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Abstract

We introduce a complexity measure of modal properties of finite structures which
generalises the automaticity of languages. It is based on graph-automata like devices
called labelling systems. We define a measure of the size of a structure that we call
rank, and show that any modal property of structures can be approximated up to
any fixed rank n by a labelling system. The function that takes n to the size of the
smallest labelling system doing this is called the labelling index of the property. We
demonstrate that this is a useful and fine-grained measure of complexity and show
that it is especially well suited to characterise the expressive power of modal fixed-
point logics. From this we derive several separation results of modal and non-modal
fixed-point logics, some of which are already known whereas others are new.

1 Introduction

Modal logics are widely used to express properties of finite (and infinite) state
systems for the purpose of automatic verification. In this context, proposi-
tional modal logic (also known as Hennessy-Milner logic) is found to be weak
in terms of its expressive power and much attention has been devoted to ex-
tensions that allow some form of recursion. This may be in the form of path
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quantifiers as with the branching time temporal logics CTL and CTL" or with
a least fixed-point operator as with the u-calculus. Other extensions have been
considered for the purpose of understanding a variety of fixed-point operators
or classifying their complexity. Examples include L}, the higher dimensional
p~calculus introduced by Otto [10], and MIC, the modal iteration calculus,
introduced in [4]. The former was introduced specifically to demonstrate a
logic that exactly characterises the polynomial-time decidable bisimulation
invariant properties of finite-state systems, while the latter was studied in an
investigation into the difference between least and inflationary fixed points.

The study of these various extensions of propositional modal logic has thrown
up a variety of techniques for analysing their expressive power. One can often
show that one logic is at least as expressive as another by means of an explicit
translation of formulas of the second into the first. Establishing separations
between logics is, in general, more involved. This requires identifying a prop-
erty expressible in one logic and proving that it is not expressible in the other.
Many specialised techniques have been deployed for such proofs of inexpress-
ibility, including diagonalisation, bisimulation and other Ehrenfeucht-Fraissé
style games, complexity hierarchies and automata-based methods such as the
pumping lemma. But, as in other areas of computer science, proving lower
bounds is difficult.

In this paper, we introduce an alternative complexity measure for modal prop-
erties of finite structures which we call the labelling index of the property and
demonstrate its usefulness in analysing the expressive power of modal fixed-
point logics and proving separations. The labelling index generalises the notion
of the automaticity of languages (see [11]). The automaticity of a language (i.e.
a set of strings) L is the function that maps n to the size of a minimal de-
terministic finite automaton which agrees with L on all strings of length n or
less. We generalise this notion in two steps, first studying it for classes of finite
trees and then for classes of finite, possibly cyclic, transition systems.

The generalisation to trees is straightforward. The automaticity of a class 7
of finite trees can be defined as the function that maps n to the size of the
smallest tree automaton that agrees with 7 on trees of height n or less. In our
definition, we use a version of bottom-up tree automata that ensures that the
property defined is invariant under bisimulation. This notion of automaticity
was used in [4] to establish a separation between the expressiveness of MIC
and L. Here, we use it to show that MIC is not the bisimulation-invariant
fragment of monadic IFP, addressing a question left open in [4].

In extending the notion of automaticity from trees to more general finite struc-
tures, we introduce automata-like devices called labelling systems and a mea-
sure on finite structures that we call rank. We show that any modal property
of finite structures (or equivalently, any class of finite structures closed un-



der bisimulation) can be approximated up to any fixed rank n by a labelling
system. The function that takes n to the size of the smallest labelling system
that does this is the labelling index of the property. We demonstrate that this
is a useful and fine-grained measure of the complexity of modal properties
by deriving a number of separation results using it, including some that were
previously known and some that are new. We show that any property that is
definable in propositional modal logic has constant labelling index. In contrast,
any property that is definable in the p-calculus has polynomial labelling index
and moreover, there are properties definable in L, whose labelling indices have
a linear lower bound. Similarly we obtain exponential upper and lower bounds
on the labelling index of properties definable in MIC, generalising results on
tree automaticity obtained in [4]. We also investigate the relationship between
labelling index and conventional time and space based notions of complexity.
For instance, the problem of determining bisimulation equivalence, which is
decidable in polynomial time, has the worst possible complexity in terms of
its labelling index. On the other hand, coarser equivalence relations, such as
trace equivalence, which are computationally intractable, have lower labelling
index. Trace equivalence problems of various kinds provide a particularly rich
source of examples for exploring the notion of labelling index, and we do this
in some detail in the final section.

An extended abstract of the present paper appeared as [5].

2 Background

In this section, we give a brief introduction to modal logic and its various
fixed-point extensions. A detailed study of these logics can be found in [2,1,4].

2.1 Propositional Modal Logic

For the rest of the paper fix a set A of actions and a set P of atomic
propositions. Modal logics are interpreted on transition systems, also called
Kripke structures, which are edge and node labelled graphs. The labels of
the edges come from the set A of actions, whereas the nodes are labelled
by sets of propositions from P. Formally, a transition system is a structure
K = (V,(E.)aca, (p)pep) with universe V, a binary relation EX C V x V for
every a € A, and a unary relation p* C V for each p € P. When clear from
the context, we omit the superscripts and only write F, and p. At various
places we will use two systems I and K’ simultaneously. In this case, we refer
to the relations of K’ as E’ and p’ instead of EX" and p*'. As a final bit of
notation, we often write v = v to denote that there is an a-transition from u



to v.

Modal logic (ML) is inductively defined as follows: For every atomic proposi-
tion symbol p € P, p is a formula of ML. And if ¢, are ML-formulas then
so are ¢ A, p V1, = and (a)p, [a]p for every a € A. Formulas ¢ € ML
are always evaluated at a particular node in a transition system. We write
IC,v |= ¢ if ¢ holds at the node v in the transition system K. The semantics
of ML-formulas is as usual with KC,v |= p if v € p*, K,v |= {a)p if there is
an a-successor u of v such that K,u = ¢ and, dually, K, v |= [a]p if for all
a-successors u of v, K, u = ¢.

We are primarily concerned with the expressive power of modal logics on finite
structures and we will therefore assume that all structures K are finite unless
explicitly stated otherwise.

2.2  Bistmulations

Bisimulation is a notion of behavioural equivalence for transition systems.
Modal logics, like ML, CTL, the p-calculus etc. do not distinguish between
transition systems that are bisimulation equivalent. Formally, given two tran-
sition systems IC := (V, (Ey)aea, (P)pepr) and K' := (V' (E,)aea; (P)pep), with
distinguished states v and v’ respectively, we say that IC,v is bisimulation
equivalent to K, v, written KC,v ~ K’ ¢/, if there is a relation R C V x V'
between the states of K and the states of K such that:

(1) (v,v') € R
(2) for each atomic proposition p € P and each (u,u’) € R, u € p~ if, and
only if, u' € p&'
(3) for every action a € A and every pair (u,u’) € R:
e for each t € V such that (u,t) € EX, thereisat’ € V' with (u/, ') € EN
so that (¢,') € R and
e for each t' € V' such that (u/, ') € EX' thereisat € V with (u,t) € EX
so that (¢,t') € R.

For a transition system K we write K/ for its quotient under bisimulation.
That is, K/ is the transition system whose states are the equivalence classes
of states of K under bisimulation and, if [v] denotes the equivalence class
containing v, then [v] € p*/~ if v € p* and there is an a-transition from [u] to
[v] in IC, if, and only if, there is an a-transition from u to some state w € [v]
in /C. It is easily verified that IC,v ~ K/, [v].



2.3 Modal Fized-Point Logics

We now consider two fixed-point extensions of modal logic: the modal pu-
calculus and the modal iteration calculus (MIC).

Definition 1 The modal p-calculus (L,,) is inductively defined by the rules for
modal logic and the following formula building rule: If X1, ..., Xy are proposi-
tional variables and @1, ..., ¢ are L,-formulas so that no variable X; occurs
negatively in any ¢;, then

X1~ ¢
S =

Xy — o

is a system of rules and (pX; : S) and (vX; : S) are formulas of L,,.

On any finite transition system IC with universe V', such a system S of rules
defines an monotone operator Fg taking a sequence X := (Xi,...,X}) of
subsets of V' to the sequence (Fs,(X),...,Fs, (X)), where Fs,(X) := {u :
(K, (Xj)1<j<k), u = i} As Fg is monotone, it has a least and a greatest fixed
point. The semantics of a formula (uX; : S) is defined as K,u = (uX; : S)
if, and only if, v occurs in the i*" component of the least fixed point of Fj.
Analogously, K,u = (vX; : S) if, and only if, u occurs in the i*" component

of the greatest fixed point of Fl.?

It is often useful to consider L,-formulas in a certain normal form, called
guarded normal form.

