
Complexity Bounds for Regular Games
(Extended Abstract)

Paul Hunter and Anuj Dawar

University of Cambridge Computer Laboratory, Cambridge CB3 0FD, UK.
paul.hunter@cl.cam.ac.uk, anuj.dawar@cl.cam.ac.uk

Abstract. We consider the complexity of infinite games played on fi-
nite graphs. We establish a framework in which the expressiveness and
succinctness of different types of winning conditions can be compared.
We show that the problem of deciding the winner in Muller games is
PSPACE-complete. This is then used to establish PSPACE-completeness
for Emerson-Lei games and for games described by Zielonka DAGs.
Adaptations of the proof show PSPACE-completeness for the emptiness
problem for Muller automata as well as the model-checking problem for
such automata on regular trees. We also show co-NP-completeness for
two classes of union-closed games: games specified by a basis and superset
Muller games.

1 Introduction

Recent years have seen an increasing use of two-player infinite games as a means
of modelling reactive and concurrent systems. Games have emerged as essential
tools for the analysis, synthesis and verification of such systems with a close
connection to logic and to automata on infinite objects. The general framework
consists of games played on finite or infinite graphs (whose vertices represent
a state space) with players moving a token along the edges of the graph. The
(possibly infinite) sequence of vertices that is visited constitutes a play of the
game with the winner of a play being defined by some predetermined condition.

When we are concerned with algorithmic issues surrounding such games, we
need to restrict ourselves to games that can be described in a finite fashion. This
does not mean that the graph on which the game is played is necessarily finite as
it is possible to finitely describe an infinite graph. Nor does having a finite game
graph by itself guarantee that the game can be finitely described. Even with two
nodes in a graph, the number of distinct plays can be uncountable and there are
more possible winning conditions than one could possibly describe. In this paper,
we are concerned with regular games played on finite graphs. These are games
in which the graph is finite and the winner of a play is determined by the set of
vertices of the graph that are visited infinitely often in the play (see Section 2
for formal definitions). This category of games is wide enough to include most
kinds of game winning conditions that are considered in the literature, including
Muller, Streett, Rabin, Büchi and parity games.

Specifically, we are concerned with the problem of deciding, given a game
and a starting position, which player has a strategy for winning the game. It
is well-known that regular games are determined, i.e. one of the players has
a winning strategy and the problem of determining which player has such a
strategy is decidable [1]. We are interested in the computational complexity of
deciding the winner. Since the complexity is measured as a function of the length
of the description, this in turn depends on how exactly the game is described.
In general, a regular game is defined by a graph (V,E), where E ⊆ V × V ,
and a winning condition F ⊆ P(V) consisting of a set of subsets of V . One
could specify F by listing all its elements explicitly (we call this an explicit
presentation) but one could also adopt a formalism which allows one to specify
F more succinctly. In the latter case, there are two possibilities. Either the
formalism is general enough that any winning condition F ⊆ P(V) can be
expressed in it or there is only a restricted class of winning conditions that
can be expressed. Muller games are an example of the first case while Rabin,
Streett, Büchi and parity games are all examples of the second case. Since the

number of possible winning conditions F is 22|V | , if the formalism is general
enough to describe any regular winning condition then the description of the
game must, in general, be exponential in the size of the game graph. However,
some presentations may still be more succinct than the explicit presentation.
On the other hand, if the formalism is restricted in its expressive power, it may
be possible that the length of a description of the game is always bounded by
a polynomial in the size of the graph. We investigate these two dimensions of
variation in the description of games – the expressive power of the formalism on
the one hand and its succinctness on the other – in the results we establish.

As an example, consider a min-parity winning condition. Here, the winning
condition is specified by a priority function Ω : V → {0, . . . , d}. This is treated as
a specification of the set F consisting of those sets I ⊆ V such that the smallest
number in Ω(I) is even. It is clear that the description of Ω is bounded in length
by a polynomial (indeed, linear) function of |V |. It is also clear that not every
set F ⊆P(V) can be described in this way. On the other hand, there are such
sets F for which the description using a priority function is exponentially more
succinct than an explicit presentation.

