Model Theory of Tame Classes of Finite Structures

Part 1: Locality

Anuj Dawar

Department of Computer Science and Technology, University of Cambridge

(with assistance from Ioannis Eleftheriadis)

Logic Colloquium, Gothenburg 24 June 2024

Finite Model Theory

In the 1980s, the term *finite model theory* came to be used to describe the study of the *expressive power* of logics on the class of all finite structures.

The logics of interest include *first-order logic*, *second-order logic*, many in between and many beyond.

The motivation for the study comes from computer science (especially *complexity theory* and *database theory*). Many problems in these areas are naturally formulated as questions about the expressive power of logics. And, the structures involved in computation are *finite*.

The methods deployed bear only a distant relationship with *classical model theory*.

But, there is a recent *convergence* and we will review this in this tutorial.

Finite Model Theory - Early Trends

Kolaitis in a tutorial on finite model theory (LICS 93) identified trends in the results in the subject:

- *Negative*: showing the failure of classical model-theoretic results on finite structures.
 - Compactness. Completeness. Interpolation and preservation theorems.
- Conservative: showing that certain classical model-theoretic results continue to hold on finite structures.
 Some consequences of compactness. Monotone vs. positive inductions. Locality.
- Positive: exploring concepts and results which are specific to finite structures.
 Descriptive complexity. 0–1 laws.

Compactness and Preservation

The *compactness theorem* is not available when we restrict ourselves to *finite structures*.

$$\exists x_1 \cdots \exists x_n \bigwedge_{i \neq j} x_i \neq x_j$$

The collection of these sentences has no finite model, even though every finite subset has.

Many of the consequences of compactness also fail on finite structures.

Existential Preservation

A sentence φ is equivalent to an existential sentence if, and only if, the models of φ are closed under extensions.

(Łoś-Tarski)

Proving Preservation

It is trivial to see that the syntactic restriction implies the semantic restriction.

The other direction, of *expressive completeness*, is usually proved using compactness.

For example, if φ is closed under extensions:

Take Φ to be the existential consequences of φ and show $\Phi \models \varphi$ by:

$$\begin{array}{cccc} \mathbb{A} \models \Phi \cup \{\varphi\} & \preceq & \mathbb{A}^* \\ & & \cap \\ \mathbb{B} \models \Phi \cup \{\neg \varphi\} & \preceq & \mathbb{B}^* \end{array}$$

Relativized Preservation

We consider *relativizations* of expressive completeness to classes of structure C:

If φ satisfies the semantic condition restricted to \mathcal{C} , it is equivalent (on \mathcal{C}) to a sentence in the restricted syntactic form.

Restricting the class $\mathcal C$ in this statement weakens both the hypothesis and the conclusion.

Łoś-Tarski is known to fail when $\mathcal C$ is the class of all finite structures. (Tait)

Restricting further may make it true.

Minimal Models

For a sentence φ whose models are closed under extensions, a *minimal model* $\mathbb A$ is a structure such that:

$$\mathbb{A} \models \varphi$$
; and

for any proper substructure $\mathbb{B} \subseteq \mathbb{A}$, $\mathbb{B} \not\models \varphi$.

 φ is equivalent to an *existential sentence* on a class $\mathcal C$ if, and only if, φ has *finitely many* minimal models in $\mathcal C$.

Tame Classes

The class of *all finite structures* is not *well-behaved* in a model-theoretic sense.

Sometimes good *model-theoretic* behaviour can be recovered by restricting outselves further.

Let \mathcal{BD}_d denote the class of finite graphs of *degree* at most d.

Theorem (Atserias, D., Grohe 2008)

The extension preservation theorem holds on \mathcal{BD}_d for any d.

The proof uses *locality* rather than *compactness*.

Gaifman Graph

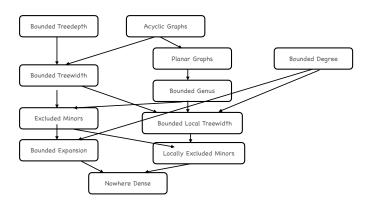
For a structure $\mathbb A$ in a *relational vocabulary* $\tau=(R_1,\dots,R_r)$, the *Gaifman graph* of $\mathbb A$ is the undirected graph whose vertices are the elements of $\mathbb A$ and

there is an edge $u \sim v$ if, and only if, there is some relation R_i with a tuple including both u and v.

The tameness conditions on a class \mathcal{C} are often expressed as restrictions on the class of *Gaifman graphs* of structures in \mathcal{C} .