Definition 2 A p-calculus formula is guarded, if all propositional variables
that are bound by and thus occur in the scope of a fized-point operator are also
in the scope of a modal operator (i.e. O or <) that is itself in the scope of the
fixed-point operator.

It was shown in [9] that every L, formula is equivalent to a guarded formula.

The modal iteration calculus was introduced in [4] as an extension of ML
with an operator for inflationary fixed points. Inflationary fixed point oper-
ators have been extensively studied in the context of predicate logics. They
are designed to overcome the restriction of the application of least fixed point

2 In most presentations of the p-calculus simultaneous inductions are not consid-
ered. Nothing is lost by such a restriction as the least fixed point of a system S can
also be obtained by nested fixed points of simple inductions (see [1]).



operators to positive formulas, while still guaranteeing the existence of a mean-
ingful fixed point.

Definition 3 The modal iteration-calculus (MIC) is inductively defined by
the rules for modal logic and the following formula building rule: If X4, ..., X}
are propositional variables and @1, . .., @, are MIC-formulas, which may con-
tain the variables X; positively and negatively, then

X1~ ¢
S = :

Xk < @
is a system of rules and (ifp X; : S) is a formula of MIC.

Again, on any finite transition system K with universe V', such a system S
of rules defines an operator Fg as above. However, this operator is no longer
guaranteed to be monotone. It does, though, inductively define for each finite
ordinal « a sequence of sets (X, ..., X¢), called the induction stages, as

follows. For all i, X? := () and for 0 < a < w, X :== X 'U ng(yafl).

By definition, the stages of the induction are increasing and lead to a fixed
point (X7°,..., X°). The semantics of a formula (ifp X; : S) is defined as
K,u = (ifp X; : S) if, and only if, u € X7°.

By a well known result of Knaster and Tarski, the least fixed point is also
reached as the limit (X7°,..., X°) of the sequence of stages as defined above,
and the greatest fixed point is reached as the limit of a similar sequence of
stages, where the induction is not started with the empty set but with the
entire universe, i.e. X? := V. In fact, as the operator Fs is monotone, in this

case the explicit union of X' U Fy, (Yail) to define X is not neccessary.

Hence, the semantics of a L,-calculus formula (uX; : S) can equivalently
be defined as IC,u | (uX; : S) if, and only if, u € X° and analogously
for greatest fixed points. It follows, that every L,-formula can trivially be
translated into an equivalent MIC-formula.

Simple MIC (or simple L,) consists of those formulas of MIC (resp. L,) in
which, in every formula of the form (ifp X : 5), S is a system consisting of a
single rule X « ¢. We generally write such a formula as (ifp X : ). It is well
known that simple L, is as expressive as L, (see, for instance, [1]). However,
it is shown in [4] that MIC is strictly more expressive than simple MIC.

Another fixed-point extension of modal logic that we consider is L/, the higher-
dimensional p-calculus defined by Otto. We refer the reader to [10] for a precise
definition. Here we only note that this logic permits the formation of least fixed



points of positive formulas ¢ defining not a set X, but a relation X of any arity.
Otto shows that, restricted to finite structures, this logic can express exactly
the bisimulation-closed properties that are polynomial-time decidable.

It is immediate from the definitions that, in terms of expressive power, we
have ML C L, € MIC C IFP, where IFP denotes the extension of first-order
logic by inflationary fixed points. As IFP is equivalent to least fixed-point
logic (LFP) and L% is the bisimulation invariant fragment of LFP, it follows
that MIC C L. Indeed, all of these inclusions are proper. The separations of
MIC from L, and L were shown in [4]. The analysis of the labelling index
of properties expressible in the logics provides a uniform framework for both
separations.

There is a natural translation of L, formulas into monadic second-order logic
(MSO) using the fact that the least fixed point X > of a monotone operator
F : Pow(M) — Pow(M) on a set M is determined by the equation R =
N{P C M : F(P) C P}. Furthermore, Janin and Walukiewicz [8] show that a
formula of monadic second-order logic is bisimulation invariant if, and only if,
it is equivalent to a formula of L,. This gives a very elegant characterisation
of the expressive power of L, in terms of a standard predicate logic. It is
not known whether this characterisation remains true if we restrict ourselves
to finite structures. On the other hand, MIC cannot be translated to MSO,
whether or not we allow infinite structures. In particular, on finite strings,
MIC can define non-regular languages, while it is well known that MSO can
only define regular languages. In [4], the question was posed whether MIC
could be characterised as the bisimulation invariant fragment of any natural
logic. The most natural candidate for this would appear to be the monadic
fragment of IFP. In a sense, if MIC were the bisimulation-invariant fragment
of any predicate logic, it would be this one. However, by an analysis of the
labelling index of properties definable in this logic, we are able to show that
it can express bisimulation-invariant properties that are not in MIC.

3 Automaticity on Strings and Trees

Given a fixed finite alphabet X, the automaticity of a language L C >* is the
function that maps n to the size of a minimal deterministic automaton that
agrees with L on all strings of length at most n. This function is eventually
constant if, and only if, L is regular and is at most exponential for any language
L.

In [4] it was shown that MIC is strictly less expressive than L%. The method
used to separate the logics is a generalisation of the definition of automaticity
from string languages to classes of finite trees, closed under bisimulation. Au-



tomata that operate on trees have been widely studied in the literature (see,
for instance, [7]). We consider a version of “bottom-up” automata that have
the property that the class of trees accepted is necessarily closed under bisim-
ulation. Formally, a bottom-up tree automaton is A = (Q, A, 0, F, s), where
s € () is a start state, and ¢ : 294 — Q. We say such an automaton accepts
a tree 7, if there is a labelling [ : 7 — @ of the nodes of 7 such that:

e for every leaf v, I(v) = s;
e the root of 7 is labelled q € F'; and
o I(v) =0({(l(w),a) : v = w}).

We have, for simplicity, assumed that 7 is a transition system where the set
of propositions P is empty. The automata are easily generalised to the case
where such propositions are present. Indeed the labelling systems we introduce
in Definition 16 below offer such a generalisation. The tree-automata as we
have defined them are different from ranked tree automata as in [7]. There,
the number of children a tree may have is fixed, and the state assigned by an
automaton to a node depends on the tuple of states assigned to its children.
As we are interested in properties invariant under bisimulation, the definition
we use, where the state assigned to a node in a tree depends on the set of
states assigned to its children, seems more natural. Indeed, it is not difficult
to see that the class of trees accepted by such an automaton is closed under
bisimulation.

For a bisimulation-closed class C of trees, its automaticity can be defined (see
[4]) as the function mapping n to the smallest bottom-up tree automaton
agreeing with C on all trees of height n. Height is the appropriate measure
to use on a tree since it bounds the number of steps the automaton takes.
This version of automaticity was used in particular to separate the expressive
power of MIC from that of Ly. Indeed, one can establish the following facts
about the automaticity of classes of trees definable in modal fixed-point logics.

Proposition 4 (1) Every class of trees definable in L, has constant auto-
maticity.

(2) Every class of trees definable in MIC has at most exponential automatic-
1ty.

(3) There is a class of strings definable in MIC that has exponential auto-
maticity.

(4) There is a class of trees definable in L3 that has non-elementary auto-
maticity.

Statement (1) follows from the fact that for any formula ¢ of L, we can
construct a bottom-up tree automaton which accepts exactly those trees that
satisfy ¢ (see [15]). Statements (2), (3) and (4) are shown in [4]. However,
(2) can also be derived as a special case of Theorem 27 proved below. The



particular class of trees used to establish (4) is the bisimulation problem. This
is the class of trees T such that for any two children of the root t; and ¢y, we
have T, t; ~ T, t,. Its automaticity was shown in [4] to be non-elementary. Tt
can be seen that the automaticity of this class is the maximum possible, in that
any bisimulation-closed class of trees of height at most n can be recognised by a
bottom-up automaton which has one state for each possible bisimulation class.
Thus, the automaticity is bounded by the number of bisimulation equivalence
classes.

These results on trees carry over a fortiori to classes of acyclic transitions
systems.

3.1 Monadic Inflationary Fized-Point Logic

We now look at the automaticity of the bisimulation-invariant fragment of
monadic IFP on trees and show that there is no elementary lower bound for
it. More particularly, we show that for any elementary function f there is a
class of transition systems definable in monadic inflationary fixed-point logic
whose labelling index dominates f. A consequence is that MIC is not the
bisimulation invariant fragment of monadic IFP, something that might have
been conjectured, just as the p-calculus is the bisimulation-invariant fragment
of monadic least fixed-point logic.

Monadic inflationary fized-point logic (M-IFP) is the closure of first-order
logic under a rule for forming fixed points of unary relations. If (X, z) is
a formula with a free set variable X and a free first-order variable z, then
for any term ¢, [ifpy , ¢](t) is also a formula. The semantics is defined as for
MIC, i.e. [ifpy , ¢](t) is true in a structure K, if the interpretation of ¢ is in the
inflationary fixed point of the operator that maps X to {v : (KC, X, v) = p(z)}.