The exact computational complexity of deciding the winner of a parity game
is a central open question in the theory of regular games. It is known to be in
NP ∩ co-NP [3] and conjectured by some to be in P. However, lower bounds
on the complexity of any class of games are hard to come by. It is known that
deciding games specified by the Rabin condition is NP-complete [3] and for the
Streett condition the problem is co-NP-complete. Both of these are condition
types that are restricted in that they cannot express all regular games. No lower
bounds are previously known for formalisms that are expressive enough to specify
all regular games, though algorithms for such games have been studied which
establish, for instance, that the games are decidable in Pspace.

We consider five general-purpose formalisms. Our main result is that the
problem of deciding the winner of a Muller game is Pspace-complete. We then

2

use this to establish Pspace-completeness for two further general-purpose rep-
resentations: Emerson-Lei games, where the winning condition is presented as
a Boolean formula over the vertices of the graph; and the case where the win-
ning condition is represented as a Zielonka DAG. The latter is a data structure
(defined in Section 2) based on the Zielonka trees of [12]. We define a notion
of polynomial-time translatability between formalisms. A formalism is translat-
able into another if the representation of a game in the first can be transformed
into a representation of the same game in the second. This is stronger than
polynomial-time reducibility of the corresponding decision problems. We show
that Muller games are translatable to Zielonka DAGs which are in turn trans-
latable to Emerson-Lei games, but the reverse translations do not hold. Our
hardness result for Muller games is based on the presentation of these games
which includes a colouring of the vertices. This allows for more succinct de-
scriptions than the explicit presentation of sets. Indeed, we show that there is a
translation in one direction but not the other. The complexity of deciding the
winner of the games where the sets are explicitly presented remains an open
question. An adaptation of the Pspace-completeness result shows that two im-
portant problems related to Muller automata are also Pspace-complete. These
are the emptiness problem and the model-checking problem on regular trees. As
an aside, we also show that the Pspace-completeness result for Muller games
holds even when the game arenas are restricted to small tree-width.

We also consider the restriction to games where the winning condition F
is closed under unions. The question of lower-bounds for union-closed games
was posed by Khoussainov (see [6]). It is known that deciding whether or not
Player 0 wins such a game is decidable in co-NP. The precise formalism used to
describe the set F is not relevant to this upper bound as the non-deterministic
algorithm runs in time polynomial in the size of the game graph. We show, for
two particular formalisms that the problem of deciding the winner is co-NP-
complete. One such formalism is what we call Basis games while the other is
the superset Muller games defined in [7]. The former is expressive enough to
define all union-closed games while the latter is restricted to expressing sets F
that are upward-closed. Both are, as we show, more succinct than an explicit
representation of F .

2 Background and Definitions

In this section, we present the basic definitions of games as well as particular
winning conditions. Many of the definitions presented here are standard. Where
this is the case, we follow terminology and notation from [5].

An arena A is a directed graph on a set of vertices V which is partitioned
into two sets V0 and V1, i.e. A = (V,E) where V = V0 ∪ V1, E ⊆ V × V
and V0 and V1 are disjoint. For the results we establish in this paper, there is
no loss of generality in assuming that the graph is bipartite in the sense that
E ⊆ (V0 × V1) ∪ (V1 × V0) and that for each v ∈ V , there is a v′ ∈ V such that
(v, v′) ∈ E. For instance, there is an easy transformation that maps any game

3

to a bipartite game by inserting a new V0 (resp. V1) vertex in every edge that
connects two V1 (resp. V0) vertices. This transformation does not change the
existence of winning strategies for either player from any of the original vertices.
Thus, wherever it is convenient, we will assume that the arena satisfies the above
assumptions.

