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Abstract

Unions of conjunctive queries, also known as select-project-join-union queries, are the most fre-
quently asked queries in relational database systems. These queries are definable by existential positive
first-order formulas and are preserved under homomorphisms. A classical result of mathematical logic
asserts that the existential positive formulas are the only first-order formulas (up to logical equivalence)
that are preserved under homomorphisms on all structures, finite and infinite. After resisting resolu-
tion for a long time, it was eventually shown that, unlike other classical preservation theorems, the
homomorphism-preservation theorem holds for the class of all finite structures. In this paper, we show
that the homomorphism-preservation theorem holds also for several restricted classes of finite structures
of interest in graph theory and database theory. Specifically, we show that this result holds for all classes
of finite structures of bounded degree, all classes of finite structures of bounded treewidth, and, more
generally, all classes of finite structures whose cores exclude at least one minor.

1 Introduction

It is well known that the most frequently asked queries in databases are expressiblesétetigroject-
join-union (SPJU) fragment of relational algebra (see [1]). From the point of view of relational calculus
or first-order logic, the class of SPJU queries corresponds to the class of queries definakiktdntial
positiveformulas of first-order logic, that is, formulas built from atomic formulas using conjunction, dis-
junction, and existential quantification only. By distributing conjunctions and existential quantifiers over
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disjunctions, every existential positive formula can be written as a disjunction of existential formulas in
which the quantifier-free part is a conjunction of atomic formulas. It is for this reason that SPJU queries
are also known aanions of conjunctive queriesStarting with the work of Chandra and Merlin [7], the
study of conjunctive queries and their unions has occupied a central place in database theory; in particular,
researchers have investigated in depth certain fundamental algorithmic problems about (unions of) conjunc-
tive queries, such as the containment and the evaluation problem for these queries.

Let A = (A,R{,...,RA)andB = (B,RE,..., RB) be two relational structures over the same
vocabulary (database schentd), . . . , R,,,. Recall that dahomomorphism frord toBisamaph: A — B
such that for every relation symbd&; and every tuplen = (a1, ...,a,) from A, if a € R? thenh(a) =
(h(a1),...,h(a,)) € RB. As already realized by Chandra and Merlin [7], the study of conjunctive queries
is intimately connected to homomorphisms. In particular, unions of conjunctive queries are preserved under
homomorphisms, where a quegyis said to bepreserved under homomorphisifisvhenevera € ¢(A)
andh is a homomorphism fromA to B, thenh(a) € ¢(B). Note that if a query; is preserved under
homomorphisms, then it is also preserved urelensionswhich means that whenevéx is an induced
substructure oB anda € ¢(A), thena € ¢(B). In addition, such a query is monotonewhich means
that wheneven € ¢(A) andB is obtained fromA by adding tuples to some of the relationsAf then
a € ¢(B). These preservation properties can be thought of as asserting that the query satisfies a strong form
of the open world assumption, in that a tuple in the result of the query will remain so under the addition of
new facts to the databases, such as the introduction of new elements and new tuples in the relations.

Classicapreservation theorenmsf model theory are results that match semantic properties of first-order
formulas with syntactic properties of first-order formulas. Specifically, the tarski Theorem asserts that
a first-order formula is preserved under extensions on all structures (finite and infinite) if and only if it is
logically equivalent to an existential formula (see [26]). Another classical preservation theorem in model
theory, known as Lyndon’s Positivity Theorem, states that a first-order formula is monotone on all structures
(finite and infinite) if and only if it is logically equivalent to a positive first-order formula. The non-trivial
part in these results is to show that if a first-order formula has the semantic property stated, then it is
logically equivalent to a first-order formula that has the corresponding syntactic property. The proofs make
an essential use of the Compactness Theorem of first-order logic (and, hence, of infinite structures). The
same technique can also be used to show that the follomengomorphism-preservatidgheorem holds: a
first-order formula is preserved under homomorphisms on all structures (finite and infinite) if and only if it
is logically equivalent to an existential positive first-order formula.

The aforementioned classical preservation theorems are about the class of all structures (finite and infi-
nite) over some fixed vocabulary. It is natural to ask whether these preservation thesledivize that is,
whether they hold on restricted classes of structures. Note that if a preservation theorem holds faf a class
of structures, then restricting the statement of the theorem to a sulB¢las€ weakens both the hypoth-
esis and the conclusion of the theorem. Thus, unlike many other results of model theorem, a preservation
theorem may hold for a clagsof structures, but may fail for some subcla$of C.

Research in finite model theory addressed the question of whether classical preservation theorems about
the class of all structures hold for the class of all finite structures. As it turned out, classical preservation
theorems tend to fail when we restrict ourselves to finite structures. In particular, $a€akski Theo-
rem fails in the finite, that is, there is a first-order formula that is preserved under extensions on the class
of all finite structures, but is not equivalent to any existential formula [36, 23]. Similarly, Lyndon’s Pos-
itivity Theorem is also known to fail in the finite [2, 35]. As for the homomorphism-preservation theo-
rem, its status in the finite had remained unsettled for quite a long time. In fact, the finite version of the
homomorphism-preservation theorem had received considerable attention by the finite model theory com-



munity and had been singled out as a central problem (Problem 5.9 on the finite model theory website
at http://www-mgi.informatik.rwth-aachen.de/FMT/ ). Moreover, it motivated a lot of re-

lated research in this area, including [4, 16, 24, 32]. Eventually, in an important breakthrough, Rossman
[33] proved that the homomorphism-preservation theodesshold in the finite. In other words, Rossman
proved that if a first-order formula is preserved under homomorphisms on the class of all finite structures,
then it is equivalent, on finite structures, to an existential positive first-order formula. In particular, suppose
that some arbitrary relational algebra query which may also involvesétwtheoretic differenceperator

is preserved under homomorphisms on all finite structures; Rossman’s result shows that this query can be
transformed to an equivalent SPJU query.

In this paper, we show that the homomorphism-preservation theorem holds for numerous restricted
classes of finite structures of interest in graph theory and database theory. It should be noted that our results
were established and published in preliminary form [6] before Rossman proved that the homomorphism-
preservation theorem holds for the class of all finite structures. It should also be pointed out that our results
are not implied by Rossman’s theorem, since, as explained earlier, preservation theorems about a class
of structures need not relativize to a subclass of that class. In its full generality, our main result asserts
that the homomorphism-preservation theorem holds for every €lat8nite structures that is closed under
substructures and disjoint unions, and has the property that the Gaifman graphs of the stru€texetiite
at least one minor. This result contains as special cases the homomorphism-preservation theorem for the
classes of all structures of bounded treewidth, and the classes of all structures that exclude at least one
minor; in particular, the homomorphism-preservation theorem holds for the class of all planar graphs. If
we restrict attention to Boolean queries, we are able to further extend the classes of structures on which the
homomorphism preservation theorem holds. In particular, we can show that the theorem for Boolean queries
holds on every clags of finite structures that is closed under substructures and disjoint unions, and such that
the coresof the structures il exclude at least one minor. To put these results in perspective, let us briefly
comment on some of the key notioriBeewidthis a measure of how tree-like a graph (or, more generally,

a relational structure) is. It has played a key role in Robertson and Seymour’s celebrated work on graph
minors (see [12]). Moreover, classes of structures of bounded treewidth have turned out to possess good
algorithmic properties, in the sense that various NP-complete problems, including constraint satisfaction
problems and database query evaluation problems, are solvable in polynomial-time when restricted to inputs
of bounded treewidth [10, 12, 21, 22]. Thereof a structureA is a substructur8 of A such that thereis a
homomorphism fronA to B, but there is no homomorphism fraf to a proper substructui®’ of B. This

concept originated in graph theory (see [25]), but has found applications in conjunctive query processing
and optimization [7] and, more recently, in data exchange [15].

The proofs of our results combine earlier work about preservation properties in the finite with some
heavy combinatorial machinery. Ajtai and Gurevich [3] showed that if a queny the class of all finite
structures is expressible in both Datalog and first-order logic, then it is also definable by an existential
positive formula; furthermore, every Datalog program definjngust be bounded. This is an important
result about Datalog programs in its own right, but it is also a partial result towards the homomorphism-
preservation theorem in the finite because all Datalog queries are preserved under homomorphisms (since
such queries are infinitary unions of conjunctive queries). At a high level, the proof of the Ajtai-Gurevich
theorem can be decomposed into two modular parts. The first is a combinatorial lemma to the effect that
if ¢ is a first-order query that is preserved under homomorphisms on finite structures, thramitnel
models ofy satisfy a certain “density” condition (incidentally, the minimal models of a Boolean query that
is preserved under homomorphisms are cores). The second part shows that if all minimal models of a
Datalog query satisfy the “density” condition, then there are only finitely many of them. This means that



has finitely many minimal models, which easily implies th& definable by a union of conjunctive queries.

To obtain our main theorem, we use the same architecture in the proof, but, in place of the second part, we
essentially show that i is a class of finite structures satisfying the hypothesis of the theorem (such as
having bounded treewidth or excluding a minor), then every collection of structutethiat satisfies the
“density” condition must be finite. In turn, this requires the use of the Sunflower Lemma@$ Bndl Rado,

as well as Ramsey’s Theorem.

Furthermore, equipped with this new machinery, we obtain a different and perhaps more transparent
proof of the Ajtai-Gurevich Theorem. Actually, we show that the Ajtai-Gurevich Theorem can be extended
to a family of finite-variable infinitary logics that taken together are strictly more expressive than Datalog.
This is obtained by using tight connections between number of variables, treewidth, and minimal models.

In Section 2, we review some basic notions from logic and graph theory that we will need in the se-
quel. Section 3 contains certain combinatorial facts about the minimal models of a first-order query that
is preserved under homomorphisms. In Sections 4 and 5, we establish the main results regarding classes
of bounded treewidth and classes with excluded minors respectively. In Section 6 we discuss the relation-
ship between peservation for Boolean and non-Boolean queries. We show that the preservation results for
Boolean queries can be established for larger classes of structures. Finally, in Section 7 we obtain the
aforementioned extension of the Ajtai-Gurevich Theorem.