The classes of transition systems we are going to construct that are definable
in M-IFP and have high automaticity are based on the use of trees to encode
sets of integers in a number of ways of increasing complexity. To be precise,
for each natural number £, we inductively define an equivalence relation ~
on trees as follows.

Definition 5 For any two treest and s, write t ~q s just in case t and s have
the same height and t ~p.1 s just in case the set of ~-equivalence classes of
the subtrees rooted at the children of the root of t is the same as the set of
~-equivalence classes of the subtrees rooted at the children of the root of s.

By abuse of notation, we will also think of these relations as relations on the
nodes of a tree 7. In this case, by u ~; v we mean t,, ~ t, where t, and t, are
the trees rooted at u and v respectively. A simple induction establishes the



following lemma.

Lemma 6 The number of distinct =~} equivalence classes of trees of height
n+ k or less is k-fold exponential in n.

Proof. The proof is by induction on k. Clearly, the number of ~( equivalence
classes of trees of height n or less is n. Let N be the number of ~; equivalence
classes of trees of height n+k and ¢4, ..., tx be a set of representatives for these
classes. Then for every subset S of {1,..., N} we can form a tree of height
n+ k41 such that the set of trees rooted at the children of the root is exactly
{t; - i € S}. Such trees formed from distinct subsets are ~; inequivalent.
Thus, there are 2V ~, -equivalence classes. O

Let E) be the function that maps n to the number of ~; equivalence classes
of trees of height n + k or less. Also, let Cy, be the class of trees 7, v with root
v such that all successors of the root are ~-equivalent.

Lemma 7 The automaticity of Cxy1 is at least F.

Proof. Suppose there were an automaton A with fewer than E}, states accept-
ing Cry1. Then, by the definition of Ej, there are two ~-inequivalent trees ¢
and s of height at most n + k such that A reaches the same state at the root
of t as it does at the root of s. Consider now the tree t; of height n + k + 1
which consists of a root with two children that are the roots of two copies of ¢
and the tree t5 of height n 4+ k + 1 which consists of a root with two children
one of which is the root of a copy of ¢t and the other is a root of a copy of
s. Clearly, A accepts t; if, and only if, it accepts t5. However, t; € Cp 1 and
t1 & Cri1, so this is a contradiction. O

By Lemma 7, the automaticity of Cy, is at least k-fold exponential. By showing
that ~-equivalence is M-IFP-definable, we establish the following theorem.

Theorem 8 For every elementary function f, there is a property with auto-
maticity Q(f) definable in M-IFP.

Proof. We first show by induction on k that the equivalence relation ~ is
definable by a formula ¥y (u,v) € M-IFP.

Basis. Let 1(x) be defined as

W) = [ifp xo (24 uns# oAy (Ery — X)) Vv
(x =uAVy (Euy — Xy) A Jy (Evy A = Xy)) V
(x = v AVy (BEvy — Xy) Ay (Buy A —~Xy)))](z).

10



and define Jg(u,v) 1= Vo (r = vV = v — —(x)). Clearly, in each stage
a, X contains all nodes of height less than « other than « and v and one of
these just in case they are of different height one of which is less than «. Thus,
g is true of a pair of nodes u, v just in case they are of the same height.

Induction Step. The definition of the relation given in Definition 5 actually
shows that ¥, is obtained by a first-order formula from the relations ~.

By Lemma 6 there is a k such that the number of ~-equivalence classes
is Q(f). But then, Cxyq is a class of trees that is bisimulation-closed, it is
M-IFP-definable, and its automaticity, by Lemma 7 is Q(f). a

It follows from this that there are bisimulation invariant properties definable in
M-IFP that are not definable in MIC. This contrasts with L, whose expressive
power coincides precisely with the bisimulation invariant fragment of monadic
LFP. This result dashes hopes of characterising MIC as the bisimulation-
invariant fragment of a natural predicate logic, a question that was posed
in [4].

Corollary 9 MIC s strictly contained in the bisimulation invariant fragment

of M-IFP.

4 Labelling Index

We now generalise automaticity further to finite transition systems that are
not necessarily acyclic. This necessitates some changes. First, we have to ex-
tend the automata model to devices operating on arbitrary finite transition
systems. As the structures may have cycles, there is no natural start or end-
point for an automaton. For this reason, we have refrained from calling the
devices automata and adopted the term labelling systems instead. The systems
are deterministic in that the label attached to a node is completely determined
by the labels at its successors and the propositions that hold at the node. In
this sense, the devices are also bottom-up. The formal definition is given in
Definition 16.

However, in order to have a meaningful measure of the growth rate of these
devices, we require a measure of the size of finite transitions systems that
generalises the length of a string and the height of a tree. We proceed to this
first.

Definition 10 Let IC be a transition system with universe V and let v € V.
The rank of v in K is the largest n such that there is a sequence of distinct

11



nodes vy, ...,v, in K with v = vy and a path from v; to v;y1 for each i. The
rank of K is the supremum of the rank of all nodes v € V.

Note that on a finite transition system I the rank of I is witnessed by a state
v, i.e. there is a state v whose rank equals the rank of /. To simplify notation,
we will sometimes refer to the rank of a node v in K as the “rank of I, v”.

It is easy to see that the rank of a tree is indeed its height (taking the height
of a tree with a single node as being 1) and the rank of any acyclic structure
is equal to the length of the longest path. This observation can be further
generalised by the following equivalent characterisation of rank.

Definition 11 The block decomposition of a structure KC is the acyclic graph
G = (V,E) whose nodes are the strongly connected components of K and
(s,t) € E if, and only if, for some u € s and some v € t, there is an action
a such that u = v. For each node s of G, we write weight(s) for the number
of nodes u of IC such that u € s. The block rank of a node s of G is defined
inductively by

rank(s) = weight(s) + max{rank(t) : (s,t) € E'}.

The block rank of a finite transition system K is defined as the supremum of
the rank of all nodes v in K.

The following lemma is now immediate from the definitions.

Lemma 12 For every transition system K and every node v, the rank of v in
IC is equal to its block rank.

When relating tree-automata to fixed-point logics as in Proposition 4, the key
property of the height of a tree is that it bounds the length of any simple fixed
point induction that can be defined in L, or MIC. We show that this carries
over to our definition of rank.

Let kMIC denote the class of formulas in MIC where every system of formulas
defining a fixed-point induction has at most k rules. Note that we do allow
arbitrary nesting of fixed-point operators inside a kMIC-formula. The closure
ordinal of K, in terms clpc(K), is defined as the supremum of all a such
that there is a system S of at most k£ formulas in kMIC for which « is the
least ordinal with S¢ = S%*!. For a structure K, v with a distinguished node
v, we write clpyc(IC, v) for the supremum of all & such that there is a system
S of at most k£ formulas, defining variables X1, ..., X}, for which « is the least
ordinal with v € X¢. We refer to clpnuc (K, v) as the closure ordinal of v in K.

Lemma 13 Let p be the rank of a node v in a structure IC. Then clyyic (K, v) <
k- p.

12



Proof. Let S be a system of at most k formulas of kMIC defining variables
Xi,..., X and let n is the least ordinal with v € X7. We construct a non-
repeating sequence u . . . U, of states®in C, where m := [ %1, such that every
u;11 is reachable from wu;.

For this, consider the stages X} induced by S, where 1 < j <kand 0 <i <n.
Clearly, for every stage ¢ > 0 there must be a state u and a variable X; such
that u € X} but u ¢ X ;_1. We inductively define for every such state u and
set X, a dependency tree 7 (u, X;) as follows. If i = 1, the tree consists of
a single node labelled by v and X;. If 7 > 1, then there must be an element
w, reachable from u, and a set X; such that w € Xli_1 — Xli_z. Otherwise, u
would already be contained in X; at some earlier stage. Now, the dependency
tree for v and X; consists of a node labelled by u and X; and for each such w
a successor which is the root of the dependency tree 7 (w, X;) for w and Xj.
A simple induction shows that the dependency tree for every state u and set
X such that u € X/ — X" is of height exactly i—1.

Now consider the dependency tree 7 := 7 (v, X;) for the distinguished state v
and the set X;. By definition of the closure ordinal of v in K, v € X7 — X7 1.
Clearly, no path in 7 can contain more than one node labelled by the same
pair (w, X)), for some w and X;. Therefore, for every state w in K and every
path P in 7, there are at most k nodes labelled by (w, X;) for some . Let
P C 7 be apath in 7 of maximal length, i.e. length n. As P cannot contain
more than k nodes labelled by the same state w in IC, it follows that there
are at least m := [7] nodes which are labelled by different states from K. Let
(u1,...,uy,) be the sequence of these states in decreasing order with respect
to their height in 7. By construction of the dependency tree, every w;y; is
reachable from wu;. Thus, we have constructed a non-repeating sequence of
length m where every node is reachable from its predecessor.