A game G is an arena A together with a winning set of sequences Win ⊆ V ω.
Informally, we think of the game as played between two players, Player 0 and
Player 1, with a token that sits on a vertex v in V . If v ∈ V0, it is Player 0’s turn
to move and she1 moves it to some v′ such that there is an edge (v, v′) in E and
similarly for Player 1 when the token is on a vertex in V1. The infinite sequence
of such moves determines a play π which is the sequence in V ω of vertices visited.
We say Player 0 wins the play if π ∈Win and Player 1 wins otherwise.

A strategy (for Player i) is a function f from V ∗Vi to V with f(v0v1 . . . vn) ∈
vnE. Given a sequence of vertices visited, ending with a vertex in Vi, a strategy
gives the vertex that Player i should then play to. A play is consistent with a
strategy if every move made by Player i is determined by the strategy, and a
strategy is winning if every play consistent with it is winning for Player i. If a
strategy f has the property that for some fixed m, f(w) = f(w′) if w and w′

agree on their last m letters, then we say that the strategy requires finite-memory
(of size m− 1). If m = 1, we say the strategy is memoryless.

A game (V,E,Win) is regular if there is a set F ⊆P(V) such that for any
π ∈ V ω, π ∈Win if, and only if, the set {v : v occurs infinitely often in π} is in
F . In the remainder of the paper, we are concerned with games that are finite
(i.e. V is a finite set) and regular. Regular games are known to be determined,
that is, for each game and each initial vertex v, either Player 0 or Player 1 has
a winning strategy.

We say that a regular game (V,E,F) is union-closed if whenever I, J ∈ F ,
then I ∪ J ∈ F . A regular game is upward-closed if for any I ∈ F and I ⊆ J , we
have J ∈ F . Clearly any upward-closed game is also union-closed.

The games used in the literature in the study of logics and automata are
generally regular games (though not necessarily finite). In these games, the set
F is often not explicitly given but is specified by means of a condition. Different
types of condition lead to various different types of games. We do not give a
formal definition of a condition type but we will define specific instances of such
types.

The most straightforward presentation of a regular game (V,E,F) is given
by listing all elements of F . We call this an explicit condition. Games specified
by such a condition type are sometimes called Muller games in the literature,
but we reserve that term for the more commonly used presentation in terms of
colours given next.

A Muller condition on an arena (V,E) is given by a set of colours C, a
colouring function χ : V → C and a set C ⊆P(C). The set F specified by such
a condition is the set {I ⊆ V : χ(I) ∈ C}.
1 For ease of reference we use the feminine pronoun for Player 0 and the masculine

for Player 1.

4

An Emerson-Lei condition [4] on an arena (V,E) is given by a Boolean for-
mula ϕ with variables from the set V . The set F specified is the collection of
sets I ⊆ V such that the truth assignment that maps each element of I to true
and each element of V \ I to false satisfies ϕ.

In [12], Zielonka introduced a representation of a winning set F ⊆P(V) in
terms of a labelled tree, where the labels on the nodes are subsets of V . The
Zielonka tree of the set F , ZF,V , is defined inductively as:

1. If V /∈ F then ZF,V = ZF ,V , where F = P(V) \ F .

2. If V ∈ F then the root of ZF,V is labelled with V . Let M0,M1, . . . ,Mk−1

be the maximal sets in F , and let F|Mi
= F ∩P(Mi). The children of the

root are the subtrees ZF|Mi ,Mi
, for 0 ≤ i ≤ k − 1.

A Zielonka DAG is constructed as a Zielonka tree except nodes labelled by the
same set are identified, making it a directed acyclic graph. A Zielonka tree (DAG)
condition is one which uses a Zielonka tree (respectively, DAG) presentation.
Nodes of ZF,V labelled by elements of F are called 0-level nodes, and other
nodes are 1-level nodes. In the sequel, we use terms such as children and leaves
when referring to DAGs as well as trees, where the meaning is clear.