2 Preliminaries

This section contains the definitions of some basic notions and a minimum amount of background material.

2.1 Relational Structures and Graphs

A relational vocabularyo is a finite set ofrelation symbolseach with a specifiedrity. A o-structure A
consists of ainiverseA, or domain and aninterpretationwhich associates to each relation symBok o
of some arityr, a relationR™ C A". A graphis a structureG = (V, E), whereF is a binary relation that
is symmetric and irreflexive. Thus, our graphs are undirected, loopless, and without parallel edges.

A o-structureB is called asubstructureof A if B C A andRB C RA for everyR € o. Itis called
aninduced substructuréd RB = RA N B" for every R € ¢ of arity . Notice the analogy with the
graph-theoretical concept stibgraphandinduced subgraphA substructuréd of A is proper ifA # B.

A homomorphisnirom A to B is a mapping : A — B from the universe ofA to the universe of
B that preserves the relations, that i€df, . ..,a,) € R, then(h(a1),...,h(a,;)) € RB. We say that
two structuresA and B are homomorphically equivalerif there is a homomorphism frorA to B and
a homomorphism fronB to A. Note that, if A is a substructure aB, then the injection mapping is a
homomorphism fronA to B

The Gaifman graphof a o-structureA, denoted byG(A), is the (undirected) graph whose set of nodes
is the universe oA\, and whose set of edges consists of all pairs’) of distinct elements oft such that
anda’ appear together in some tuple of a relatioinThedegreeof a structure is the degree of its Gaifman
graph, that is, the maximum number of neighbours of nodes of the Gaifman graph.

Let G = (V,E) be a graph. Moreover, let € V be a vertex and lef > 0 be an integer. The
d-neighborhoodf « in G, denoted deG’(u), is defined inductively as follows:

1. NE(u) = {u};

2. Ndcjrl(u) = NS () U{veV: (v,w) € E forsomew € N&(u)}.



A treeis an acyclic connected graph.téee-decompositionf G is a labeled tre&' such that

1. each node of is labeled by a non-empty subsetlof
2. for every edgdu, v} € E, there is a node dI' whose label containgu, v};
3. for everyu € V, the setX of nodes ofT' whose labels include forms a connected subtree Bf

Thewidth of a tree-decomposition is the maximum cardinality of a lab&'iminus one. Thereewidthof
G is the smallesk for which G has a tree-decomposition of widkh Thetreewidthof a o-structure is the
treewidth of its Gaifman graph. Note that trees have treewidth one.

For every positive integet > 2, we write7 (k) to denote the class of ail-structures of treewidth less
thank. In the sequel, whenever we say that a collectiarf o-structures habounded treewidthwe mean
that there is a positive integérsuch thaC C 7 (k).

We say that a grap&: is aminor of H if G can be obtained from a subgraphHbfoy contracting edges.
The contraction of an edge consists in identifying its two endpoints into a single node, and removing the
resulting loop. An equivalent characterization (see [11]) statesGhit a minor ofH if there is a map
that associates to each vertexf G a non-emptyconnectedsubgraptH,, of H such thatd,, andH,, are
disjoint foru # v and if there is an edge betweerandv in G then there is an edge H between some
node inH,, and some node ifl,. We will sometimes refer to the subgrapHs as theconnected patches
that witness tha€ is a minor ofH.

It is not hard to see thdl (k) is closed under taking minors, that is,@& is a minor ofH and the
treewidth ofH is less thark, then the treewidth o€ is also less thak. Since the treewidth oK, the
complete graph ok vertices, isk — 1, it follows thatKy.; is not a minor of any graph iff (k). Finally,
we will make use of the fact thd,, is a minor ofK;_; 1, the complete bipartite graph on two sets of
k — 1 nodes. To see this, contract the edges of a perfect matching df si2esitting insideKj_; 1. The
result is a complete graph dn— 2 nodes, which, together with the remaining two nodeXef ; ,_; and
all remaining edges, givesk§,.

2.2 First-order Logic and Conjunctive Queries

Let o be a relational vocabulary. Treomic formulasof o are those of the fornR(z4, ..., z,), where

R € o is arelation symbol of arity, andz1, . . ., x,- are first-order variables that are not necessarily distinct.
Formulas of the formx = y are also atomic formulas, and we refer to thenegsalities The collection

of first-order formuladgs obtained by closing the atomic formulas under negation, conjunction, disjunction,
universal and existential first-order quantification. The semantics of first-order logic is stand#ds If

a o-structure andp is a first-order formula, we use the notatidn = ¢ to denote the fact thag is true

in A. The collection ofexistential-positivdirst-order formulas is obtained by closing the atomic formulas
under conjunction, disjunction, and existential quantification. By substituting variables, it is easy to see that
equalities can be eliminated from existential-positive formulas.

An important fragment of existential-positive formulas is formed by the collection of sentences of the
form 3z, ... dx,0, whered is a conjunction of atomic formulas with variables amang. . ., z,. These
formulas define the class of Booleannjunctivequeries (also known aselect-project-joinqueries or, in
short, SPJ-queries). In the sequel, we will occasionally use thedenjunctive queryo denote both a
formuladx, ...dz,0 as above and the query defined by that formula. Every finite stru&uvath n
elements gives rise to@nonical conjunctive query , which is obtained by first associating a different
variablez; with every element; of A, 1 < i < n, then forming the conjunction of all atomic facts
true in A, and finally existentially quantifying all variables, 1 < i < n. In other words, the formula



A is the existential closure of thmositive diagranof A (see [26]). Conversely, every conjunctive query

dxy ... dx,0 gives rise to @anonical structureA with n elements, where the elements®fre the variables
x1,...,x, and the relations oA consist of the tuples of variables in the conjuct®¥ o€handra and Merlin

[7] showed the following basic result, which has found many uses in database theory and the theory of
constraint satisfaction problems.

Theorem 1 (Chandra-Merlin Theorem). Let A and B be two finite structures. The following statements
are equivalent.

1. There is a homomorphism fro to B.

2. BE pa.
3. B logically impliespa .

2.3 Inductive Definitions and Datalog

Let o be a relational vocabulary. Ainductive systerof first-order formulas is a finite sequence

o1(z1, . Thy s Sty o3 Sr)s ey or (T, ooy Ty STy, Sh)

of first-order formulas such that eashis a relation symbol of arity;, not already inr. Every such system
gives rise to an operatdr on sequences of relations otrastructure. More precisely, A is aco-structure
with universeA andR; C A*i is a relation for every € {1,...,r}, we define

q)i(Rl,...,Rr) = {(al,...,aki) S Ak A ): api(al,...,aki,Rl,...,RT)},

and®(Ry,...,R,) = (®1(Ry,...,Ry),..., 2. (Ry,...,R;)). The stage®@™ = (®7",...,®]") of ¢ are
defined by the inductio®) = (0,...,0), and®™! = &,(®7",..., ®7). If each formulay; is positive

in the relation symbol$, ..., .S,, then the associated operafois monotone in each of its arguments. In
such a case, the sequence of stabgsb!, ... converges to the least fixed-poit® = (... &) of
the operatorb. Moreover, ifA is finite, then there exists a finitey such thatb> = ™o,

A Datalog programis a finite set of rules of the forfly «— T1,...,T,,, where eacl¥; is an atomic
formula. The left-hand side of each rule is called lieadof the rule, while the right-hand side is called the
body The relation symbols that occur in the heads arérttensionaldatabase predicates (IDBs), while all
others are thextensionatlatabase predicates (EDBs). Note that IDBs may occur in the bodies too, thus, a
Datalog program is a recursive specification of the IDBs with semantics obtained via least fixed-points of
monotone operators (see [37]). For example, the following Datalog program definesn$igve closure
of the edge relatioly of a graphG = (V, E):

T(z,y) <« E(z,y);
T(x,y) <« E(z,2),T(zvy).

A key parameter in analyzing Datalog programs is the number of variables used. We-Dgtalog for the
collection of all Datalog programs with at mdstvariables in total. For instance, the above is a 3-Datalog
program. A Datalog program can be read as an inductive system of first-order formulas (as above) where
each formula is existential positive.

LetC be a class of-structures. A query onC of arity n is a map that associates to each strucfuia
C ann-ary relationg(A) on the domain oA that is preserved under isomorphisms between structures. Let

6



L be some logic. We say thatis L-definable orC if there exists a formula of L such that ifA is inC,
thena € ¢(A) ifand only if A, a = ¢. A Boolean query is a query of arity 0, which can be identified with
an isomorphism-closed subclassofEquivalently, a Boolean query is a mappipffom C to {0, 1} that is
invariant under isomorphisms. We say that a Boolean quésy.-definable orC if there is a sentencg of

L such that for everA € C, we have thay(A) = 1 ifand only if A = .

3 Preservation under Homomorphisms and Minimal Models

For the purpose of the constructions in this paper, we shall restrict our attention specifically to Boolean
gueries. The reason for restricting ourselves to Boolean queries is that the natiamirafl modelwhich
we rely on, is more naturally defined for Boolean queries. In Section 6 we return to non-Boolean queries
and explain why the results apply equally well to these.

For a Boolean query, we say that a-structureA in C is aminimal model of; in C if ¢(A) = 1 and
there is no proper substructuBeof A in C such thaiy(B) = 1. Recall from Section 2 that substructures
are not necessarily induced.

The following characterization is part of the folklore, a proof for the class of all finisgructures can
be found in [4]. Here, we state it in a more general form for classes of ingguctures that are closed
under substructures, and sketch a proof.

Theorem 2. LetC be a class of finite-structures that is closed under substructures, ang let a Boolean
query onC that is preserved under homomorphisms’orT he following are equivalent:

1. ¢ has finitely many minimal models¢h
2. q is definable ot by an existential-positive first-order sentence.