By the definition of rank, m must be less than or equal to p. Asn < k-[7] =
k-m < k- p, the lemma is proved.

An immediate consequence of the lemma is the following corollary.

Corollary 14 For every transition system K, clpvic(K) < k- p, where p is
the rank of K.

In particular, taking k£ = 1, we have that closure ordinals of simple inductions
are bounded by the rank of the structure. While the rank of a structure K

3 In this proof we refer to the nodes in K as states to distinguish them from the
nodes of a tree that will be defined later on.
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provides a combinatorial measure that bounds the closure ordinals of simple
inductions, it is not an exact characterisation. Nor can we expect it to be exact
because it is clear that the closure ordinals are invariant under bisimulation
while rank is not. It may be more appropriate therefore to consider the rank,
not of a structure K, but of its quotient under bisimulation ,.. With this,
we do indeed get a converse to Lemma 13, as seen below. Note that for the
case of finite strings and trees this consideration was unnecessary. In the case
of finite strings, no two elements can be bisimulation equivalent. In the case of
finite trees, the rank is not changed by taking a quotient under bismulation:
it is still equal to the height of the tree.

Lemma 15 If the rank of IC/. is n, there is a formula ¢(X) € ML, positive
in X, whose closure ordinal on IC is n.

Proof. Since closure ordinals of modal formulas are invariant under bisimu-
lation, it suffices to construct a formula ¢ whose closure ordinal in K, is n.
Let vy,...,v, be a sequence of elements in K, witnessing its rank. Since, by
construction of K,., all nodes have distinct bisimulation types, we can write
modal formulas ¢y, ..., ¢, such that v; is the unique element of K, satisfying
;. Moreover, for each i, consider the sequence of actions that leads from v; to
v;11 and let p; denote the corresponding pattern of modalities. For example,
if vy is the a-successor of a b-succesor of vy, then p; = (b)(a).

Now, the required formula ¢(X) is given by:

o(X) =n V V (0 Api(pi1 A X)).

<n

An immediate consequence of Lemmas 13 and 15 is that the maximal closure
ordinals of simple MIC and simple L, formulas on any structure are the same.

We are now ready to introduce labelling systems, which generalise bottom-up
tree automata to transition systems that are not necessarily acyclic.

Definition 16 A labelling system L is a quintuple £ := (Q, A, P, 0, F), where
Q is a finite set of labels, A a finite set of actions, P a finite set of proposition
symbols, F C @ a set of accepting labels, and 0 a total function & : 29*A x
2P — (), the transition function.

For every Kripke-structure KC := (V, (E,)aca, (Pi)icp) and node v € V', the
labelling system L accepts IC,v, denoted K,v |= L, if, and only if, there is a
function f 'V — @Q such that f(v) € F and for each s € V,

f(s) = 6({(f(s/),a) ca€ A and (s,8) € Ea},{z' i €P and s € Pl}>
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In words, a rooted structure IC,v is accepted by a labelling system if there
is some way of labelling the elements of K which is consistent with the lo-
cal conditions specified by ¢ and which labels the root v by a label from F.
Moreover, the local conditions ¢ are such that the label of a node is completely
determined by the set of labels assigned to its successors and the atomic propo-
sitions true at the node. This is a straightforward generalisation of bottom-up
automata on trees but we have refrained from calling the systems automata
as they have no specific starting point in the structure.

As ¢ is functional, labelling systems have some characteristics of deterministic
devices, coinciding with bottom-up automata on trees. On the other hand, if
the structures may contain cycles, some form of nondeterminism is present as
acceptance is defined in terms of the existence of a labelling. Thus, for a given
structure and a given labelling system, there may be more than one labelling
function f witnessing the fact that £ accepts IC, v.

The class of structures accepted by a labelling system is not necessarily closed
under bisimulation. This can be seen in the following simple example.

Example 17 Consider the labelling system L = (Q, A, P,0,F) given by

Q = {Qevem QOdd};

A={a} and P =10,

F = {qeven} and

the function ¢ is given by the rules 0(0) = Geven, 9({(Geven;@)}) = Goad,

5({q0dda @}) = {even and 6({<qevena &)7 (QOdda a)}) = {even-

Here we have dropped the second argument of § as it is always (.

This labelling system accepts a transition system that only consists of a single
cycle if, and only if, this cycle is of even length.

As we are especially interested in labelling systems that define bisimulation-
closed classes of structures, we consider the following definition.

Definition 18 A labelling system L is ~-consistent, if for all Kripke-structures
KC,v, whenever KC,v |= L then there is a labelling f witnessing this with the
property that for all s,s', IC,s ~ IC, " implies f(s) = f(s).

It might seem that a more natural condition would be obtained just by re-
quiring the class of structures defined by £ to be closed under bisimulation,

as in the following definition.

Definition 19 A labelling system L is ~-invariant if, whenever K,v = L and
K,v~K' v then K'Jv' = L.
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As it happens, these two definitions are equivalent for the structures that are
of interest to us. Call IC, v rooted if, for every node u # v, there is a path from
v to u in K.

Lemma 20 On rooted structures, a labelling system is ~-consistent if, and
only if, it is ~-invariant.

Proof. Suppose L = (Q, A, P,6,F) is ~-consistent and IC,v = L, with f :
V — @ being a labelling that witnesses this, such that f(s) = f(s’) whenever
IC,s ~ K, s'. Consider a structure K" with universe V"’ such that K',v" ~ IC, v.
Define a labelling f' : V' — @Q by f'(u) = f(s) where s € @ is such that
K',u ~ K, s. Such an s must exist since both I and K’ are rooted structures
and the roots v and v’ are bisimulation equivalent. Thus, for any u reachable
from o’ there is an s reachable from v which is bisimulation equivalent to w.
Moreover, the labelling f’ is well defined as the labelling f is ~-consistent and
there is therefore only one label for each ~-equivalence class in IC. It is easily
verified that f’ is then a labelling witnessing that X', v" = L.

For the converse, suppose £ = (Q, A, P,0,F) is ~-invariant and K,v |=
L. Consider the structure K,. which is the quotient of K under ~. Since
K/, [v] ~ K, v, we have, by the ~-invariance of £ that K,.,[v] = L. Let f
be a labelling that witnesses this latter fact. Define f' : V' — Q by f/(s) =
f([s]). Then f’is a valid labelling of K, v, and it satisfies the condition that
K,s ~K,s" implies f'(s) = f'(s'). a

While any ~-consistent labelling system £ defines a class of ~-invariant struc-
tures, not every bisimulation-closed class C of structures is given by such a
labelling system. However, we see below how C can be defined by a family
of systems. In order to define the family we use the rank of a structure as a
measure of its size.

We begin with two simple observations. First, note that the rank of any struc-
ture KC is bounded by its size. Secondly, we note the following simple lemma.

Lemma 21 For anyn, there are, up to bisimulation, only finitely many struc-
tures of rank n.

Proof. Let IC,v be a structure of rank n and let GG be its block decomposition,
as defined in Definition 11. We prove by induction on the height of G (as G is
acyclic, this is well-defined) that there are only finitely many structures, up to
bisimulation, with rank n and whose block decomposition has height h. Since
h is at most n, this establishes the lemma.

If G has height 1, then K is strongly connected. Thus, its rank is equal to its
size. As there are only finitely many structures, up to isomorphism (and, a
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fortiori, up to bisimulation), of size n, we are done. For the induction step,
suppose G has height h + 1, let k£ be the weight of the block in G containing
v and let K’ be the substructure of K induced by the k elements in this
block. Note that k& < n. Every element of K that is not in K’ can be seen
as the root of a structure of rank at most n — k& whose block decomposition
has height at most h. By induction hypothesis, there are only finitely many
bisimulation equivalence classes among such structures. Let 7 be the collection
of such classes. The bisimulation type of K is completely determined by the
bisimulation type of K’ when each element v is additionally coloured with
the set of pairs (a,T") where T' C 7 is the set of types of elements not in X’
accessible from v by action a. As the size of K’ is bounded, and there are only
finitely many possible colours, we conclude that the number of bisimulation
types with height h + 1 is bounded. O

We show now that every bisimulation closed class of transition systems can
be accepted by a family of labelling systems as follows.

Lemma 22 Let C be a bisimulation closed class of finite structures. For each
n there is a ~-consistent labelling system L, such that for any structure K
with rank(KC) < n, L, accepts K if, and only if, K € C.