From a more practical perspective, when considering applications of these
types of games it may be the case that there are vertices whose appearance in
any infinite run is irrelevant. This leads to the definition of a win-set condition,
which is given by W ⊆ V and W ⊆P(W). The sets described by this condition
are {I ⊆ V : I ∩W ∈ W}. Win-set games are the type of games considered by
McNaughton in [9] where he presents an algorithm to decide the winner of such
games.

The five condition types defined above are general purpose in that any regular
game can be specified by any one of the condition types. We now look at some
less general types of conditions.

A basis condition on an arena (V,E) is given by a set B ⊆ P(V). This
specifies the collection F of sets I ⊆ V such that there are B1, . . . , Bn ∈ B with
I =

⋃
1≤i≤nBi. It is clear that a regular game can be specified using a Basis

condition if, and only if, it is union-closed.

A superset condition (also called a superset Muller condition in [7]) is given by
a setM⊆P(V) which specifies the set F = {I ⊆ V : J ⊆ I for some J ∈M}.
Only upward-closed games can be specified in this way.

Our main concern is with the complexity of the following decision problem
for a fixed condition type: given a game consisting of a finite arena, a condition
of the given type and an initial vertex, which of the two players has a winning
strategy? We often refer to this as the problem of deciding the winner of a
game. This problem has been investigated for condition types other than the
ones considered here. For example, in [3] it was shown that deciding games
with a winning condition expressed in Rabin form is NP-complete; and the
complexity of deciding Parity games is a question that has been the focus of
intensive research. However, lower bound proofs for any games are hard to come
by.

5

3 Translations

We begin by considering the five ways we have defined of specifying a winning
condition that are general purpose, i.e. expressive enough to describe any regular
game. These are the explicit presentation, the win-set condition, the Muller
condition, the Zielonka DAG and the Emerson-Lei condition. We show that this
list is strictly increasing in order of succinctness. That is, any game specified
using a condition of one of these types can also be specified using a type later
in the list with only a polynomial increase in size. However, for each type, there
are specifications of games for which any description of a type earlier in the
list is necessarily exponentially longer. We formalise the notion of succinctness
through the following definition. Note that this definition is somewhat informal
as we have not given a formal definition of a “condition type”. It suffices for our
present purposes if we take A and B in this definition to range over the types
defined in the previous section.

Definition 3.1. Given two condition types A and B, we say that A is polyno-
mially translatable to B if there is an algorithm, running in polynomial time
which, given a game with condition of type A produces a condition of type B
which describes the same game.

As we are only interested in polynomial translations, we simply say A is trans-
latable to B to mean that it is polynomially translatable. Clearly, if condition
type A is translatable to B then the problem of deciding the winner for games of
type A is reducible in polynomial time to the corresponding problem for games
of type B.

If condition type A is not translatable to B this may be for one of three
reasons. Either A is more expressive than B in that there are sets F that can
be expressed using A but not B; or there are some sets for which the represen-
tation of type A is necessarily more succinct; or the translation while not size
increasing can not be computed in polynomial time. We are primarily interested
in the second situation. Formally, we say that A is more succinct than B if B is
translatable to A but A is not translatable to B.

It is straightforward to show that win-set conditions are more succinct than
explicit presentations. To translate an explicitly presented game (V,E,F) to
a win-set condition, simply take W = V and W = F . To show that win-set
conditions are not translatable to explicit presentations, consider a game where
W = ∅ and W = {∅}. The set F described consists of all subsets of V and an
explicit presentation must be exponential in length.

The next three theorems show that Emerson-Lei games are more succinct
than Zielonka DAG games, which are in turn more succinct than Muller games,
which are more succinct than win-set games. In Section 5 we also show that basis
and superset games are more succinct than explicit presentations of union-closed
and upward-closed games respectively.

Theorem 3.2. The Muller condition type is more succinct than the win-set
condition type.