Proof (sketch).The direction (13-(2) is established by constructing, for each finite strucAiracanonical
conjunctive querypa, as described earlier. The required existential positive formula defipisgnow
obtained as the disjunction gfs over all minimal modelsA of ¢. This follows from the preservation qf
under homomorphisms and the fact that, by Theorem 1, a struBtsagisfiespa if and only if there is a
homomorphism fronA to B.

For the direction (Z(1), we first use the fact that every existential positive formula is equivalent to a
finite disjunction\/;" , ¢;, where each); is a conjunctive query. For each such conjunctive quegrylet
A, be thecanonicalfinite structure associated with;, 1 < i < m. Note that such a canonical structure
A, need not be a member 6f Nonetheless, it is not hard to show that every minimal m&lelf ¢ in C
is equal to a homomorphic imadé A ;) of one of the canonical finite structurés;, 1 < ¢« < m. Thus,
the cardinality of every minimal model af in C is less than or equal to the maximum cardinality of the
canonical finite structured;, 1 < ¢ < m, which implies that; has finitely many minimal models . [

By Theorem 2, to establish the homomorphism-preservation theorem for the class of all finite struc-
tures, we would need to show that any first-order definable query preserved under homomorphisms has only
finitely many minimal models. Equivalently, it would suffice to show that for any such query there is a
bound on the size of the minimal models. Ajtai and Gurevich [3], in comparing the expressive power of
Datalog and first-order logic, showed that the minimal models of every first-order sentence preserved under
homomorphisms satisfy an interesting combinatorial property. Intuitively speaking, thegm@se More
precisely, if there are arbitrarily large minimal models, then they cannot be very thinly spread out, which
means that they do not contain a large set of elements all far away from each other. Furthermore, one cannot
remove a small number of elements from a large minimal model to create such a scattered set.
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The Ajtai-Gurevich proof of this property is based on Gaifman’s Locality Theorem for first-order logic
[18]. Before we state the precise result, we need a definition and a piece of notatid@. +£&tV, £') be
a graph. Recall the definition @tneighborhoodV$ (u) in Section 2. We say that a subs&tC V' of the
nodes isi-scatteredf N (u) N N (v) = 0 for every two distinctu, v € A. For a graphG = (V, E) and
asetB C V, we writeG — B for the graph obtained frorG: by removing all nodes iB and the edges to
which they are incident. This is a notation we will use repeatedly in the sequel. We are ready for the result
of Ajtai and Gurevich. While they proved this for the class of all finite structures, it is easy to see that the
proof relativizes to classes satisfying some simple restrictions. This observation follows from the fact that
disjoint union and taking a substructure are the only constructions used in the proof in [3].

Theorem 3. LetC be a class of finiter-structures that is closed under substructures and disjoint unions.
Letq be a Boolean query that is first-order definable and preserved under homomorphigsmBarevery

s > 0, there exist integerg > 0 andm > 0 such that ifA is a minimal model of, then there is n®3 C A

of size at most such thaiG(A) — B has ad-scattered set of size. In particular, there exist integeré > 0
andm > 0 such that ifA is a minimal model of, thenG(A) does not have d-scattered set of size.

Now, letC be a class of finiter-structures that is closed under substructures and disjoint unions. With
Theorems 2 and 3 in hand, in order to establish that the homomorphism-preservation theorem Hoplds on
it suffices to show that for someand everyd andm, all sufficiently large structures il haved-scattered
sets of sizen after removing at most elements. We formulate this observation as the following corollary,
which we will use repeatedly in what follows.

Corollary 1. LetC be a class of finite--structures having the following properties:

1. Cis closed under substructures and disjoint unions;

2. for somes and for alld andm, there is anV so that ifA € C has more thanV elements, then there
is a setB of at mosts elements such th&t(A) — B has ad-scattered set of size.

On the clas<’, every Boolean query that is first-order definable and preserved under homomorphisms is
definable by an existential positive first-order formula.

There is a case that is particularly easy in which we can take).

Lemma 1. Foreveryk > 0,d > 0, andm > 0, there exists aiw > 0 such that for all graph&s = (V, EG)
with |V| > N and degree at mogt, the graphG has ad-scattered set of size.

Proof. Fix d > 0 andm > 0, let N = mk?, and letG = (V, E®) be a graph witjV| > N. The size of
the d-neighborhood of every node i@ is bounded by:¢. Therefore, there are at leastnodes inG with
disjoint d-neighborhoods. O

As an immediate corollary we obtain the homomorphism-preservation result for classes of structures of
bounded-degree.

Theorem 4. LetC be a class of finite-structures that is closed under substructures and disjoint unions, and
such that the structures ifh have bounded degree. On the cl@s®very query that is first-order definable
and is preserved under homomorphisms is also definable by an existential-positive first-order formula.



4 Classes of Bounded Treewidth

In this section we establish the homomorphism-preservation theorem for classes of bounded treewidth. Our
aim is to show a combinatorial result to the effect that if we have a bound on the treewidth of structures
in a class, then every sufficiently large structure will contain a large scattered set, after we have removed
a small number of elements. The results in this section are subsumed by those in Section 5, since a class
of structures of bounded treewidth excludes at least one minor (namely, some clique). However, the proof
method for classes of bounded treewidth is simpler than the one presented in Section 5 and also yields better
bounds on the maximum size of minimal models, so we present it separately.

Unlike for Lemma 1, it is no longer sufficient to take= 0. To gain some intuition, consider the tr&g
which consists of a single root witthchildren. Since every pair of nodes is at most at distance 2, it is clear
thatS,, does not contain é-scattered set faf > 1, yet the tree can be arbitrarily large. However, removing
the root leaves a graph where the remaining nodes are scattered as no edges are left. This idea generalizes to
arbitrary trees, in the sense that in every sufficiently large tree, we need to ratmoest onanode in order
to create a large scattered set. For, either the tree has a node of large degree or a long path. In the first case,
we remove a node of large degree and get a large number of disconnected components, hence a scattered
set. In the second case, along the long path, we can select a set of elements that are pairwise far away from
each other and thus form a scattered set. We generalize this idea to graphs of small treewidth. It turns out
that the maximum number of nodes we need to remove to create any desired scattered set is bounded by the
treewidth. This is proved using the Sunflower Lemma ofi&rdnd Rado [14].

Theorem 5 (Sunflower Lemma).Let ' be a collection ok-element subsets of a sét If |F| > k!(p—1)*,
thenF’ contains a sunflower with petals, that is, a subcollectioR’ C F of sizep for which there exists a
setB such that every pair of distinct sel§ andY in F” satisfyB = X NY.

Here is the promised combinatorial result:

Lemma 2. For everyk > 1,d > 0, andm > 0, there exists aiv > 0 such that for all graph&s = (V, EG)
with |[V| > N and treewidth less thah, there exists3 C V of size at mosk such thatG — B has ad-
scattered set of size.

Proof. Letk > 1,d > 0, andm > 0 be fixed. Definep = (m — 1)(2d + 1) + 1, M = k!(p — 1)¥, and
N = k(m —1)M. LetG = (V, E®) be a graph withV’| > N, and let us assume its treewidth is less than
k. Let(T,{S, : v € T}) be a tree-decomposition & with setsS, C V of size at mosk. By standard
manipulation on tree-decompositions, we may assume that for every pair of distinctitnadesT’, both
S. — S, andS, — S, are non-empty. Observe that the sizelbis at leastV/k + 1. We distinguish two
cases:
Case 1: There is a node'of degree at least.. Letv be such a node and = S,,. Note thai B| < k.
By our assumption on the tree-decomposition, we know$hat S, is non-empty for every neighbourof
v. Therefore, the graplr — B contains at least: disconnected components, sd-acattered set of size.
Case 2: There is no node iR of degree at least. In this case, since the size ®fis more than
N/k = (m — 1)M, there must exist a path il of length at least\/. Since eachs, on this path has
size at most, and since the length of the path is at leAst= k!(p — 1)*, by the Sunflower Lemma,
there must exisp = (m — 1)(2d + 1) + 1 setsS,, ..., Sy, on this path with a common intersectidh
Clearly |B| < k, and allT; = S,, — B are pairwise disjoint and non-empty by our assumption on the
tree-decomposition. We claim that choosing an arbitrary eleméitin, ) for eachi € {0,...,m —1}
produces a-scattered subset i& — B. To see this, we need some notation. Ret= [ J/_; T; be the union



of petals. Fom,b € R, letd(a,b) denote the distance betweemndb in G — B. For every poinu € R,
let P(a) = {v € T : a € S,}. Note that everyP(a) is a connected subtree @f by the third clause of the
definition of tree-decomposition. Moreover, since This are pairwise disjoint, eacR(a) contains at most
one of the nodes, ..., u, of the sunflower. Consider the shortest patigoing from a node iP(a) to
anode inP(b). We letm(a, b) denote the number of nodes of the sunflower that appear in this path.

Claim 1. If a andb belong toR, thenm(a, b) < d(a,b).

Proof. Supposex andb are points inR. We proceed by induction on the lengthof the shortest path
betweerna andb in G — B. The base case = 0 is obvious since them(a,b) = d(a,b) = 0. We are
ready for the inductive case. Let= ag, a1, ..., a,11 = b be a shortest path of length++ 1 in G — B and
assume the claim is true for shorter path-lengths. We need to prove:that) < n + 1. If m(a,b) = 0,
there is nothing to prove. Suppose then that, b) > 0 and letu; be a node of the sunflower that appears
in the shortest path of the tree betweR(u) and P(b) and is closest td’(b). By the second property of
tree-decomposition, any path@ — B from a to b must go through some point . So letk € {1,...,n}

be such that;, belongs tdl;. Letc = a, note that € R, and that the length of the shortest path between
a andc in G — Bis k < n. By induction hypothesisyn(a, ¢) < d(a, ¢). But alsom(c, b) = 0 by the choice
of jandcin T;. Thusm(a,b) < m(a,c) + 1 because’(c) contains at most one node of the sunflower. It
follows thatm(a,b) < d(a,c) + 1 < d(a,b) and we are done. O

Consider choosing one elementin T’ ;241 for eachi € {0,...,m — 1}. Thenm(a;, a;) > 2d for
1 # j. The lemma follows from the claim. O

An immediate consequence of Lemma 2 and Corollary 1 is that the homomorphism-preservation theo-
rem holds for classes of structures of bounded treewidth.