Proof. By Lemma 21, there are, for fixed n, only finitely many bisimulation
equivalence classes. We define a labelling system £ := (Q, A, P, d, F) by taking
() to be the collection of all bisimulation classes of structures of rank at most n
and defining, for sets M C @ x A and P C P, §(M, P) to be the bisimulation
class of the structure consisting of a root labelled by the propositions in P
with, for each (q,a) € M, an a successor of the root such that the structure
rooted at this successor is in the bisimulation class represented by ¢. Define
F as the set of states representing the bisimulation class of a structure in C.
The lemma now follows immediately. O

Considering a family (L, ),<, of labelling systems £,, such as in Lemma 22,
the minimal size in terms of n of the labelling systems £,, in the family can be
seen as a measure of the complexity of the class C. This leads to the definition
of the labelling index of classes of transition systems, which generalises the
automaticity of languages and classes of trees.

Definition 23 Let C be a bisimulation closed class of finite structures. The
labelling index of C is defined as the function f : n — |L,| mapping natural
numbers n to the number of labels of a minimal labelling system L,, such that
for any IC,v of rank n or less, (KC,v) € C if, and only if, K,v | L,.

Automata models on graphs, generalising automata on trees, have been stud-
ied before. A common way in which such automata are defined is in terms of

17



tiling systems, see [13,14]. A tiling system consists of a set of states () and a set
of finite graphs - called tiles - labelled by states from (). A graph & is accepted
by a tiling system if it can be labelled by states from () in such a way that
the resulting labelled graph can be completely covered by overlapping tiles.

Superficially, tiling and labelling systems seem closely related and indeed we
could rephrase the definitions above in terms of tiling systems. But there are
subtle differences. One is that there is no preferred direction to a tiling system.
A tile can constrain the label of a node both in terms of its predecessors as well
as its successors. In contrast, in our labelling systems the labels only “look
forwards” which is consistent with our intent to capture bisimulation-invariant
properties. Additionally, tiling systems are inherently nondeterministic, per-
mitting multiple possible labels for a node in a graph with the same set of
labels on its neighbours. In our labelling systems the label of a node is deter-
mined by the set of labels on its successors. Finally, there is no notion of an
accepting state in a tiling system

5 Labelling Indices of Modal Logics

In this section, we aim to establish upper and lower bounds on the labelling
index of classes of structures definable in modal logics such as ML and its
various fixed-point extensions.

5.1 The modal iteration calculus

It was shown by Dawar, Gridel, and Kreutzer in [4] that any class of trees
definable in MIC has at most exponential automaticity. The proof translates
easily to the labelling index on arbitrary structures. For this, we first need
some notation.

If ¢ is a MIC-formula we write sf(¢) for the set of sub-formulas of ¢. For
the rest of this section we agree w.l.o.g. on the following naming convention:
No fixed-point variable is bound twice in ¢. Further, let X;,..., X} be an
enumeration of all fixed-point variables occurring in ¢ ordered from the outside
in, i.e. if ¢ < j then either X; does not occur free in the formula defining X;
in ¢ or X; and X; are bound together in a simultaneous induction.

Let 7:=iy,...,i; be a tuple of finite ordinals. If ¢ € sf(y) is a sub-formula of

¢ and KC, v is a transition system, we write (K, X'),v |= ¢ to indicate that v
holds at the node v if each free fixed-point variable X; in v is interpreted by

the stage X ;] of the induction on K.
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Definition 24 (¢-types) A ¢-type of rank n of a formula ¢ is a function
f:40,... k-n}F — 2%) such that there is a transition system KC,v of rank
n with

f@) = {@/} ; (IC,YE),U =1 and if X; is bound in ¢ then i; =k - n}
In this case we also say that f is the p-type of this transition system /.

The set of rank n MIC-formula types is defined as the set of all functions f
which are a p-type of rank n, for some formula ¢ and some n.

We use the notion of MIC-formula types to define for each formula ¢ € MIC a
family of labelling systems accepting precisely those structures which satisfy
. It is easily seen that in any transition system of rank n the ¢-type of rank
n of a node v is uniquely determined by the atomic propositions true at v and
the @-types of the successors of v. (A proof of this fact is implicit in the proof
of the next lemma.) This motivates the following definition.

Definition 25 Let ¢ be a formula in MIC. For everyn € w define the labelling
system L,(n) == (Q, A, P,6,F) as follows.

o Q:={f:fisaq-type of rank at most n} U {L}.

o Let sets M C Q X A and P C P be given. If for some a, (L,a) € M then
d(M,P) = L. If there is a transition system IC,v of rank at most n such
that

(1) at v, exactly the propositions in P are true,
(i) for each pair (¢',a) € M there is an a-successor of v whose -type is
q, and
(71i) v has no further successors
then define 6(M, P) as the o-type of v in KC. Otherwise, 6(M, P) := L.
e Finally, F C Q is the set of labels ¢ # L such that ¢ € q(k - n).

Lemma 26 Let ¢ € MIC be a formula, KC be a structure and v be a node
of rank n in K. Then for every m > n, L,(m) accepts KC,v if, and only if,

K,v = .

Proof. Recall the notational convention outlined above. In particular, let
Xi,..., Xy be the fixed-point variables defined in ¢ enumerated as described
above. Let IC be a transition system and v be a node of rank n. Let m > n.
By Lemma 13, every induction defined by a sub-formula of ¢ must close on v
in IC after at most kn steps.

Suppose first that K, v = ¢. We construct a labelling f witnessing that £ :=
L,(m) accepts KC,v. For every node u € K reachable from v let f(u) be the
p-type of K,u. It is an immediate consequence of the definition of p-types
and the labelling systems L,(m) that this labelling is consistent with the

19



transition function, i.e. it is indeed a labelling. As K,v |= ¢, it follows that
¢ € f(v)(k-n) and thus £ accepts K, v.

Towards the converse, let f be a labelling witnessing that I, v = L. It follows
immediately from the definition of £ that no node reachable from v can be
labelled by L. (Otherwise, v would be labelled by L contradicting the assump-
tion that £ accepts K,v.) Hence all nodes reachable from v are labelled by a
p-type of rank m.

Let V' be the universe of K. We claim that for all u € V, if ¢ := f(u) is
the p-type f assigns to u, then for all 7 € {0,...,k - m}* and all ¢ € sf(p),

Y € q(7) if, and only if, (K, X"),u = ¥.

The claim is proved simultaneously for all nodes by simultaneous induction on
the lexicographical ordering on 7 and the structure of the formulas ¢ € ¢(7).
Let w € V, ¢ and 7 be given and assume that the claim has already been
proved for all triples w € V', ¢’ € sf(¢)), and 7 < 7 so that ¢ # ¢ or 7 # 1.
Here, and below, we write 77 < 7 for the the partial order obtained as the
product of the orders on individual elements.

e [f 1) :=p € P is an atomic proposition, then the claim follows immediately
from Part (i) of Definition 25.

e The case of Boolean connectives is trivial.

e Now suppose ¢ := (a)d. If u is a leaf, then ¢ is clearly false at wu. Let
q := f(u) be the p-type f assigns to u. As ¢ # L, the definition of the
transition function implies that ¢ is the p-type of a transition system S, v/,
such that v’ has no successor. It follows that 1 & (7).

Otherwise, if u is not a leaf, let M := {(¢’,a) € @ x A : there is an a-
successor of u labelled by ¢'}. By definition, ¢ is the p-type of some transition
system S, s such that for each (¢/,a) € M, there is an a successor of s in S
whose @-type is ¢'. .

If ¢ € q(7), then (S,X"), s = 1 and hence there must be an a-successor
s' of 5 in S such that (S,X'),s |= 9. It follows, that there exists a pair
(¢',a) € M such that ¥ € ¢/(7). Let v’ be an a-successor of u in K whose
label is ¢’. By induction on the structure of the formulas, this implies that
(K, X"),u =9 and thus (K, X"),u |= 1.

Conversely, if (K, X"), u = 1, then there is some a-successor v/ of u such
that (K, X'),u’ = 9. Let ¢’ be the label of «’. By induction on the structure
of the formulas, this implies that ¥ € ¢’(7) and therefore ¢ € ¢(7).

e The case for 1) := [a]¥} is analogous.

e Now, let ¢ := X, be an atom where X; is one of the fixed-point vari-
ables occurring in ¢. Suppose X is bound in a system S that also binds
Xy ooy Xy

If 7 = 0, then, since X} = () for all j, (K, X"),u £ X; and also, as ¢ is a
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p-type of some transition system, X; & ¢(7).

If 7 > 0 then, since ¢ is the @-type of some transition system, this implies
that there is a tuple 7 < 7 which agrees with 7 on all positions except
JsT1, ..., 11, such that ¢; € ¢(7'), where ¢; is the defining formula of X;.