6

Proof. Given a win-set game (V,E,W,W), we construct a Muller condition
describing the same set of subsets as (W,W). For the set of colours we use
C = W ∪{c}, where c is distinct from any element of W . The colouring function
χ : V → C is then defined as:

– χ(w) = w for w ∈W ,
– χ(v) = c for v /∈W .

The family C of subsets of C is the set
{
X,X ∪ {c} : X ∈ W

}
. For I ⊆ V , if

I ⊆ W , then χ(I) = I otherwise χ(I) = {c} ∪ I. Either way, I ∩W is in W if
and only if χ(I) ∈ C.

To show that there is no translation in the other direction, consider a Muller
game on (V,E), where half of V , Vr, is coloured red, the other half coloured blue,
and the family of sets of colours is C =

{
{red}

}
. The family F described by this

condition consists of the 2|V |/2−1 non-empty subsets of Vr. Now consider trying
to describe this family using a win-set condition. In general, if G is the family
of subsets of V described by the win-set condition (W,W), then for any v /∈ W
and X ⊆ V we have {v}∪X ∈ G ⇔ X ∈ G. Observe that in our game no vertex
has this latter property (if v ∈ Vr, then {v} ∈ F , but ∅ /∈ F ; and if v /∈ Vr
then {v} ∪ Vr /∈ F , but Vr ∈ F). Thus our win-set must be V , and W is the
explicit listing of the 2|V |/2 − 1 subsets of Vr. Thus (W,W) cannot be produced
in polynomial time.

The proofs of the following two theorems are omitted due to lack of space.

Theorem 3.3. The Zielonka DAG condition type is more succinct than the
Muller condition type.

Theorem 3.4. The Emerson-Lei condition type is more succinct than the Zielonka
DAG condition type.

4 Pspace-completeness

In this section we establish the complexity of deciding the winner for the four
main condition types considered in the previous section. McNaughton [9], and
later Nerode, Remmel and Yakhnis [10] describe an algorithm for deciding win-
set games. An analysis of this algorithm shows it requires space O(|V |2). More-
over, the algorithm is easily adapted to the case where the winning condition is
presented explicitly, or as a Muller condition, a Zielonka DAG or an Emerson-
Lei condition without significant increase in the space requirements. Thus, each
of these classes of games is decidable in Pspace. We now show corresponding
lower bounds. By the results of the previous section, it suffices to establish the
hardness result for the win-set condition type.

Theorem 4.1. Deciding win-set games is Pspace-complete.

Proof. (sketch) By the above comments, we only need to show Pspace-hardness.
For this, we reduce the problem of QSAT (satisfiability of a quantified boolean
formula [QBF]) to the problem of deciding the winner of a win-set game.

7

We assume, without loss of generality that we are given a QBF,

Φ = Qk−1xk−1 . . . ∀x1∃x0ϕ

in which quantifiers are strictly alternating and ϕ is in disjunctive normal form
with 3 literals per clause. We then define a win-set game GΦ as follows:

– V0 = {ϕ} ∪ {x,¬x : for all variables x}
– V1 = {C0, . . . , Cm−1}, the set of clauses in ϕ.
– E is given by:

• (ϕ,Cj) ∈ E for 0 ≤ j < m;
• If Cj = (l0 ∧ l1 ∧ l2), then (Cj , l0), (Cj , l1), (Cj , l2) ∈ E;
• (xi, xi−1), (xi,¬xi−1) ∈ E for 0 < i < k;
• (¬xi, xi−1), (¬xi,¬xi−1) ∈ E for 0 < i < k; and
• (x0, ϕ), (¬x0, ϕ) ∈ E.

– W = V0 \ {ϕ}, and W is

W =
{
Si, Si ∪ {xi}, Si ∪ {¬xi} : 0 ≤ i < k, i even

}

where Si = {xj ,¬xj : 0 ≤ j < i}.