For simplicity, we usually restrict ourselves to vocabularies with one binary relation and a collection of unary relations.

Sparse Tame Classes



Algorithmic Tameness

These restricted classes of graphs have been much studied in the field of paramaterized complexity because of their algorithmic tameness.

They admit *efficient algorithms* for problems that are hard in general.

Scattered Set:

Given: a graph G and positive integers l and rDecide: does G contain l distinct vertices that are pairwise distance at least r apart.

The problem is NP-complete. And, under reasonable assumptions, cannot be solved in time $n^{o(l)}$.

On the tame classes, it can be solved in time

$$f(l,r)n^c$$

First-Order Satisfaction

The algorithmic tameness of these classes has an explanation in logic

We consider the problem of evaluating first-order sentences in finite structures.

First-order evaluation:

Given: a structure $\mathbb A$ and a first-order sentence φ

Decide: whether $\mathbb{A} \models \varphi$.

The problem can be solved in time $O(ln^m)$, where l is the *length* of φ and n the *number of elements* of \mathbb{A} . m is the nesting depth of quantifiers in φ (or by a more careful accounting, the number of distinct variables occurring in φ)

Parameterized Complexity

FPT—the class of problems of input size n and parameter l which can be solved in time $O(f(l)n^c)$ for some computable function f and constant c. There is a hierarchy of intractable classes.

$$\mathsf{FPT} \subseteq W[1] \subseteq W[2] \subseteq \cdots \subseteq \mathsf{AW}[\star]$$

The satisfaction relation for first-order logic ($\mathbb{A} \models \varphi$), parameterized by the length of φ is $\mathsf{AW}[\star]$ -complete.

Nowhere-Dense Classes

The most general result on the tractability of first-order satisfaction in *sparse* classes is:

Theorem (Grohe, Kreutzer, Siebertz)

For any nowhere dense class of graphs $\mathcal C$ and any $\epsilon>0$, there is an algorithm deciding $G\models\varphi$ in time $O(f(l)n^{1+\epsilon})$ for some function f.

Here, l is the length of φ and n the number of elements in G.

Substructures

For structures $\mathbb{A}=(A,R_1^{\mathbb{A}},\dots,R_r^{\mathbb{A}})$ and $\mathbb{B}=(B,R_1^{\mathbb{B}},\dots,R_r^{\mathbb{B}})$ in a *vocabulary* τ , we say

B is a *substructure* of A if:

$$B \subseteq A$$
; and $R_i^{\mathbb{B}} \subseteq R_i^{\mathbb{A}}$ for all i .

B is an *induced substructure* of **A** if:

$$B\subseteq A;$$
 and
$$R_i^{\mathbb{B}}=R_i^{\mathbb{A}}\cap A^{\operatorname{arity}(R_i)} \text{ for all } i.$$

Monotone and Hereditary Classes

We say that a class \mathcal{C} is

monotone if whenever \mathbb{A} is in \mathcal{C} , so is every substructure of \mathbb{A} .

hereditary if whenever \mathbb{A} is in \mathcal{C} , so is every induced substructure of \mathbb{A} .

Theorem (Grohe, Kreutzer, Siebertz)

For any monotone class C, if C is not nowhere dense, then first-order satisfaction on C is $AW[\star]$ -hard.

Local Formulas

We write $\delta(x,y) > d$ for the formula of FO that says that the distance between x and y is greater than d.

We write $\psi^r(x)$ to denote the formula obtained from $\psi(x)$ by relativising all quantifiers to the set $N_r = \{y \mid \delta(x,y) < r\}$, i.e.

Each subformula $\exists y\theta$ is replaced by $\exists y(\delta(x,y) < r) \land \theta^r$ Each subformula $\forall y\theta$ is replaced by $\forall y(\delta(x,y) < r) \rightarrow \theta^r$

Gaifman's Theorem

A basic local sentence is a sentence of the form

$$\exists x_1 \cdots \exists x_s \left(\bigwedge_{i \neq j} \delta(x_i, x_j) > 2r \wedge \bigwedge_i \psi^r(x_i) \right)$$

Theorem (Gaifman)

Every first-order sentence is equivalent to a Boolean combination of basic local sentences.

We call this the Gaifman normal form of the sentence.

Evaluating First-Order Logic

We now want to use Gaifman's theorem to establish:

Theorem (Seese)

For every sentence φ of FO and every d there is a linear time algorithm which, given a graph $G \in \mathcal{BD}_d$ determines whether $G \models \varphi$.