Theorem 6. LetC be a class of finite-structures that is closed under substructures and disjoint unions, and
such that the structures thhave bounded treewidth. On the cl@s®very query that is first-order definable
and is preserved under homomorphisms is also definable by an existential-positive first-order formula.

Many interesting classes have bounded treewidth. Among others, we find the class of all trees, the class
of all unicyclic graphs, and the class of all outerplanar graphs.

5 Classes with Excluded Minors

In this section we extend the combinatorial results from the previous section to classes of graphs which
exclude a minor. We say a class of graghsexcludes a grapléz as a minorif no graph inC hasG as a
minor. Note that, every grap@ is a minor ofKj, wherek is the number of nodes &. Thus, ifC excludes
G as a minor, it also excludds;, because the graph minor relation is transitive. It therefore suffices to
establish our result for classes of structures that exd€iglas a minor for somé.

We aim to show that in the class of graphs that excliKgeas a minor, every sufficiently large graph
will contain large scattered sets after the removal of a small number of elements. Intuitively, if a graph does
not contain such a scattered set, then there is a large number of elements with short paths between each pair.
Either various paths must pass through a small number of elements or they are nearly disjoint. In the former
case, we can remove the elements to get a scattered set; in the latter, we &§pdsmed minor in the graph.
It turns out, again, that provides a bound on the number of elements we need to remove.
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The formal proof of this intuitive idea is inspired by a construction due to Kreidler and Seese [30], which
establishes a result closely related to Theorem 8 below (see also [29]). Before the main result, we establish
a lemma on bipartite graphs. The proof relies on Ramsey’s Theorem (see [19]).

Theorem 7 (Ramsey’'s Theorem)For everyl > 0, k > 0 andm > 0, there is anV > 0 such thatifd is a
setwith|A| > N and f : [A]* — {1,...,1} afunction on thek-element subsets ¢f, there is a sef C A
with |I| > m such thatf is constant orlI]¥, thek-element subsets &f

For later use, we write(l, k, m) for the boundN obtained in Ramsey’s Theorem. Although we will
need it in its full generality, let us briefly comment on the particular e48e2, m). This is a bound for
the graph version of Ramsey’s Theorem: every graph with morestffag, m) vertices contains either an
independent set with more thamelements or a clique with more thamn elements.

The following lemma will be a key stepping stone towards the main result. The lemma says, roughly,
that every large bipartite gragl = (AU B, E C A x B) that exclude¥;, as a minor contains a large set
of points A’ C A without common neighbours iB, except for a small set of exceptional poiits C B
that are indeed common neighbours of all pointglin The fact that excludesK,, as a minor guarantees
that the set of exceptional poini¥ is kept small.

Lemma 3. For everyk > 1 andm > 0, there isanN > 0 such thatifH = (AUB,E C A x B)isa
bipartite graph such thaK, is not a minor ofH and |A| > N, then there are setd’ C AandB’ C B
with [A’| > mand|B’| < k — 1 suchthatd’ x B’ C E and A’ is 1-scattered it — B'.

Proof. The casé: < 2is trivial as, if K5 is not a minor ofH, thenH contains no edges and taking= m
suffices. We will therefore assume that 3 below. Furthermore, if the lemma is true for some valueiwof
itis also true for alln” < m. Thus, it suffices to prove it for all large enough In what follows we assume
thatm > k2. Define the function

b(n)=r(k+1,k,(k—2)n+k—2),

wherer is the Ramsey function. Defité(m) = m andb*!(m) = b(b’(m)), and letN = b*=2(m). We
construct the setd’ and B’ in a series of stages:

AgD A DDA
ByC B C---CHB.

The number of stages of this construction will be less thanl. Begin with Ay = A and By = (). Now,

suppose at stage < k£ — 2 we have setsl, C A andB, C B, with |B.| < r and|A,| > b*~27"(m),

and such thatd,. x B, C E. We defineA,,; andB,., 1. Let < be an arbitrary linear ordering of,.. Let
f:[A]F — {0,..., k} be the function that assigns to edelelement subset; < x5 < --- < z, of A,

the maximumj € {0,...,k} such that alky, . .., z; have a common neighbour i — B,. By Ramsey’s
Theorem, there is a sétC A,., with

1] > (k—2)bF 270D (m) + & — 2

such thatf is constant oii/]*. We consider three cases:

Case 1:f([I]¥) < 1. Let C denote the last — 2 elements off under the ordex. Then,l — C'is
1-scattered iH — B, as every pair of elements ih— C forms the first two elements of some ordered
k-element subset af and therefore cannot have a common neighbour. Note also, that

I —C| > (k—2)bF=2=+D ().

11



Sincer < k — 2, this meansl — C| > (k — 2)m > m ask > 3. Thus, takingd’ = A,;; = I — C and
B’ = B,y1 = B, we are done.

Case 2:1 < f([I]*) < k. We will argue that, indeed, this case cannot occur. A(&f]*) = t. If C
denotes the lagt — t elements of under the ordeg, then every-element subset df — C' has a common
neighbour inB — B,, as it is the initial segment of sizeof somek-element subset of. Furthermore, no
(t + 1)-element subset of — C' has a common neighbour i — B,, from which we conclude that the
maximal degree of any element i — B, (with respecttd — C)ist. Now, letX;,..., Xz C I —Cbea
collection ofk pairwise disjoint sets, each with exactlglements. Such a collection exists, since

I —C| > (k—2)b""20 D (m) > m > k2

Then, by the argument above, for eakh, there is au; € B — B, which is a common neighbour of all
elements inX;, andu; has no other neighbours. Thus, the &gtu {u,;} forms a connected patch in the
graphH — B,. Similarly, for eachi andj with 1 < i < j < k, we can find an element;; € B — B, such
that, if NV (u;;) denotes the set of neighbourswf in I, then:

1. N(UU) C X; UXJ'
2. N(uzj)NX; # 0
3. N(uij)ij #@

This is possible aX; and.X; are disjoint and each has> 1 elements. Thus, we can choose a subset of
X; U X that meets both sets and has exatt#yements. Any common neighbour of this subset would serve
asu;;. Again,u;; cannot have any other neighbours/in- C, as no(t + 1)-element subset of — C' has
a common neighbour. Thus, in particulaf; has no neighbours in any; for [ different from: and;. We
have thus found: distinct connected patches; U {u;} and pairwise disjoint paths (of length 2) between
any pair of them. Thu¥ is a minor ofH, a contradiction.

Case 3:f([I]¥) = k. This means that everrelement subset df has a common neighbour i — B,..
Let X = {z1,...,2;_1} be a collection ok — 1 distinct vertices in/. As everyk-element subset df has
a common neighbour, there is a functibn (I — X) — (B — B,) such that:(y) is a common neighbour
of X U {y}. If the range ofh containsk — 1 distinct elementsH containsK;_; ,_; as a subgraph and
thereforeK; as a minor. We may, therefore, assume that the rangehafs fewer thark — 1 elements.
Thus, thereisd C I — X with |J| > |I — X|/(k — 2) on whichh is constant. Let € B be the element
to whichh maps.J. We letA,; = JU X andB,;; = B, U {z}. Observe that is a common neighbour
of all elements in4,.; 1, and that

[Arpa| = [ X[+ T = X[/(k—2),
which is at least
(k—1) 4+ 6F 270 () — 1 > pF=2= 0D ()

as required.

To complete the proof, we need to verify that the number of iterations does notkeadh Note that
the iteration is repeated only in case 3, and in this dgsg contains one more element than. If the set
were to contairk — 1 elements, as all these elements are neighbours of all elemetitsimich has at least
m > k elements, we would have thEk containsK;,_; 1, and therefor&, as a minor. This establishes
that|B'| < k — 1. O
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The main combinatorial result of this paper can now be proved by a construction that iterates Lemma 3.
For a fixed large grapt: = (V, E®), we proceed inductively and generate two sequences of sets of vertices

V=52582---25
0V=2yC 2z C---CZ,

wheres; is ani-scattered set itk — Z;. Once we havé);, we can produce afi+ 1)-scattered sef; 1 C S;

by viewing thei-neighborhoods of a certain subset%fon one side of a bipartite graph, and the vertices of

G — Z; that are adjacent to those neighborhoods on the other. Lemma 3 guarantees a largé¢iendygh
scattered set after removing a few more points which are then addgddmbtainZ; ;. Choosing which

points of.S; to put on the bipartite graph requires one more application of Ramsey’s Theorem. The technical
details follow.

Theorem 8. For everyk > 1,d > 0, andm > 0, there is anN > 0 such that ifG = (V, E) is a graph
such thatKy, is not a minor ofG and|V| > N, then there are setS§ C V andZ C V with |S| > m and
|Z| < k — 1 such thatS is d-scattered inG — Z.

Proof. Once again, we prove the statement#or 2, as the casé = 1 is trivial. Define the function
c(n) =r(2,2,0"%(n)),

whereb is the function defined in the proof of Lemma 3 anig the Ramsey function. Le¥ = c%(m). We
constructZ andS in d stages:

So 2 51
Zo C 74y

...D8

2
c.-cz
The setsZ; and.S; at stagel will be such thatZ;| < k — 1 andS; is i-scattered inG — Z;. Moreover,
|S;| > c?~i(m). Start withSy = V andZ, = 0.

Suppose tha¥; andS; have already been constructed. We const#j¢ci andS; ;. For everyu € S;,
let N;(u) be thei-neighborhood of. in G — Z;. Consider the graph whose set of vertices is the set of
neighborhoodg V;(u) : u € S;}, and whose edges connect two different neighborhdgds) and N;(v)
if there existu’ € N;(u) andv’ € N;(v) such that{v/, v’} is an edge ilG — Z;. The number of vertices of
this graph is

1S;] > ¢4 (m) = r(2,2,0" (47 (m))).