Note that as this is a win-set game, we are only interested in vertices of W
that are visited infinitely often. Observe that the winning condition ensures that
Player 0 can win if, and only if, the minimum i such that at most one of xi and
¬xi is visited infinitely often is even. The idea behind Player 0’s strategy is to
perpetually verify ϕ. The choice of strategies by both players then dictates the
choices of the truth values for each of the variables, and the winning condition
guarantees a winning strategy for Player 0 if, and only if, Φ is true.

A detailed proof that this construction works is deferred to the full paper.

Corollary 4.2. Deciding Muller games is Pspace-complete.

Proof. We have already indicated that the problem is in Pspace. Pspace-
hardness follows from Theorem 3.2 and Theorem 4.1.

Corollary 4.3. Deciding Zielonka DAG games is Pspace-complete.

Proof. From Theorem 3.3 and Theorem 4.1.

Corollary 4.4. Deciding Emerson-Lei games is Pspace-complete.

Proof. From Theorem 3.4 and Theorem 4.1.

It can be verified that an explicit presentation of the winning condition
constructed in the proof of Theorem 4.1 would be exponentially larger than
the presentation using a win-set. Thus, the proof cannot be used to provide a
Pspace-hardness result for the explicitly presented games. The exact complex-
ity of deciding the winner of such games remains open. Indeed, it is conceivable
(though it appears unlikely) that the problem is in P.

8

Infinite tree automata. One of the original motivations for studying Muller and
related games was to establish decidability results for problems such as non-
emptiness and model checking for infinite tree automata [8]. A reduction to
non-emptiness of infinite tree automata is used in some of the most effective al-
gorithms for deciding satisfiability of formulas in logics such as S2S, µ-calculus
and CTL∗ – logics useful for reasoning about non-terminating, branching com-
putation. Furthermore, determining if a structure satisfies a formula in any of
these logics reduces to determining if a certain automaton accepts a particular
tree.

By adapting the proof of Theorem 4.1 we are able to show that the non-
emptiness problem for Muller automata as well as the problem of determin-
ing whether a given automaton accepts a given regular tree are both Pspace-
complete. The detailed definitions and proofs are deferred to a full paper.

Theorem 4.5. The non-emptiness problem for Muller tree automata is Pspace-
complete.

The model checking problem (does a given automaton accept a given tree?)
also reduces to deciding which player wins an infinite game. However, depending
on how the tree is presented, the resulting arena may be of infinite size. If the
tree is regular, a game with finite arena can be constructed, and we can apply
Theorem 4.5 to obtain the following corollary.

Corollary 4.6. Given a regular, infinite, k-ary branching tree t and a Muller
automaton A = (Q,Σ, δ, q0,F), asking if A accepts t is Pspace-complete.

Bounded tree-width arenas. Tree-width is a measure of how closely a graph re-
sembles a tree. It has proved useful in the design of algorithms as many problems
that are intractable on general graphs are known to have polynomial time solu-
tions when restricted to graphs of bounded tree-width. In the context of regular
games, Obdrz̆álek [11] exhibited a polynomial-time algorithm for deciding the
winner in parity games on arenas of bounded tree-width. We show that this is
not the case for Muller games (and neither, therefore, for Zielonka DAG games
and Emerson-Lei games). The proof of Theorem 4.1 can be modified so that
the arenas constructed all have tree-width two provided we allow ourselves to
specify the winning condition as a Muller condition rather than a win-set.

Theorem 4.7. Deciding Muller games on arenas of tree-width 2 is Pspace-
complete.