Indeed, $G \models \varphi$ can be decided by an algorithm running in time f(l)n.

First, note that the *Gaifman normal form* of φ can be computed from φ . Thus, it suffices to prove the above for *basic local sentences*.

Neighbourhoods

Given a structure \mathbb{A} , an element $a \in \mathbb{A}$ and a positive integer r, we write $N_r(a)$ to denote the elements that are at distance at most r from a in \mathbb{A} .

For a set of elements S, $N_r(S)$ denotes $\bigcup_{a \in S} N_r(a)$.

We also write $\operatorname{Nbd}_r^{\mathbb{A}}(a)$ to denote the r-neighbourhood of a in \mathbb{A} . That is, the substructure of \mathbb{A} induced by $N_r(a)$ expanded with a constant for a.

Evaluating a Basic Local Sentence

How do we evaluate a basic local sentence $\exists x_1 \cdots \exists x_s \left(\bigwedge_{i \neq j} \delta(x_i, x_j) > 2r \wedge \bigwedge_i \psi^r(x_i) \right)$ in a graph $\mathbb{A} \in \mathcal{BD}_k$?

For each $v \in \mathbb{A}$, determine whether

$$\operatorname{Nbd}_r^{\mathbb{A}}(a) \models \psi[a].$$

Since the size of $N_r(a)$ is bounded, this takes linear time.

Label a red if so. We now want to know whether there exists a 2r-scattered set of red vertices of size s.

Finding a Scattered Set

Choose red vertices from $\mathbb A$ in some order, removing the 2r-neighbourhood of each chosen vertex.

```
a_1 \in \mathbb{A},

a_2 \in \mathbb{A} \setminus N_{2r}(a_1),

a_3 \in \mathbb{A} \setminus (N_{2r}(a_1) \cup N_{2r}(a_2)), \dots
```

If the process continues for s steps, we have found a 2r-scattered set of size s

Otherwise, for some u < s we have found a_1, \ldots, a_u such that all red vertices are contained in

$$N_{2r}(a_1,\ldots,a_u)$$

This is a graph of bounded size and we can determine whether it contains a 2r-scattered set of red vertices by exhaustive search.

Strategy

Thus, the overall strategy for evaluating a sentence φ in $\mathbb A$ is to

- 1. convert φ to Gaifman normal form;
- 2. for each basic local sentence in the form:
 - 2.1 evaluate the local formula at every element; and
 - 2.2 determine whether there is a large enough scattered set among those elements that satisfy it.

Graph Minors

We say that a graph G is a minor of graph H (written $G \leq H$) if G can be obtained from H by repeated applications of the operations:

- delete an edge;
- delete a vertex (and all incident edges); and
- contract an edge

Graph Minors

A graph G=(V,E) is a minor of H=(U,F), if there is a graph H'=(U',F') with $U'\subseteq U$ and $F'\subseteq F$ and a surjective map $M:U'\to V$ such that

- for each $v \in V$, $M^{-1}(v)$ is a *connected subgraph* of H'; and
- for each edge $(u,v) \in E$, there is an edge in F' between some $x \in M^{-1}(u)$ and some $y \in M^{-1}(v)$.

The subgraphs $M^{-1}(v)$ are the *branch sets* witnessing that $G \leq H$. We say G is a minor at depth r of H $(G \leq_r H)$ if $G \leq H$ is witnessed by branch sets of radius at most r.

Nowhere-Dense Classes

Definition:

A class of graphs $\mathcal C$ is said to be *nowhere dense* if, for each $r\geq 0$ there is a graph H_r such that $H_r\not\preceq_r G$ for any graph $G\in\mathcal C$.

This was introduced by Nešetřil and Ossona de Mendez as a formalisation of classes of *sparse* graphs.

We say $\mathcal C$ is *effectively nowhere dense* if the function $r\mapsto H_r$ is computable.

Trichotomy

Associate with any infinite class \mathcal{C} of graphs the following parameter:

$$d_{\mathcal{C}} = \lim_{r \to \infty} \limsup_{G \in \mathcal{C}_r} \frac{\log ||G||}{\log |G|},$$

where C_r is the collection of graphs obtained as minors of a graph in C by contracting neighbourhoods of radius at most r.

The *trichotomy theorem* states that $d_{\mathcal{C}}$ can only take values 0, 1 and 2.

The nowhere-dense classes are exactly the ones where $d_{\mathcal{C}} \neq 2$.