By induction on the stages, this implies that (K, Yzl), u = ¢; and therefore
(K,X"),u = X; by the inflationary semantics of the ifp -operator.
The converse is analogous.
e Finally, suppose ¢ := (ifp X, : S), where

XT’l — SDTl(XT’U"-aXrl)
S = :
Xrl — ()OTZ<XT'17"'7XT'Z>

is a system of formulas. Suppose that ¢ € ¢(7). W.l.o.g. assume that r; <
ry < -+ < 1. By the definition of ¢-types, for all 1 < j <[, 4., = km, as
the variables X,,,..., X, are bound by . Further, ¢ is the ¢-type of some
transition system and therefore there is a sequence of stages X" such that
iy =i forall j #£r,, 1 <s <,

-4, <1y, forall 1 <s <1, and

© o € q(@l). ,

Thus 7 < 7 and, by induction on the order <, we get that (I, X" ),u = ¢y,
and therefore (K, X"),u = v.

Again, the converse is analogous.

This concludes the induction. We have shown that for all nodes u labelled by
f(u) = q, all ¢ € sf(p), and all 7 € {0,...,k-m}*

¥ € q(2) if, and only if, (K, X"),u = ¢.
Since L accepts KC,v we have that ¢ € f(v)(k-n) and therefore IC,v = ¢.
This finishes the proof of the lemma. O
The following theorem follows immediately.

Theorem 27 Fvery MIC definable class of transition systems has at most
exponential labelling index and there are classes of structures definable in MIC
which have an exponential lower bound on their labelling index.

Proof. In Lemma 26 we have proved that the family of labelling systems in
Definition 25 defined for a formula ¢ accepts the class of all transition systems
satisfying . Clearly, for every n, the size of L,(n) is exponential in n. From
this, the upper bound follows immediately.
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The lower bound follows from the fact that automaticity and labelling index
coincide on classes of words. As shown in [4], there are languages definable in
MIC which have an exponential automaticity. O

Another corollary of the results refers to modal logic. As ML-formulas can
be seen as MIC-formulas without any fixed-point operators, the number of (-
types for a ML-formula ¢ depends only on ¢ and is therefore constant. Thus
we immediately get the following.

Corollary 28 Fuvery property definable in ML has constant labelling index.

Note that the converse fails, as, for instance, not all regular languages are

definable in ML.

5.2 The modal p-calculus

The main difference between the argument for MIC considered above and
L, is monotonicity. This has a major impact on the definition of labelling
systems accepting L, definable classes of structures. Consider the labelling
systems as defined for MIC-formulas ¢. The label assigned to any node u
of the structures records, for every sub-formula of ¢, all tuples (i1, ..., ) of
induction stages where the sub-formula becomes true at u. As L, formulas are
monotone, if a sub-formula is true at a tuple of stages (i1, . .., ) it will also be
true at all stages obtained by increasing indices corresponding to p operators
and decreasing indices for v-operators. Thus, it seems it should suffice to
record, for each p operator, the least stage at which the corresponding sub-
formula becomes true at v and similarly the greatest stage for a v operator.
For instance, if we only had one fixed-point operator, say X, it would suffice
to mark each node u of the structure by the number of the stage at which it
is included into the fixed point of X or to indicate that it was not included
at all. We would thus only have a linearly bounded number of labels in the
labelling system.

The situation with nested fixed-point operators is somewhat more complicated
as the stage at which u enters the fixed-point of an induction may depend on
what values are assigned to the free variables, i.e. at what stages the outer
induction variables are being interpreted. But monotonicity also helps if there
is more than one fixed-point operator. To see this, consider a formula defining a
least fixed point. If the formula is true at a node v and a tuple of stages 7, then
it is also true at u if all or some of its free fixed-point variables are interpreted
by their fixed points. With this, it turns out to be sufficient to consider in
each node u of the transition system only those tuples 7 of stages where at
most one fixed-point induction has not reached its fixed point. As there are
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only polynomially many such tuples we get a polynomial upper bound on the
size of the labelling systems. And, as we shall see, for greatest fixed-points it
is not even necessary to record the stage at all as a node u is in the greatest
fixed point if, and only if, it is in some fixed point. We now give a detailed
proof of the following theorem, implementing the ideas presented above.

Theorem 29 For every formula ¢ of L,, there is a polynomial p such that
the property defined by ¢ has labelling index O(p).

Notation. For the rest of this section we fix a formula ¢ € L, in guarded
normal form (see Definition 2). Let sf(¢) be the set of sub-formulas of .
Further, let X1, ..., X} be the fixed-point variables occurring in ¢ and let, for
1 <@ <k, ¢; be the formula defining X;, i.e. the variable X; is bound by a
fixed-point operator \; X;.; with \; € {u,v}. We call variables bound by a
p-operator p-variables and variables bound by a v-operator v-variables.

We also fix a set A of actions and a set P of proposition symbols for the Kripke-
structures we consider in this section. Let K be such a Kripke-structure. We
write X for the fixed point of X; on K. To be precise, X{° := A\ X;.¢1 and
X = N X (X0, .., X)) (recall that fixed-point variables are numbered
from the outside in). Similarly, we write X7 for (X7, ..., X°,), i.e. the n*®
stage of the fixed-point induction on ¢;( X7, ..., X% ). Whenever we use this
notation it will be clear from the context Wthh Kripke-structure we mean.

To define the set of labels of our labelling system, we need an analogue of the (-
types of Definition 24. However, as we are aiming at a polynomial size labelling
system, the ¢-types are too rich a set of labels. Instead, the information we
seek to encode in a label is a function that maps formulas in sf(¢) to tuples of
integers which list the least stages of the u-inductions at which the particular
formula becomes true. This is formalised in the next two definitions, which
are somewhat more involved than the definition of ¢-types.

Definition 30 Let P C P be a set of propositions. A function q : & —
{0,...,n+1, L}* is locally P-consistent, if the following conditions hold for all
v e ®. We write (q(w)) to denote the i component of the image of a formula
. To simplify notation,Z we agree that min{ 1,7} := 4 and max{ L, i} := L for
alli <n+1.

If = p, then q(¢) ==
If ¢ = —p, then q(¥) :
wise.

For all i, (q(l/zl V ¢2)>1 := min{ (q(¢1))i, <Q(1/)2))Z}
For all i, (q(1/11 A wg))Z := max{ (q(dﬁ))i, (Q(¢2))Z}

(0,...,0) ifp € P and q(v) := (L, ..., L) otherwise.
= ( ...,J_) if p € P and q(¢) := (0,...,0) other-
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o [f1):=NX;.p;, with \; € {u, v}, then for all j,

ntl o ifj=i = pand (qp)), # L
0 ifj =14, \i=v and <Q(<Pi)).:0

7

(4()), = (aten)), ifi<i

1 otherwise.

o I[f:= X, and X; is a variable bound by a p-operator, then for all j,

(q(soi))j +1 i j=iand (qpi)) # L
<Q(Xz‘))j =40 if j > and (C](%))Z # 1
uE otherwise.

o IfY:= X, and X; is a variable bound by a v-operator, then for all j,

(a(x)) = {0 ifj =i and (a(p)), # L

1L otherwise.
A function q is locally consistent if it is locally P-consistent for some P C P.

The previous definition takes care of consistency of the truth assignments at
an individual node in the transition system. The following definition extends
this to ensure consistency with the actions.

Definition 31 Let Q be the set of all locally consistent functions q : st(p) —
{0,...,n+1, L} and let M C Q x A. A function q € Q is globally (M, P)-
consistent, if it is locally P-consistent and in addition the following conditions

hold:
o [f1) = (a)y', then for alli, (q(w))l = min({J_}U{(q’(Q//))i :(¢,a) € M}).
o [f1 :=[aly)’, then for all i, (q(w))z = max({O}U{(q’(z//))i :(q',a) € M}).

The function is globally consistent, if it is globally (M, P)-consistent for some
pair (M, P).

We first prove some facts about globally-consistent functions.

Proposition 32 (i) For each pair (M,P) C (Q X A) X P as in Defini-
tion 31, there is exactly one function that is globally (M, P)-consistent.
(11) For all i such that X; is a v-variable, for all formulas ¢ € st(y), and

all globally consistent functions q, either (q(w))l =0 or (q(w))l =1.

Proof. For Part (1), recall that the formula ¢ is in guarded normal form. Thus,
there is no circularity in the conditions in Definition 30, i.e. the values q(¢;),
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q(uX;.0i), and q(vX;.;) do not depend on the value of ¢(X;). Furthermore,
all the conditions are deterministic, that is to say, there is a unique value of
q(v) satisfying the conditions for any sub-formula .

Part (i7) can easily be proved by induction on the structure. O

We are now ready to define the labelling systems for L,-formulas.
Definition 33 For every n € w define the labelling system L,(n) as follows.

e Q is the set of all globally consistent functions q : sf(o) — {0,... ,n+1, L}*.

o A is the set of actions in the signature and P is the set of proposition
symbols in the signature.

o Foreach M C Q x A and P C P, §(M, P) is the function q that is globally
(M, P)-consistent.

o Finally, F :={qe Q:q(p) # L}

It follows from Proposition 32 above that £, is well-defined. Also, by construc-
tion, the size of any such labelling system £, is bounded by a polynomial in
n whose exponent only depends on .