By the graph version Ramsey’s Theorem discussed before, this graph contains either an independent set or
a clique of more than*~2(c%~"~!(m)) elements. The existence of such a clique impli&aminor in G

since the-neighborhoods of elements #) are disjoint and connected & — Z;. Therefore, there must be

an independent set, S@y;(u) : u € I}, wherel C S; and

1] > B*72 (e (m)).

We define a bipartite grapH = (AU B, E C A x B) on which to apply Lemma 3. Let = I, and let
B be the set of vertices d& — Z; that are adjacent to some vertex(if),.; N;(u). By the choice off,
the setsd and B are disjoint. The edges &1 connect vertices € A with those vertices € B that are
adjacent to some vertex iN;(u). Clearly, H has noK,; minor; otherwiseG would also have one since
thei-neighborhoods of elements inform disjoint connected patches@ — Z;. By Lemma 3, there exist
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A’ C AandB’' C B with |A’| > ¢?~~1(m) such thatd’ x B’ C E and A’ is 1-scattered il — B’. Let
Ziv1 = Z; UB" andS;;1 = A, which is (i + 1)-scattered inG — Z; ;1. The proof will be complete by
showing that if Z; 1| > k — 1, thenG has aKj,_; ,—; minor, and thus &;, minor.

Suppose thatZ; 1| > k — 1. By construction A’ x B’ C E, which means that, i, eachb € B’ is
adjacent to some vertex iN;(a) for everya € A’. In fact, the inductive construction guarantees that each
b € Z; is also adjacent, ik, to some vertexV;(a) for everya € A’. Consider eactV;(u), with u € A,
as a connected patch in the subgrapléoihduced by J,,. , Vi(u) and Z; 1. Note that these patches are
disjoint. TheKj,_; —; minor is now clear sinced’| > k — 1 and|Z; 1| > k — 1. O

Combining this with Corollary 1 we get the following result.

Theorem 9. LetC be a class of finiter-structures that is closed under substructures and disjoint unions,
and such that the class of Gaifman graphs of structure§ excludes at least one minor. On the class

C, every query that is first-order definable and is preserved under homomorphisms is also definable by an
existential-positive first-order formula.

We now comment on the relationship between Theorem 9 and the earlier Theorems 6 and 4.

As noted earlier, the class(k) of graphs of treewidth less thanexcludesKy,1 as a minor. Thus,
the homomaorphism-preservation theorem for these classes (Theorem 6) is a special case of Theorem 9.
Furthermore, there are many classes characterized by excluded minors that do not have bounded treewidth.
An example is the collection of planar graphs, which, by Kuratowski’s Theorem, extlydendK3 3 as
minor, but have unbounded treewidth. Another example of a class of graphs that exclude some minor are
the graphs of bounded genus. Indeed, any class of graphs closed under taking minors and different from the
class of all finite graphs must exclude some minor; consequently, the preservation-under-nomomorphisms
property holds for all these classes.

A more precise relationship between Theorems 6 and 9 can be obtained using certain deep results by
Robertson and Seymour [31] about classes of graphs excluding a minor. Specifically, Robertson and Sey-
mour [31] showed that for every grah, the class of graphs excludidfjas a minor is of bounded treewidth
if and only if H is planar (this result is a consequence of the the Excluded Grid Theorem of Robertson and
Seymour [31] - see also [11, Theorem 12.4.3]). Consequently, for every §fapte preservation-under-
homomorphisms property for the class of graphs exclu#ings a minor can be derived from Theorem 9,
but not from Theorem 6, precisely whé&his a non-planar graph.

It should also be noted that a class of graphs of bounded degree need not exclude any minor. This can
be seen by replacing every node dKa by a binary tree withk — 1 leaves and connecting different pairs of
trees through disjoint pairs of leaves. The resulting graph has degree 3, [}, tessa minor. Therefore,
Theorem 4 can not be derived as a consequence of Theorem 9.

6 Boolean Queries and Cores

We stated Theorems 4, 6 and 9 for queries of arbitrary arity even though the proofs were based on notions
of minimal models defined for Boolean queries. In this section we explain why the results extend to non-
Boolean queries. We then show that, if we consider Boolean queries only, the preservation property can be
shown for wider classes of structures than those considered in Theorems 4, 6 and 9.
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6.1 Non-Boolean Queries

Suppose is a class of finiter-structures and is ann-ary query orC. We say thay is preserved under
homomorphisms o if, for any A,B € C and anyn-tuple a of elements fromA if a € ¢(A) and
h: A — Bisahomomorphism, thefi(a) € ¢(B). In particular, ifg is a Boolean query o, ¢ is preserved
under homomorphisms @hif for every pair of structure& andB in C, if there is a homomorphisrafrom
A toBandg(A) = 1, theng(B) = 1.

There is a natural way to turn a non-Boolean query into a Boolean query in a vocabulary expanded with
constants. Let’ be the vocabulary obtained by extendingvith n new constant symbols, ..., ¢, andC’
be the class of al’-structuresA whose restrictiomA |, to the vocabulary is in C. Similarly, letq’ be the
Booleanquery onC’ defined byg’(A) = 1if and only if ¢ € ¢(A|,) wherec” is then-tuple of elements
in A interpreting the constants, ..., c,.

It is easily verified thay is preserved under homomorphisms(if, and only if, ¢’ is preserved under
homomorphisms o’ (a homomorphism on structures interpreting constant symbols is also required to
preserve the interpretation of constants, i.é. if A — B is a homomorphism, thel(c®) = ¢B). More-
over, for ac’ structureA, the Gaifman grap(A|,) is identical toG(A). Thus,C has bounded degree or
bounded treewidth or excludes a given minor if and only iloes. Moreover, i/’ is definable o’ by an
existential positive senteneg then there is an existential positive formula definingn C. This formula
is obtained by replacing the constants. . ., ¢, by new variables, ..., z,. Thus, if the homomorphism
preservation theorem holds for Boolean querie€’oit holds forn-ary queries oi€. However, in our proofs
above we also require that the classes of structures we consider are closed under taking substructures and
disjoint unions. Unfortunately, these are properties that do not transferdrmnd’. Due to the additional
constants, the latter may fail to have these closure properties even when the former has them.

To get around this problem, we use the notion pfebian companionf a structure introduced by Ajtai
and Gurevich in [3]. We give a brief description of their construction. Suppbiea vocabulary including
the constant symbols, . .., ¢, and letA be ac’-structure. The plebian companion Afis a structure A
in a vocabularyp obtained froms’ as follows. Every relation symbak in ¢’ is also inp but p does not
contain any of the constants. In addition, for each relation symbal arity » and each non-empty partial
functionm : {1,...,7} — {c1,...,cn}, p cONtains a new relation symba,, whose arity is- — j wherej
is the number of elements ¢1, ..., r} on whichm is defined. In particular, ifn is total,r = j andR,,, is
then a0-ary relation symbol. That is to say, it is a Boolean symbol that is interpreted as either true or false
in any p-structure.

The plebian companignA of A is ap-structure whose universe is obtained from thaAdfy excluding
the interpretation of the constants. For each relation symbiol o/, the interpretation ofz in pA is the
restriction of RA to the universe opA. To define the interpretation dt,,, let a be anr — j tuple of
elements frompA. Leta’ be ther-tuple of elements ofA obtained froma by inserting in position the
element interpreting the constant(i). We say thah € RFA if and only ifa’ € RA. In the special case
that R,, is 0-ary, we say that it is interpreted as true if and only if the unique empty tupleis,ity the
above rule.

It is straightforward to show that for amy-formula¢ there is go-formula« such thapA = ¢ if and
only if A = ¢. Indeed,y is obtained byy by replacing each atomic formul@(¢) in which the tuple of
terms¢ contains constants, by the formula,, (z) wherez is obtained fromé by removing the constants
andm is the partial function that mapgo the constant occurring in positiann ¢. It is easily seen that if
@ is existential positive, then sois. There is a similarly straightforward translation in the other direction,
which also preserves existential positive formulas. We can now make three useful observations about plebian
companions.
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Observation 1. The Gaifman grapld/(pA ) is a subgraph 0§ (A).

Indeed,G(pA) is the subgraph of(A) induced by the elements that are not named by a constant.
Writing pC’ for the collection of plebian companions of the structure€§’inve see that one consequence
of the above observation is that’ has bounded degree or bounded treewidth or excludes some mihor if
does.

Observation 2. There is a homomorphism frosa to B if, and only if, there is a homomorphism frgmA
to pB.

To see that this holds, létbe a homomorphism fromA to pB. We can extend to a mapﬁ from A
to B by letting h(c®) = ¢B for all constants:. Clearly, ifa is a tuple fromA which does not include the
interpretation of any of the constants, then for any relafioim o, R (a) = RPA(a) = RPB(h(a)) =
RB(h(a)), sinceh(a) = h(a). On the other hand, & contains constants, let be the partial function that
mapsi to the constant occurring in positieranda’ be the tuple obtained from by removing the elements
named by constants. Sinéemapsc® to ¢B for each constant, it is easily seen tha&(a) is the tuple
obtained fromh(a’) by inserting in positiori the elementm (i))®B. Since, furthermoré(a’) is the same as
h(a’), we have the following implicationsR® (a) = RE™(a’) = REC(h(a')) = RB(h(a)), establishing
that/ is a homomorphism.

For the other direction, suppogés a homomorphism frormA to B. We wish to show that the restriction
of g to the universe opA is a homomorphism fromA to pB. For any relation symbak in o, it is obvious
that RPA(a) = RPB(g(a)) just by the fact thag is a homomorphism fronA to B. Now, if R,, is a new
symbol inp anda is a tuple such thaanA(a), leta’ be the tuple obtained from by inserting in position
the elementm(i))2. Then, we haverl? (a) = RA(a’) by the definition ofRP>, RA(a’) = RB(g(a’))
by the fact thay is a homomorphism an&B(g(a’)) = REY(g(a)) by the definition ofR%y and the fact
thatg preserves the interpretation of constants.