5 Complexity Bounds for Union-Closed Games

We now turn our attention to games where the winning condition F is a union-
closed set. Among games studied in the literature Streett games and parity
games are examples of condition types that can only specify union-closed games.
Union-closed games were also studied as a class in [6]. One consideration that
makes them an interesting case to study is that they admit memoryless strategies

9

for Player 1 [2]. That is, on a game with a union-closed winning condition, if
Player 1 has a winning strategy then he has a strategy which is a function only
of the current position. One consequence of this fact is that the problem of
deciding whether Player 0 wins such a game is in co-NP. This is because once
a memoryless strategy for Player 1 is fixed, the problem of deciding whether
Player 0 wins against that fixed strategy is in P. Indeed, it is a version of the
alternating reachability problem. Thus, to decide whether Player 1 has a winning
strategy we can nondeterministically guess such a strategy and then verify that
Player 0 cannot defeat it. Hence, determining whether Player 1 wins is in NP
and therefore deciding whether Player 0 wins is in co-NP. In this section, we aim
to establish a corresponding lower bound for two condition types that can only
represent union-closed games, namely the Basis and Superset condition types.

The Basis condition type is a succinct way of describing union-closed types.
It is not even known if it is translatable to the Emerson-Lei condition type,
the most succinct type considered above. However, the following result shows
that the bounds obtained cannot easily be derived from the known completeness
results of Streett games.

Theorem 5.1. The Basis and Streett condition types are incomparable with re-
spect to translatability. That is, neither is translatable to the other.

Nevertheless, deciding Basis games is still in co-NP.

Proposition 5.2. Deciding Basis games is in co-NP.

Proof. From the comments above, it suffices to show that if we fix a memoryless
strategy for Player 1 then we can decide the resulting single player Basis game
in polynomial time.

The algorithm is as follows. Let B be the basis for the winning condition.
Initially let B0 = B, and repeat the following:

1. Let Xi =
⋃
B∈Bi B.

2. Partition Xi into strongly connected components (SCCs).

3. Remove any element of Bi which is not wholly contained in a SCC to obtain
Bi+1,

until Bi = Bi−1, at which point, let X = Xi. This takes at most O
(
|B|(|V |+|E|)

)

time using a standard SCC-partitioning algorithm. At this point, every SCC of
X is a union of basis elements (all x in X are members of basis elements, and any
basis elements not contained in any SCC ofX is removed at step 3). Furthermore,
any strongly connected set of V which is a union of basis elements is a subset
(of an SCC) of X, because the algorithm preserves such sets. Thus, Player 0
can win from any node from which she can reach X (play to X and then visit
every node within an SCC of X forever); and Player 0 cannot win if she cannot
reach X (there is no union of basis elements for which Player 0 can visit every
vertex infinitely often). Thus the set of nodes from which Player 0 wins can be
computed in O

(
|B|(|V |+ |E|) + |E|

)
time.

10

It should be clear that the Superset condition type is translatable to the Basis
condition type.

We now obtain the lower bounds we seek on Superset games.

Theorem 5.3. Deciding Superset games is co-NP-complete.

Proof. Membership of co-NP follows from the previous two propositions. To
show co-NP-hardness, we use a reduction from validity of DNF formulas.

Given a formula ϕ(x0, x1, . . . , xk−1) in DNF, consider the Superset game
defined as follows:

– for every variable xi we include three vertices, xi,¬xi ∈ V0 and x′i ∈ V1;
– for each i we have the edges (x′i, xi), (x

′
i,¬xi), (xi, x′i+1), (¬xi, x′i+1), where

addition is taken modulo k; and
– the winning condition is specified by the set

M =
{
{li ∈ V0 : li is a literal of C} for every clause C of ϕ

}
,

Take x0 to be the initial vertex.
As the Superset condition is closed under union, if Player 1 has a winning

strategy he has a memoryless winning strategy. Note that any memoryless strat-
egy for Player 1 effectively chooses a truth value for each variable. The set of
vertices visited infinitely often is a superset of an element of M if, and only if,
the truth assignment chosen by Player 1 makes one clause of ϕ (and hence ϕ)
true. Thus Player 0 wins this game if, and only if, there is no truth assignment
which makes ϕ false.

Corollary 5.4. Deciding Basis games is co-NP-complete.

Succinctness Results We finish this section with two succinctness results.

Proposition 5.5. The Superset condition type is more succinct than an explicit
presentation of an upward-closed set.