We now prove that the labelling systems of Definition 33 work as intended.
The proof is split into two separate lemmas.

Lemma 34 Let KC,v be a transition system of rank no more than n. If IC,v |=
@ then L,(n) accepts I, v.

Proof. For each node u define a function ¢, : sf(¢) — {0,...n+ 1, L} as fol-
lows. Let ¢ € sf(¢) be a sub-formula. For all 7 such that ¢ is not a sub-formula

of ¢; define <q(2/1)) := L. For all other i consider the stages of the induction

on @; where again all free variables of ; other than X; are interpreted by
their fixed points. If IC,u = ¢¥(X7°) then let n be the least ordinal such that

K,u = ¢(X]") and set (q(w)) := n if ¢ corresponds to a p-operator and set
(q(z/))) = 0 if it corresponds to a v-operator. Otherwise define (q(w)) = 1.

It is now a simple observation that the function f : V — (@) assigning to each
node u € V the function ¢, is a ~-consistent labelling witnessing that L,
accepts IC, v. a

We now turn to the converse.

Lemma 35 Let K,v be a Kripke-structure of rank at most n and let ¢ € L,
be a formula. If L,(n) accepts IC,v, then IKC,v = .
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Proof. Let f be a labelling witnessing that £, accepts K,v. We claim that
for all nodes u € V' all i < k, and ¢ € sf(p), if ¢ = f(u) is the label assigned

to u by f (q(iﬂ))2 =m # L then

o C,u (X" if X; is a p-variable and
o C,u = 9(X:?)if X; is a v-variable.

Clearly, this implies the lemma as by the definition of acceptance, v must be
labelled by a label in F and these labels all map ¢ to something other than
1.

We prove the claim, simultaneously for all nodes u, by simultaneous induction
along the lexicographic order on the tuples f(u)(1), and the structure of the
formula . Let ¢ := f(u) be the label assigned to the node u. Further, let P
be the set of propositions true at u and let

M :={(¢,a) :a € Aand ¢ = f(u) for some a-successor v’ of u}.
Now, assume ¢ € sf(p) is a sub-formula of ¢ and ¢(¢0) = m # L.

e Suppose ¢ := p and let ¢ < k. By definition, if ¢ is the label assigned to u
by f, and (q(p)) # L, then this implies that p € P and thus K, u |= 9.

e The case ¢ := —|]Z) is analogous.

e The cases for Boolean connectives and modal operators are obvious.

o Let ¢ := AX,.p; for A € {u, v}. Suppose first that A = p and consider some

j < i. By definition of ¢, if (q(zb)) =m # L, then (q(l/z)) = (q(cpz)) . By
J J J
induction on the structure of the formulas, this implies that (IC, X7"),u =

;. Hence, u occurs in the fixed point of X; and (K, )N(Jm), u = 1.

Now suppose j = i. By definition, (q(@b))l # 1 implies (q(@/z))l =n+
1 and (q(cpl)) = m # L. By induction on the stages, this implies that
(K, X"),u = Zpl and therefore also (K, X!™),u = 9.

The case A = v is analogous.

e Finally, suppose ¥ := X;. Assume first that X; is bound by a p-operator.
If <Q(XZ))Z # 1, then, by definition, (q(gpl))z =m # L and (q(XJ)Z =
m + 1. Thus, by induction on the stages, (IC, X["*),u | ¢; and therefore
(K, X" ™) u = X

Now consider some j > i. By definition, (q(Xi))j := 0. We have to show

that (K0, X7),u = X;. Recall that this means that X; is true at the node u
under the interpretation of X; by its 0™ stage and where all other fixed point
variables, including X, are interpreted by their respective fixed points. As
proved in the preceding paragraph, u occurs in the fixed point of X;. From
this, the claim follows immediately.

Now suppose X; is bound by a v-operator. By definition, (q(Xi))j #+ 1
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implies (q(XZ)) = 0. As X; is bound by a greatest fixed-point operator,
J

X? contains the whole universe and therefore X; holds true at u.

This proves the claim and thus the lemma. O

This concludes the proof of Theorem 29. A consequence of the proof is that
if a L,-formula does not use any p-operators, the class of structures defined
by it has constant labelling index. Thus, to give an example of a L, definable
class of structures with non-constant labelling index, the exclusive use of v-
operators is not sufficient. But it can easily be seen, using pumping arguments,
that to express reachability, constant size labelling systems are not sufficient.

Proposition 36 There is an L,-definable class C of structures that has a
linear lower bound on its labelling index.

Proof. Let C be the class of transition systems such that there is a node
reachable from the root labelled by the proposition p, i.e. the class of transition
systems C, v satisfying the L,-formula pX.(p Vv ¢X).

Obviously, C can be accepted by a family of labelling systems of linear size. We
wish to prove that we cannot do better. Assume otherwise and suppose that
for some n > 2 there is a labelling system L of size less than n accepting the
class C,, of structures from C of rank at most n. Consider the structure I :=
({0,...n =1}, B, P) with B :={(i,i+1):0<i<n—1} and P := {n — 1}.
Obviously IC,0 € C, and thus K, 0 is accepted by L. As there are fewer than
n labels, there must be two different nodes u < v < n—1 in K labelled by the
same label ¢ in £. But then the same labelling also witnesses that the system
K= ({0,...,v}, E', P") where E' := {(i,i+1): 0 <i <v}U{(v,u+1)} and
P’ := (), would be accepted by £. As K',0 & C we get a contradiction. O

Theorem 29 along with Proposition 36 establishes both upper and lower
bounds on the labelling index of properties definable in L,. There remains
a gap between these. We conjecture that Proposition 36 can be strengthened
to show that for any polynomial p , there is a property definable in L, with
labelling index Q(p).

Proposition 36 also shows that there are properties definable in various ML
extensions like LTL, CTL, or CTL* which have non-constant labelling index,
as reachability can be expressed in these logics.
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6 Labelling Index and Complexity

We begin by contrasting labelling index with the usual notion of computational
complexity in terms of running time on a machine measured as a function of
the size of the structure. We demonstrate that the two measures are not really
comparable by exhibiting a class of structures that is decidable in polynomial
time but has non-elementary labelling index and on the other hand an NP-
complete problem that has exponential labelling index.

The first of these is the class of finite trees F such that if ¢,, are t, are subtrees
rooted at a successor of the root, then ¢, ~ t,. As was shown in [4] and also
explained in the paragraph following Proposition 4, there is no elementary
bound on the automaticity of this class, but it is decidable in time polynomial
in the size of the tree. This yields the following result.

Proposition 37 There is a polynomial-time decidable class of Kripke struc-
tures with non-elementary labelling index.

In contrast, we can construct an NP-complete problem of much lower labelling
index. We obtain this by encoding propositional satisfiability as a class of
structures S closed under bisimulation, and demonstrate that it is accepted
by an exponential family of labelling systems.

Theorem 38 There are NP-complete classes with exponential labelling indez.

Proof. Let ¢ be a propositional formula formed from the propositional vari-
ables Vi, ..., V, using the Boolean operations A, V and —. We define an en-
coding of ¢ as a Kripke structure 7, in the vocabulary with a single action a
and propositional vocabulary {A,V, =, V, Count}. 7, is defined inductively as
follows.

o If ¢ is a variable V;, 7, consists of a root labelled V' which is connected to
a chain of length 7 of nodes labelled Count, and with an edge from the root
to itself.

o If ¢ is 91 Ao, T, consists of a root labelled A with two successors which
are roots of 7y, and 7y,. The rule for ¢ V 1), is similar.

o If ¢ is =), 7T, consists of a root labelled — with a single successor which is
the root of 7.

Now, the class of structures S is defined by
S :={K: K ~ 7, for a satisfiable formula ¢}.

It is immediate from the definition that S is bisimulation closed and NP-
completeness follows from the obvious reduction. We now demonstrate an
exponential family of labelling systems that accepts S.
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Let TA,, denote the set of possible truth assignments to the variables {V1,...,V,,}.
Thus, TA,, is a set of size 2". We define the labelling system L£,, to have the
set of labels {T', F'} x TA,,U{C, : 1 <i < n}U{Fail}. The transition function

0 is defined so that:

e For every node where the proposition Count holds, the node must be labelled
C;yq if all its successors are labelled C;, and Fail otherwise.

e If the proposition V holds at a node, and there is an i and a state (v, As) €
{T, F}xTA, with v = As(i) such that every successor of the node is labelled
either C; or (v, As), then the node must be labelled (v, As), and it must be
labelled Fail otherwise.

e A node where A holds is labelled (7, As), where As € TA,, if all of its
successors are labelled (T, As). It is labelled (F, As) if one of its successors
is labelled (F, As) and the others are labelled (v, As) for some v € {T, F'}.
In all other cases it is labelled Fail.

e A node where V holds is labelled (F, As), if all of its successors are labelled
(F, As). It is labelled (T, As) if one of its successors is labelled (7, As) and
the others are labelled (v, As) for some v € {T, F'}. In all other cases it is
labelled Fail.

e A node where — holds is labelled (T, As) if all of its successors are labelled
(F, As). It is labelled (F, As) if all of its successors are labelled (7, As). In
all other cases it is labelled Fail.