Finally, the following observation is straightforward.

Observation 3. If C is closed under disjoint unions and substructures, then p@’is

Together these observations imply that if the preservation theorem is proved only with respect to Boolean
gueries for all classes of bounded degree, of bounded treewidth or for classes excluding some minor, it
is also established for all queries over such classes. For instanCehyded class of structures of bounded
degree and lep be a formula, with free variables, that is preserved under homomorphisi@s logt pC’
be the corresponding class of plebian companions @fote that the class depends on the number of free
variables inp). Then,pC’ is also of bounded degree and we hawseatence) such that for any structure
A € C and tuplea of elements fromA, A = ¢[a] if and only if pA’ = ¢ whereA' is the expansion oA
with constants for all elements in Thus,) is equivalent to an existential positive sentences@hand by
the arguments above, this implies thais equivalent to an existential positive sentenc& oithis justifies
the statement of Theorems 4, 6 and 9 for queries of arbitrary arity.

6.2 Cores

Let ¢ be a Boolean query that is preserved under homomorphisms on alldisireictures. The key ob-
servation we make is that the minimal modelsgadre cores The concept of core was introduced in the
context of graph theory (see [25]), but it generalizes naturally to relational structures. A substRicture
A is called acoreof A if there is a homomorphism from to B, but, for every proper substructuBé of B,
there is no homomorphism fror to B'. It can be seen that every finite structusehas a unique core up
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to isomorphism, denoted lyre(A ), and thatA is homomorphically equivalent tere(A). If a structure
A is its own core, we say tha\k is a core. It is now clear from the definitions thayifs a query that is
preserved under homomorphisms on all firitstructures, then every minimal model@fs a core. More
generally, ifC is a class of finiter-structures closed under substructures, @igla query preserved under
homomorphisms od, then every minimal model of in C is a core.

Now, combining the above observation with Theorem 3, we can strengthen Corollary 1 so that it is not
the structures in a clagsthat are required to have the property of low density. It suffices to show that the
collection of Gaifman graphs of cores of the structures hras this property.

Corollary 2. LetC be a class of finite-structures having the following properties:

1. Cis closed under substructures and disjoint unions;

2. for somes and for alld andm, there is anV so that ifA € C andcore(A) has more thanV elements,
then there is a seB of at mosts elements such th&(core(A)) — B has ad-scattered set of size.

On the clas<, every Boolean query that is first-order definable and preserved under homomorphisms is
definable by an existential positive first-order formula.

Combining this with Lemma 1, we obtain a stronger version of Theorem 4 specifically for Boolean
gueries. That is, the following is stronger than Theorem 4 in one direction in that it applies to a wider
collection of classes of structures, but weaker in another in that it only applies to Boolean queries.

Theorem 10. LetC be a class of finiter-structures that is closed under substructures and disjoint unions,
and such that the class of cores of structure§ imas bounded degree. On the cl&@svery Boolean query

that is first-order definable and is preserved under homomorphisms is also definable by an existential-
positive first-order formula.

We are able to similarly generalize Theorems 6 and 9 for the specific case of Boolean queries. More
precisely, for every positive integér> 2, let’H(7 (k)) be the class of all finite-structuresA such that the
core of A has treewidth less than These classes have been studied in the context of constraint-satisfaction
problems in [9, 20]. It is easy to see that for edch> 2, the classH (7 (k)) coincides with the class of
all finite o-structures that are homomorphically equivalent to-structure of treewidth less thdn In the
following, when we say that the structures in a cld$gve cores of bounded treewidiiie mean that there
is a positive integek such thatC C H(7 (k)).

Theorem 11. LetC be a class of finiter-structures that is closed under substructures and disjoint unions,
and such that the structures éhhave cores of bounded treewidth. On the cldssvery Boolean query that

is first-order definable and is preserved under homomorphisms is also definable by an existential-positive
first-order formula.

In Section 4 we mentioned several natural examples of classes of structures of bounded treewidth.
Classes of structures whose cores have bounded treewidth are even more pervasive. For example, the core
of every non-trivial bipartite graph iK,, the graph consisting of a single edge. Hence, the class of bipartite
graphs is contained i (7 (2)). However, all grids are bipartite and have arbitrarily large treewidth. Thus,

7 (2) is properly contained ift{(7(2)); in fact, for everyk > 2, we have tha (k) is properly contained
in H(7 (k)). For another example, consider all planar graphs that cokaias a subgraph. By the Four
Color Theorem for planar graphs, every such graphéslorable, hence it is homomorphically equivalent
to K, and so it is contained it (7 (4)).

Finally, we state the preservation result for Boolean queries and classes of structures whose cores exclude
some minor.
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Theorem 12. LetC be a class of finiter-structures that is closed under substructures and disjoint unions,
and such that the class of Gaifman graphs of cores of structuréseixcludes at least one minor. On the
classC, every Boolean query that is first-order definable and is preserved under homomorphisms is also
definable by an existential-positive first-order formula.

Theorem 12 subsumes Theorem 11 in the same way as Theorem 9 subsumes Theorem 6, since the Gaif-
man graphs of cores of structuresif{7 (k)) excludeKj;.; as a minor. The relationship with Theorem 10
is less clear. Atthe end of Section 5 above, we presented an example of a class of structures that has bounded
degree but does not exclude any minors. However, the structures involved are not cores. If we could con-
struct a class of cores of bounded degree which nevertheless do not exclude any minor, this would show that
Theorems 10 and 12 are similarly incomparable.

It is not clear whether Theorems 10, 11 and 12 can be extended to non-Boolean queries. All we can
say is that the method of plebian companions (from Section 6.1) does not give the desired outcome. To
understand why this is the case, recall that we define for any €lassl anyn the clas<’ of expansions
of structures inC by n constants and then the clggd of plebian companions of structures@h Since
the Gaifman graphs structures@hare the same as those of the corresponding grapfisniea know that
restrictions on the latter also apply to the former. However, it is not the case that the cores of structures in
are cores of structures h It is possible that the cores of structure€ihave bounded degree (for instance)
while the cores of structures @ do not. This is illustrated by the following example.

Let awheelbe a graphiw,, (for n > 3) with verticesh, c1, . .., ¢, and edges connecting, ..., c, in
a simple cycle along with an edge froin(the hub) to eacls;. It is easily seen thafyV,, is 4-colorable
and, ifn is odd, W, is a core. Let aicyclebe a graph of the forrB,, = W,, + K4, wheren > 3. That
is, B,, is the disjoint union ofW,, andK, (note that, a¥, is the same a¥3, a bicycle consists of two
wheels). From the fact thd¥,, is 4-colorable, it is clear that the core B, is K4. Thus, ifC is the class of
all bicycles, the cores of structures@rhave bounded degree. Consider n@y,, »), the expansion oB,,
with a constant naming the hubof W,,. Since any homomorphism of this structure mustifiandW,, is
itself a core whem is odd, it follows for oddn > 5, we have thatB,,, k) is itself a core and it contains a
node of degree. Thus, ifC’ is the class of expansions of structureg€iby one constant, the class of cores
of structures irC’ has unbounded degree.

7 Ajtai-Gurevich Theorem Revisited

The Ajtai-Gurevich Theorem [3] asserts that every Datalog program that is first-order definable on finite
structures i®oundedthat is, the associated monotone operator reaches its least fixed-point after a uniformly
bounded number of iterations on every finite structure. The aim of this section is to present a proof of this
theorem that is based on the results about treewidth in Section 4. Our proof of the Ajtai-Gurevich Theorem
can be construed as a re-intepreration of the original proof that makes explicit the role of bounded treewidth
and exposes the components of the original argument. Moreover, we obtain a stronger result for a family of
infinitary logics that taken together are strictly more expressive than Datalog. This stronger result, however,
is weaker than the result claimed in the preliminary version of this paper [6], which appeared in the PODS
2004 Proceedings. In this section, we will also spell out the precise differences between what was claimed
in [6] and what is actually established here.
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7.1 Proof of the Ajtai-Gurevich Theorem

The collection ofnfinitary formulasl.., is obtained by closing the atomic formulas under negation, infini-
tary conjunctions, infinitary disjunctions, universal quantification, and existential quantification. For every
positive integerk, the k-variable fragment of...,,, denoted byL.%. , consists of allL..., formulas with
at mostk distinct variables; note that each variable may have an unbounded number of occurrences in a
Lk -formula. The collection okxistential positive infinitary formuladLZ , is obtained by closing the
atomic formulas under infinitary conjunctions, infinitary disjunctions, and existential quantification. The
k-variable fragment oY, is denoted b)EL’égZ. From Section 2, recall that/aDatalog program is a
Datalog program in which every rule has at mbdistinct variables. It was shown in [28] that for every
positive integelk, everyk-Datalog query is expressible #L%5. As a matter of fact, Theorem 4.3 in [28]
asserts that-Datalog is contained in a certain fragment of the existential positive infinitary Tgic, that
we describe next.

For every positive integek, let CQ” be the collection of all first-order formulas that have at miogis-
tinct variables and are obtained from atomic formulas using conjunction and existential quantification only;
note that each variable may be reused iH@"-formula, so its number of occurrences may be arbitrarily
large. Clearly, every’Q*-formula defines a conjunctive query, since, by transforming a formula in
prenex normal form, we obtain an expression of the fanm. .. 3,6, wheren > k and# is a conjunction
of atomic formulas. As an example, the expression

3x13$2(E($1, :L‘Q) A (Hxl(E(:L‘Q, 551) A EL’L’QE(CL‘l, 3;'2))))
is aCQ?-formula that is logically equivalent to the conjunctive query
3x13x23x33x4(E(x1, .7}2) VAN E(JEQ, 903) A E(:Cg, x4)),

which asserts that there is a path of length 4.

