σ -structures *transduces* a class of graphs D if there is an *expansion*

 $\sigma^+ = \sigma \cup \{C_1, \dots, C_m\}$

with finitely many unary relation symbols

and a σ^+ graph interpretation \mathcal{I} such that

 $\mathcal{D} \subseteq \mathcal{C}^+$

where C^+ is the class of σ^+ -expansions of structures in C.

Composition and Transduction Order

Transductions compose.

If \mathcal{C} transduces \mathcal{D} and \mathcal{D} transduces \mathcal{E} then \mathcal{C} transduces \mathcal{E} .

If C transduces D then, *in some sense*, D is structurally "*no more complicated*" than C.

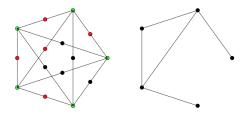
Thus, if a class C transduces the *class of all graphs*, it is as complicated as it gets.

Every *infinite* class of structures transduces the class of all *complete graphs*.

The class of complete graphs is as *simple* as it gets.

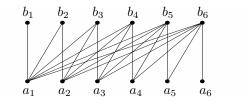
Subdivided Cliques

The class of 1-subdivided cliques: $\{K_n^1 \mid n \in \omega\}$ transduces the class of all graphs.



Half Graphs

A half-graph of order n is a bipartite graph on two sets of n vertices: $\{a_i \mid 1 \leq i \leq n\}$ and $\{b_i \mid 1 \leq i \leq n\}$ with edges: $\{a_i, b_j\}_{i \leq j}$



Cliques and Half Graphs

The class of *complete graphs* does *not transduce* the class of *half graphs*.

In any expansion of K_n with m unary relations, the automorphism group has at most 2^{2m} orbits on pairs of elements.

In the half-graph or order n, we can define a linear order on $\{a_i \mid 1 \le i \le n\}$, giving an *unbounded* number of orbits.

Half-Graphs and Powerset graphs

The class of *half graphs* does not *transduce* the class of *all graphs*.

In particular, it does not transduce the class of *powerset graphs*.

The *powerset graph* of order n is the *bipartite graph* on two sets: $\{a_i \mid i \in \{1, ..., n\}\}$ and $\{b_J \mid J \subseteq \{1, ..., n\}\}$ with edges: $\{a_i, b_J\}_{i \in J}$

The class of *powerset graphs* transduces the class of *all graphs*.

Structurally Tame Classes

A class of graphs C is *structurally nowhere dense* if it is *transduced* by a *nowhere dense* class.

A class of graphs C is *monadically stable* if it does *not* transduce the class of *half graphs*.

A class of graphs C is *monadically NIP* if it does not tranduce the class of *all graphs*.

Inclusions

Any nowhere dense class is structurally nowhere dense.

The complete graphs are an example of a *structurally nowhere dense* class that is not *nowhere dense*.

(Adler and Adler) showed that any nowhere dense class is stable.

It follows that such a class is *monadically stable*.

It also follows that any *structurally nowhere dense* class is *monadically stable*

Any monadically stable class is monadically NIP.

Separations

The *complete graphs* are *structurally nowhere dense* but not *nowhere dense*.

The half graphs are monadically NIP but not monadically stable.

We do not have an example of a class of graphs that is *monadically stable* but not *structurally nowhere dense*.

Sparsification Conjecture: *Every monadically stable class is structurally nowhere dense*

Monotone Classes

Every *nowhere dense* class of graphs is *monadically stable*(Adler and Adler)

Every monotone, monadically NIP class is nowhere dense

This follows from the fact that if C is not nowhere dense, there is a fixed r such that for infinitely many n, K_n^r appears as a subgraph of a graph in C.

Thus, for a *monotone* class C TFAE:

- 1. C is nowhere dense
- 2. C is structurally nowhere dense
- 3. C is monadically stable
- 4. C is monadically NIP

Edge Stable

Say a class C of graphs is *edge stable* if it does not contain arbitrarily large *half graphs* as *semi-induced subgraphs*.

A half graph of order n is a *semi-induced* subgraph of G if G contains two disjoint sets of n vertices: $A = \{a_i \mid 1 \le i \le n\}$ and $B = \{b_i \mid 1 \le i \le n\}$ so that the *only* edges between A and B are: $\{a_i, b_j\}_{i \le j}$

Theorem (Nešetřil et al.)