Proof. Given an explicitly presented upward-closed game (V,E,F), the set F ,
viewed as a Superset condition, clearly describes the same set of subsets of V .

Conversely, for the Superset game
(
V,E,

{
{v} : v ∈ V

})
, the set described

by the winning condition is of size 2|V | − 1, and therefore cannot be explicitly
presented in polynomial time.

Corollary 5.6. The Basis condition type is more succinct than an explicit pre-
sentation of a union-closed set.

Proof. The fact that the basis condition type is not translatable to an explicit
presentation follows from Proposition 5.5. The other direction is straightforward,
the explicit presentation itself suffices as a basis.

We note in conclusion that the exact complexity of deciding union-closed
games when they are explicitly presented remains an open problem. It is clearly
in co-NP but the above arguments do not establish lower bounds for it.

11

6 Conclusion

We have considered the complexity of deciding the winner in a variety of regular
games. We establish a framework, through the notion of polynomial translatabil-
ity, within which the expressive power and the succinctness of types of winning
conditions can be considered. We used this, along with an encoding of QBF
in win-set conditions to establish Pspace-completeness for four different con-
dition types that can be used to describe regular games and to establish the
Pspace-completeness of the non-emptiness and model-checking problems for
Muller automata. We also showed co-NP-completeness results for two different
condition types describing union-closed games.

References

1. J. Richard Büchi and Lawrence H. Landweber. Solving sequential conditions by
finite-state strategies. Trans. Amer. Math. Soc., 138:295–311, 1969.

2. Stefan Dziembowski, Marcin Jurdziński, and Igor Walukiewicz. How much mem-
ory is needed to win infinite games? In Proceedings of the 12th Annual IEEE
Symposium on Logic in Computer Science, pages 99–110, 1997.

3. E. Allen Emerson and Charanjit S. Jutla. The complexity of tree automata and
logics of programs (extended abstract). In Proceedings for the 29th IEEE Sympo-
sium on Foundations of Computer Science, pages 328–337, 1988.

4. E. Allen Emerson and Chin-Laung Lei. Modalities for model checking: Branching
time strikes back. In Proceedings of the 12th Annual ACM Symposium on Principles
of Porgramming Languages, pages 84–96, 1985.

5. Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata Logics,
and Infinite Games, volume 2500 of Lecture Notes in Computer Science. Springer,
2002.

6. Hajime Ishihara and Bakhadyr Khoussainov. Complexity of some infinite games
played on finite graphs. In Proceedings of the 28th International Workshop on
Graph Theoretical Concepts in Computer Science, volume 2573 of Lecture Notes
in Computer Science. Springer, 2002.

7. Salvatore La Torre, Aniello Murano, and Margherita Napoli. Weak Muller accep-
tance conditions for tree automata. In Agostino Cortesi, editor, 3rd International
Workshop on Verification, Model Checking and Abstract Interpretation, volume
2294 of Lecture Notes in Computer Science, pages 240–254. Springer, 2002.

8. Robert McNaughton. Finite-state infinite games. Technical report, Project MAC,
Massachusetts Institute of Technology, USA, 1965.

9. Robert McNaughton. Infinite games played on finite graphs. Annals of Pure and
Applied Logic, 65(2):149–184, 1993.

10. Anil Nerode, Jeffery B. Remmel, and Alexander Yakhnis. McNaughton games and
extracting strategies for concurrent programs. Annals of Pure and Applied Logic,
78(1-3):203–242, 1996.

11. Jan Obdrz̆álek. Fast mu-calculus model checking when tree-width is bounded.
In Warren A. Hunt Jr. and Fabio Somenzi, editors, Proceedings of 15th Interna-
tional Conference on Computer Aided Verification, volume 2725 of Lecture Notes
in Computer Science, pages 80–92. Springer, 2003.

12. Wieslaw Zielonka. Infinite games on finitely coloured graphs with applications to
automata on infinite trees. Theoretical Computer Science, 200:135–183, 1998.

12