Next, letIFO** be the first-order fragment élef;gZ, that is,3FO** is the collection of all first-order
formulas that have at mostdistinct variables and are obtained from atomic formulas using conjunction,
disjunction, and existential quantification. Since conjunctions distribute over disjunctions and since existen-
tial quantifiers commute with disjunctions, it is clear that evéD**-formula is logically equivalent to a
finite disjunction\/", 1, of CQ*-formulas.

Finally, let\/ CQ* be the collection of all disjunctions (finite and infinite) 60)*-formulas, that is,

\/ CQF consists of alBL%f -formulas of the form/ ®, whered is a (possibly infinite) set af Q*-formulas.
Thus,3FO* has the same expressive power as the fragmelgt@6)* consisting of all formulas of the
form\/ ®, where® is a finite set oCQ’“—formuIas.

The connection betwednDatalog andk-variable logics can now be stated as follows (see [28, Theo-
rem 4.3)):

Theorem 13. Letk be a positive integer and a k-Datalog program.

1. For each positive integein, them-th stage of the monotone operator associated with definable
by a finite disjunction o€ Q*-formulas.

2. The query expressed hyis \/ CQ*-definable. Specifically, #,, is a finite disjunction ofCQ"-
formulas defining then-th stage of the monotone operator associated wijttmen the query expressed
by is definable by thg/ CQ*-formula\/,,, -, O,
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The preceding Theorem 13 implies that, as regards expressive power, Datalog is contained in the family
of infinitary logics\/ CQF, k > 1. Itis easy to see that this containment is a proper one, since every Datalog
query is polynomial-time computable, while evghCQ? can express non-recursive queries. Specifically,
for everyn > 2, let,, be aCQ?-sentence asserting that “there is a path of lengthThen, if S is a
non-recursive set of positive integers, ftjeCQ2-sentencé\/n€S 1, defines a Boolean query that is not
expressible in Datalog.

We will also need a connection betwe€)”*-sentences and structures of treewidth less thafihis
was first obtained in [28, Remark 5.3] and further refined in [9, Theorem 12]. We state this connection in
the next lemma and include its proof for completeness.

Lemma 4. If k is a positive integer ang is an CQ"-sentence, then there is a structdPeof treewidth less
thank such that the canonical conjunctive query of D is logically equivalent tap.

Proof. Assume thai is anCQF-sentence. Lep be the result of renaming all occurrences of variables in

so that each existential quantifier bounds a different variable. Repeatedly apply the following rewriting rules
to the subformulas ap: replace subformulas of the forgi A (32)(¢") by (3z) (¢’ A"), and subformulas

of the form(3z) (") Ay” by (3z) (¢’ A"). Note that these rules preserve equivalence because each variable
is quantified only once igp. The resultis a conjunctive quefyz;) - - - (3z,, )6 that is equivalent t@), where

6 is a conjunction of atomic facts. L& be the canonical structure associated with the conjunctive query
(31) - - - (3,6, which means that the universe Dfis the set{x1, ..., x,}, and(z;,, ..., 2;.) € RP if,

and only if, the atomic formuld(z;,, ..., z;, ) appears ird. By construction, the canonical conjunctive
querypp of D is (3x1) - - - (3z,,)0, hence itis logically equivalent tp.

It remains to show thdD has treewidth less than Letq, 9, ..., 1, be the collection of all subfor-
mulas of. View them as nodes of the parse-tree/ofLabel each nod@; of the tree by the set of free
variables ofy);. Sincey hask variables in total, eacly; has at mosk free variables, so each label has size
at mostk. Using the fact that each variable is quantified exactly onagamd that each atomic fact & is
a subformula of), it is not hard to see that the tree and its labeling form a tree-decomposifiorobividth
at mostk — 1. Hence, the treewidth dD is less thark. O

The next lemma establishes a connection between minimal modgl€6j*-sentences and structures
of treewidth less thah.

Lemma 5. Letk be a positive integer, lap be a\/ CQ"-sentence, and leA be a model ofp. There exists
a structureB having the following properties:

1. B is a minimal model of/;

2. the treewidth oB is less thark;
3. there is a homomorphism froB to A.

Furthermore, ifA is a minimal model of), then there is a surjective homomorphism friBno A.

Proof. Let be a\/ CQ*-sentence of the forry ®, where® is a set ofCQ"-sentences. IA is a model of
1, then there is af'Q”-sentence € ® such thatA = ¢. By Lemma 4, there is a structul of treewidth

less thark such thaty is logically equivalent to the canonical conjunctive quely of D. Consequently,
A = ¢p, which, by Theorem 1, implies that there is a homomorphisinom D to A. SinceD is a model
of ¢, it is also a model of); consequently, there is a substructief D that is a minimal model of. The

treewidth ofB is less thark, sinceB is a substructure dD and the treewidth db is less thark. Moreover,

the restrictionh’ of h on B is a homomorphism frorB to A.
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The imageh/(B) of B under?’ is a substructure oA; moreover, it is a model of, since\/ CQ*-
formulas are preserved under homomorphisms. It follows thatig a minimal model of), thenh/(B) =
A, which means that’ is an onto homomorphism froi to A. O

The preceding Lemma 5 shows that every minimal model \gf@&Q"-sentence) is the homomorphic
image of a minimal mode} of treewidth less thak. In the preliminary version of this paper [6, Lemma
4], we asserted thatveryminimal model of a\/ CQ"-sentence has treewidth less tHanThis, however,
is not true. As a matter of fact, there a(EQ’“-sentences that have minimal models of treewidth at least
For example, let be theCQ2-sentenc@z 3o ((E(x1, 2) A (3x1(E (29, 21) A (3z2E (21, 22))))), Which
asserts that there is a path of length three. The directed 3-elemenCyid@ minimal model of), but has
treewidth2.

We are now ready to state and prove the main result of this section.

Theorem 14. Let k be a positive integer and 1&f ® be a\/ CQ*-sentence, wher® is a (possibly infinite)
set of CQF-sentences. The following statements are equivalent:

1. There is a finite subsel of ® such that\/ ® is equivalent td/ ¥ on all finite structures.
2. \/ @ is equivalent to som8FO**-sentence on all finite structures.
3. \/ @ is equivalent to some first-order sentence on all finite structures.

Proof. The implications(1) = (2) and(2) = (3) are quite obvious. Towards establishing the implication

(3) = (1), assume thay/ @ is a\/ CQ*-sentence that is equivalent to some first-order sentg¢nae all

finite structures. We claim thaf ® has finitely many non-isomorphic minimal models. Indeed/ i had

arbitrarily large minimal models, then Lemma 5, implies tkfa® has arbitrarily large minimal models of

treewidth less tha®. But then, by Lemma 2, for every > 0 andm > 0, and for every sulfficiently large

minimal model A of treewidth less thar, there existsB C A of size at most such thatA — B has

a d-scattered set of sizew. Theorem 3 implies immediately thgt ® is not equivalent to any first-order

sentence on finite structures. This establishes\th&thas finitely many non-isomorphic minimal models.
LetD,...,D,, be alist of all pairwise non-isomorphic minimal models\6f, and, for each < m,

let yp, be the canonical conjunctive queryBf. Since\/ ® is preserved under homomorphisms, we have

that\/ @ is equivalent to\/]", ¢p, on finite structures. In particular, we have th@f’ | ¢p, logically

implies\/ ® on finite structures. Since eveQ*-sentence is logically equivalent to a conjunctive query,

the fact that\/;” , ¢p, logically implies\/ @ on finite structures amounts to the union of the conjunctive

queriesyp,, . . ., ¢¥D,, logically implying the union of the conjunctive queriesdn Sagiv and Yannakakis

[34] have shown that a union of conjunctive queries logically implies another union of conjunctive queries if

and only if every conjunctive query in the first union logically implies some conjunctive query in the second

union. It follows that for every < m, there is arCQ"-sentencd; in ® such thatyp, logically implies

0;.1 This yields that/" | ¢p, logically implies\/!", 6;, which, in turn, logically implies/ ®. At the same

time,\/ @ is logically equivalent td/" ; ¢p,; consequently\/ ® is also logically equivalent ty ¥, where

Although the preceding Theorem 14 was stated and provey fo€)*-sentences, it holds foy CQF-
formulas with free variables. This can be shown using the transformation of non-Boolean queries to Boolean
gueries, as described in Section 6.

W
This can also be established directly as follows. Fix sérdem. SinceD; |= ¢p,, we have thaD,; = ®. Consequently,
there is arCQ"-sentencd; in ® such thaD; |= 6;. Sinced; is logically equivalent to a conjunctive query, Theorem 1 tells that
¢p, logically implies®;.
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The Ajtai-Gurevich Theorem [3] can now be obtained easily from Theorems 13 and 14.

Theorem 15 (Ajtai-Gurevich Theorem). Let = be a Datalog program. The following statements are
equivalent:

1. = is bounded, which means that there is a positive integauch that, on every finite structure, the
query expressed bycan be computed within at masiterations of the monotone operator associated
with 7.

2. 7 is first-order definable, which means that there is a first-order formula such that, on every finite
structure, it defines the query expressedrby

Proof. The difficult direction is(2) = (1). Let k be the number of variables of the Datalog progranBy
Theorem 13, the query expressedsbis definable by 8/ CQ*-formula\/ ®. By Theorem 14, if there is

a first-order formula that defines this query on all finite structures, then there is a finite $ublsétsuch
that\/ @ is logically equivalent td/ ¥ on finite structures. Consequently, there is a positive integech
that\/ @ is logically equivalent to the formul, defining thes-th stage of the monotone operator associated
with 7. It follows that, on every finite structure, the query expressesd bgn be computed within at mast
iterations of the monotone operator associated with O

Note that Theorem 14 is a stronger result than Theorem 15, since, as detailed in the remarks following
Theorem 13, the family of infinitary logidg CQF, k > 1, has strictly higher expressive power than Datalog.