A graph class C is *monadically stable* if, and only if, it is *monadically NIP* and *edge stable*.

Flips

The *monadically stable* classes admit a characerization in terms of *two player games*.

For this, we first define the notion of a *flip*.

```
Given a graph G = (V, E) and a set A \subseteq V, the flip G \oplus A is the graph (V, E') where \{u, v\} \in E' if, and only if,
u, v \in A and \{u, v\} \notin E; or
u \notin A or v \notin A and \{u, v\} \in E.
```

We *complement* the graph induced by *A*.

Flip Rank

For a graph G and $r \in \mathbb{N}$, we define the *flip rank* of G by the following recursion.

$$\operatorname{rank}_{r}^{F}(G) = \begin{cases} 1, & \text{if } |G| = 1; \\ 1 + \min \operatorname{rank}_{r}^{F}(G \oplus A), & \text{if } G \text{ has radius} \leq r \text{ and } |G| > 1; \\ \max \operatorname{rank}_{r}^{F}(B_{r}(G, v)) & \text{otherwise.} \end{cases}$$

where the min is taken over all sets A of vertices, and the max over all vertices v.

Flipper-Connector Game

- $G_0 := G;$
- If G_i contains no edges, Flipper has won;
- Otherwise: Connector chooses a vertex u of G_i and Flipper chooses a set $A \subseteq V(G_i)$.
- $G_{i+1} := N_r^{G_i}(u) \oplus A.$

 $\operatorname{rank}_{r}^{F}(G) \leq k$ if, and only if, there is a strategy for Flipper to win in no more than k rounds.

Examples

If v is a vertex in G and N the set of its neighbours, then $(G \oplus (N \cup \{v\})) \oplus N$

is the graph G with all edges incident on v removed.

Thus $\operatorname{rank}_r(G) \leq 2\operatorname{rank}_r^F(G)$.

 $\operatorname{rank}_{r}^{F}(K_{n}) = 2$

Flipper Rank and Monadic Stability

Theorem (Gajarsky et al.)

A class of graphs C is *monadically stable* if, and only if, there exists a function $f : \mathbb{N} \to \mathbb{N}$ such that $\operatorname{rank}_{r}^{F}(G) \leq f(r)$ for every $r \in \mathbb{N}$ and every $G \in C$.

Note: This, with $\operatorname{rank}_r(G) \leq 2\operatorname{rank}_r^F(G)$ gives another proof that every nowhere dense class is monadically stable.

First-Order Evaluation

The *recursive* definition of monadic stability enables a strategy for evaluating *first-order formulas*:

Theorem (Dreier et al.)

For any *monadically stable* class C, the problem of evaluating first-order sentences $(G \models \varphi)$ for graphs $G \in C$ is FPT.

This is based on a *combinatorial* construction showing that in a *monadically stable* class C, distance-r neighbourhood covers of small diameter and overlap can be found.

Main Conjecture

Conjecture

For any *hereditary* class of structures C, the evaluation of first-order sentences on C is FPT *if*, and only *if*, C is monadically NIP.

One direction has been very recently proved (subject to the usual *complexity-theoretic assumptions*):

Theorem (Dreier, Mählmann, Toruńczyk) If C is hereditary and *not* monadically NIP, then the evaluation of first-order sentences on C is AW[\star]-hard.

What is missing is an *algorithmic tractability* result for all *monadically NIP* classes.

Tractability Results

If C is *monotone* and *monadically NIP*, the evaluation of first-order sentences on C is FPT.

If C is *edge-stable* and *monadically NIP*, the evaluation of first-order sentences on C is FPT.

Theorem (Bonnet et al.)

If C is a hereditary class of *ordered graphs monadically NIP*, the evaluation of first-order sentences on C is FPT. and

Conclusion

The complexity of the evaluation of first-order sentences is a *benchmark* of the *tameness* of a class of finite structures.

The tame *monotone, sparse* classes of structures have been completely mapped out.

An ongoing effort to completely map the *hereditary* classes.

Borrowing notions and methods from *stability theory* and combining with some hard combinatorics.