Finally, the set F of accepting states is the set {T'} x TA,,.

It is easily seen that, for a propositional formula ¢ with no more than n
variables, £,, accepts 7, if, and only if, ¢ is satisfiable. Moreover, £,, is clearly
bisimulation invariant and we therefore conclude that the family (£, : n € w)
accepts S. a

It is an open question whether the exponential bound in Theorem 38 is opti-
mal. In particular, is there an NP-complete class of transitions systems with
constant labelling index?

6.1 The trace-equivalence problem

We now apply our methods to a particular problem that is of interest from the
point of view of verification—the trace-equivalence problem. We determine ex-
actly the labelling index of a number of variations of the problem and thereby
derive results about their expressibility in various modal fixed-point logics.

Consider a Kripke structure IC,v with set of actions A and a distinguished
proposition symbol F denoting accepting nodes. We define the set of traces
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of the structure to be the set 7 C A* such that ¢t € 7 just in case there is
a path labelled ¢ from v to a node in F. Two structures are said to be trace
equivalent if they have the same set of traces.

To define the decision problem of trace equivalence as a bisimulation-closed
class of structures, we consider

E={K,v: if v —» uand v — w then K,u and K, w are trace equivalent}.

In other words, it is the set of rooted structures such that any two successors
of the root admit the same set of traces.

The unary trace-equivalence problem is & restricted to structures over a vo-
cabulary with a single action, i.e. A = {a}. Similarly, we define binary trace
equivalence to be the class of structures over a vocabulary with action set
{a, b} that are also in &.

The problem of deciding the trace equivalence of two structures is computa-
tionally equivalent to deciding language equivalence of nondeterministice finite
automata. In particular, the unary trace equivalence problem corresponds to
equivalence of automata over a one-letter alphabet and the binary version to
equivalence of automata over a two-letter alphabet. These problems are known
to be co-NP-complete and PSPACE-complete respectively (see [6]). However,
we are interested in the complexity of these problems in terms of their rank
rather than their size. We also find it useful to distinguish between the prob-
lems for acyclic structures and structures which may have cycles. In terms
of classical complexity, the trace equivalence problem on acyclic structures is
solvable in polynomial time in both the unary and binary cases by a straight-
forward algorithm that recurses on the height. In the following, we will regard
a rooted structure IC, v as a finite automaton with start state v, with the states
satisfying F being the final states.

Lemma 39 IfKC,v and K',v" are two acyclic structures with rank(IC), rank(K'") <
n that are trace inequivalent, then they are distinguished by some trace of length
at most n.

Proof. Trivial, as neither structure admits any trace of length greater than n.
O

Proving a bound on the length of traces needed to distinguish states in a
structure with cycles is somewhat more involved. It is possible to show that if
IC,v and K, v’ are distinguished by some trace, then they are distinguished by
a trace that is of length at most 22", where n is the size of K (see, for instance,
[3, p.167]). However, we know that the rank of a structure can be much smaller
than its size, so this does not yield a corresponding bound in terms of the rank
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of K. Nonetheless, using Lemma 39, we can establish an upper bound on the
labelling index of the trace equivalence problem for acyclic structures.

Theorem 40 (i) On acyclic structures, unary trace equivalence has at most
exponential labelling indez.
(1) On acyclic structures, binary trace equivalence has at most double expo-
nential labelling indez.

Proof.

We know, by Lemma 39, that if two nodes in an acyclic structure of rank n are
trace inequivalent, then there is a trace of length at most n that distinguishes
them. We therefore aim to associate with each node v the set of traces of
length at most n available from v. We call this set D, the discriminating set
of v and note that if u and v are not trace equivalent then D, # D,,.

Thus, writing A" to denote the set of strings over alphabet A of length n
or less, we define D, the collection of discriminating sets for the two separate
cases as follows:

(1) for unary acyclic structures D = Pow({a}=");
(1) for binary acyclic structures D = Pow({a, b}=");

Note that the number of elements in D is exponential in n in case 1 and double
exponential in case 2.

Now, to establish the result, we define a labelling system L£,, with state set D x
{e,n} and a transition function such that if a node v has a-successors labelled
(S1,21), ..., (Sk, zx) and b-successors labelled (11,11),..., (1}, vy;), then v is
labelled (S, z) where

o S={as:s €S, forsome i} U{bt:tet; for some i} U X, where X = {¢}
if v e F and X = () otherwise; and
er=cifS;=---=5,=1T1=---=1, and x = n otherwise.

It is then easily seen that on structures with rank n or less, if there is a valid
labelling of a structure with the system £, then a node gets label (S, e) if,
and only if, S is the discriminating set of that node, and all successors of the
node have the same discriminating set. Thus, setting D x {e} to be the set of
accepting labels, we have our required family of labelling systems. O

Proving matching lower bounds is relatively straightforward.

Theorem 41 e On acyclic structures, unary trace equivalence has at least
exponential labelling index.
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e On acyclic structures, binary trace equivalence has at least double exponen-
tial labelling index.

Proof. 1f D is as in the proof of Theorem 40, it is easy to see that for every
set D € D we can construct a rooted structure Kp, v of rank n such that its
discriminating set is exactly D. Indeed, such a structure can be a tree with a
branch for every string in D. Assume, towards a contradiction, that there is a
labelling system £ with fewer than |D| labels that accepts trace equivalence
up to rank n + 1. Then, there must be distinct D and D’ such that the roots
of p and Kp receive the same label in an accepting labelling by £. It then
follows that the structure Kg consisting of a root with two successors which
are both roots of disjoint copies of Kg and the structure K consisting of a
root with two successors which are roots of g and g both receive the same
label. However, as both Kg and Ky are of rank n+ 1, Kg € £ and Ky € &,
we have a contradiction. O

For the case of structures with cycles, we can also establish a lower bound
though the construction is not as straightforward. We are able to establish
a double exponential lower bound on the labelling index of the trace equiva-
lence problem for both unary and binary structures. This relies on the follow-
ing lemma, which is based on a construction used by Stockmeyer and Meyer
[12] to show the NP-completeness of the language inequivalence problem for
nondeterministic finite automata.

Lemma 42 There is a polynomial p such that there is a collection of 2%
unary structures of rank p(n) with pairwise distinct discriminating sets.

Proof. Theorem 6.1 in [12] gives a logarithmic space reduction from the prob-
lem of satisfiability of 3CNF formulas to the problem of determining language
inequivalence of nondeterministic automata over a one-letter alphabet (which
is, of course, equivalent to the problem of trace inequivalence of unary struc-
tures). The essence of the reduction defines an encoding of truth assignments
over the Boolean variables x1,...,z, as numbers. Then, it is shown that we
can construct, for each 3CNF formula ¢ an automaton which accepts a string
of length z if, and only if, z encodes a truth assignment satisfying .

Now, for any fixed truth assignment ¢ to the variables x1,...,x, it is easy
to construct a 3CNF formula (with possibly additional variables, but linearly
bounded in n) which is satisfied uniquely by ¢. Thus, by the reduction defined
in [12], we have an automaton A; which accepts a string of length z if, and
only if, z encodes t. Moreover, as the reduction is computable in logarithmic
space, there is a polynomial g(n) that bounds the size of A,.

Now take any set T of truth assignments (and there are 22" of these) and
define the automaton which branches from its start state to the start state of
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a copy of A; for each t € T. The rank of this automaton is g(n) + 1, though
its size may be exponential in n. But, it is clear that the automaton accepts
a string of length z + 1 if, and only if, 2z encodes a truth assignment in 7". In
other words, there are as many pairwise distinct discriminating sets as there
are sets of truth assignments. O

Theorem 43 On structures which may have cycles, unary trace equivalence
has at least double exponential labelling index.

Proof. The argument is exactly as in the proof of Theorem 41 except that in
place of trees we use the structures obtained in Lemma 42. O

It follows from Theorems 41 and 43 that none of the trace equivalence proper-
ties is definable in L,. However, it can be shown that unary trace equivalence
on acyclic structures is definable in MIC, giving another example of a prop-
erty separating these two logics. Moreover, it also follows that binary trace
equivalence on acyclic structures is not definable in MIC. Since this property
is polynomial time decidable and bisimulation invariant, it gives us another
instance of a property separating MIC from L. Finally, we note that on arbi-
trary structures, neither the unary nor the binary trace equivalence problem is
definable in MIC. Since the former problem is co-NP-complete and the latter
is PSPACE-complete, we do not expect that either is definable in L, but it
would be difficult to prove that they are not.
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