7.2 On the Relationship Between the Infinitary Logics\/ CQ* and 3L+

In the remainder of this section, we will examine the relationship between the full existential positive in-
finitary logic JLE%E with & variables and its fragmeNt CQ*, k > 1. In a nutshell, the precise relationship
betweenﬂL’égZ and\/CQ’“ is as follows. On the class of all finite structures, evét;&f;—sentence is
equivalent to an infinitary disjunction of infinitary conjunctions@®”-sentences; as we will be seen be-
low, this normal-form theorem foBL%:!, can be obtained easily from results in [27]. In the preliminary
version of this paper, we claimed that on the class of all finite structures, éﬂéﬁ]-formula is equivalent

to a\/ CQF-formula. Regrettably, this claim turns out to be false because we will show here that there are
infinitary conjunctions/\ ® of CQ?-sentences that are not equivalent to §1¢'Q>-sentence. Thus, the
aforementioned normal form &fL%.f -sentences as infinitary conjunctions\¢iCQ"-sentences is optimal

and cannot be simplified.

The expressive power afLkE is captured by thexistentialk-pebble gameintroduced in [27] and
studied further in [28]. This game is played between two players, the Spoiler and the Duplicator, on two
o-structuresA and B according to the following rules. Each player has a sek gebblesas, ..., o
and gy, ..., B, respectively. In each round of the game, the Spoiler can make one of two different types
of moves: either he places a free pebbleon an element of the domain @&, or he removes a pebble
«; from a pebbled element ch. To each move of the Spoiler, the Duplicator must respond by placing
her corresponding pebble, over an element oB, or removing her corresponding pebbie from B,
respectively. If the Spoiler has a strategy to reach a round in which the set of pairs of pebbled elements is not
a partial homomorphism between andB, then he wins the game. Otherwise, we say that the Duplicator
wins the game. The following link between existentigbebble games anglL’;}, was established in [27,
Corollary 4.9 and Remark 4.11].

Theorem 16. Let k& be a positive integer, and leX and B be two finites-structures. The following state-
ments are equivalent.
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1. EveryﬂL’ég;S-sentence that is true oA is also true onB.
2. EverydFOFT-sentence that is true oA is also true orB.
3. The Duplicator wins the existentiatpebble game oA andB.

As explained earlier in this section, eveiiyO*+-formula is equivalent to a finite disjunctiofi;” | ¥,
of CQ*-formulas. Consequently, the second statement in the preceding Theorem 16 can be replaced by the
seemingly weaker statement

2'. EveryCQF-sentence that is true oA is also true orB.

For every positive integet and every finites-structureA, let ¢(A, k) be the query: given a finite
o-structureB, does the Duplicator win the existentiajpebble game oA andB?
The next result follows easily from Theorem 16 and the preceding observation about statement

Theorem 17. Letk be a positive integer.

1. For every finiteo-structure A, the queryg(A, k) is definable by the following infinitary conjunction
of CQF-sentences

/\{0 : 0is anCQ*-sentence and |= 6}.

2. Onthe class of all finite-structures, everﬁL’é&S-sentenC@ is equivalent to the following infinitary
disjunction
\/{a(4,k) : Ais afinitec-structure and\ |= ¢}.

Consequently, on the class of all finitestructures, everﬂL’égf)-sentence is equivalent to an infinitary
disjunction of infinitary conjunctions @#Q*-sentences.

In what follows, we show that the above normal form ﬂrﬁgﬂ; cannot be improved. For this, we need

an auxiliary result concerning the definability of the quefy, k).

Proposition 1. Let k be a positive integer and ek be a finiteo-structure. The following statements are
equivalent.

1. The queryy(A, k) is \/ CQ*-definable on the class of all finite-structures.
2. The queryy(A, k) is CQ*-definable on the class of all finite structures.

Proof. The direction(2) = (1) is obvious. For the directiofil) = (2), let us assume that, on the class
of all finite o-structures, the query( A, k) is definable by a senten§g©, where® is a (possibly infinite)
set of CQF-sentences. SincA satisfies the query(A, k), there is anCQ"-sentence € © such that
A = 6. We now claim that defines the query(A, k) on the class of all finiter-structures. Indeed, if
B is a finite model of), thenB = \/ ©, henceB satisfies the query(A, k). Conversely, ifB is a finite
o-structure such that the Duplicator wins the existeriigebble game oA andB, then, by Theorem 16,
everyHLﬁgﬁ—sentence satisfied b is also satisfied b¥B; consequentlyB satisfies. O
Assume that is a positive integer and is a finite structure whose core has treewidth less thalm
[9], it was shown that for every finite structuR® the Duplicator wins the existentiatpebble game oA
andB if and only if there is a homomorphism fro#a to B. It follows that, in this case, the quegyA., k) is
definable by the canonical conjunctive query of A; furthermore 4 is equivalent to altQ*-sentence,
since the core ofA has treewidth less thain This gives a large collection of structurdsfor which the
queryq(A, k) is CQF-definable, hence it is alsg CQ¥-definable. In contrast, the next proposition shows
that this need not always be true.
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Proposition 2. Let C3 be the directed-element cycle.

1. The queryy(Cs, 2) is not first-order definable.
2. The queryy(Cs, 2) is A CQ?-definable, but is noy/ CQ?-definable.

Proof. Let B be a finite directed graph. It is easy to verify that the Duplicator wins the existerpiabble
game onC3 andB if and only if B contains a cycle. Indeed, in the existenfigbebble game o3 and
B, the Spoiler can force the Duplicator to play along a path. SBée finite, the Duplicator can win the
existential2-pebble game only iB contains a cycle. Conversely, i contains a cycle, then the Duplicator
can win the existential-pebble game o3 andB by playing along edges of a fixed cycle.

It is well known that the query “given a finite directed graph, is it acyclic?” is not first-order definable
(this can be shown using EhrenfeuchtiBga games). Thus, the queqyCs, 2) is not first-order definable.

By Theorem 17, the query(Cs, 2) is A\ CQ?-definable. In contrast, Proposition 1 implies théEs, 2)
is not\/ CQQ-definabIe, since, if it were, then it would lﬁmf-definable and, hence, first-order definable.

O

Corollary 3. On the class of all finite directed graphg,CQ? is strictly less expressive thatL 2.

As mentioned earlier, Corollary 3 refutes our claim in the preliminary version of this paper ([6, Lemma
5]) to the effect that, on the class of all finite structures, for every positive iniegﬁreryHL'égZ-sentence
is equivalent to &/ CQ*-sentence.

7.3 Extensions to Stronger Infinitary Logics

Since ever;ZIL’égZ—sentence is preserved under homomorphisms, Rossman’s [33] preservation-under-homomor

theorem implies that if aL’&iZ-sentence is equivalent to a first-order sentence on finite structures, then it is
also equivalent to an existential-positive first-order sentence on finite structures [6, Theorem 9]. Moreover,
since\/ CQ* is a fragment oBL%:L, Rossman's result also implies that ifACQ"-sentence is equivalent

to a first-order sentence on finite structures, then it is also equivalent to an existential-positive first-order sen-
tence. However, Rossman’s proof does not yield the stronger result established in Theorem 14, namely, that
if a \/ CQF-sentence is equivalent to a first-order sentence on finite structures, then it is equivalent to some
JFO**-sentence (that is, to some existential-positive first-order sentence with ak mlissinct variables).

Indeed, Rossman’s proof produces an equivalent existential-positive first-order sentence with mére than
distinct variables. In turn, this state of affairs gives rise to the following problem, which is open at present.

Problem: Suppose that éL’&,ZZ-sentencazz is equivalent to a first-order sentence on the class of all finite
structures. Is it true that is equivalent to som&FO**-sentence on the class of all finite structures?

Finally, it is natural to ask whether the Ajtai-Gurevich Theorem and Theorem 14 hold for more expres-
sive logics that allow for some form of negation. Ajtai and Gurevich [3] showed that their theorem fails both
for Datalog programs with negated extensional predicates and for Datalog programs with inegéalities
follows that Theorem 14 fails for extensions \gfCQF that allow for negated atoms or for inequalitigs
Thus, the results presented in this section are very tightly connected to preservation under homomorphisms,
and fail for Datalog extensions and for stronger infinitary logics in which sentences are preserved under
two-way homomorphisms or one-to-one homomorphisms.
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8 Concluding Remarks

We have investigated the homomorphism-preservation theorem for numerous classes of finite structures
of interest in graph theory and database theory. As noted earlier, preservation theorems do not always
relativize to restricted classes of structures, so our results stand by themselves independently of the fact that
the homomorphism-preservation theorem has been shown to hold on the class of all finite structures [33].
Indeed, one can ask the same question for other classes of finite structures. For instance, we could consider
classes of bounded local treewidth [13, 17] or of bounded cliquewidth [8]. The homomorphism-preservation
theorem for these classes does not follow from our results, as these classes are not definable by excluded
minors. Indeed, the classes of bounded local treewidth generalise both bounded treewidth and bounded
degree. Also, the class of all cliques has bounded cliquewidth but does not exclude any minor. However,
it is worth investigating whether the kinds of techniques we have developed could yield results about these
classes.

Another line of investigation would ask similar questions to those studied here for other classical preser-
vation theorems, and in particular, for those that fail on the class of all finite structures, such as Tfaedlo
Theorem and Lyndon’s Positivity Theorem. The first results in this direction have been reported in [5].

It should also be pointed out that our results are effective. More precisely, for the classes of structures
for which we established the homomorphism-preservation theorem, the proofs provide us with a computable
bound on the size of the minimal models of a first-order query preserved under homomorphisms. This yields
an effective procedure to produce a union of conjunctive queries that is equivalent to a given first-order
formula that is preserved under homomorphisms. In turn, for classes of structures whose first-order theory
is decidable, such &5(k), the computable bound can also be used to show that it is decidable whether a
first-order formula is preserved under homomorphisms. This should be contrasted with the undecidability
of the same problem on the class of all finite structures [4]. The exact complexity of these problems on the
class7 (k) could be prohibitive, but this remains to be determined.
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