
On Datalog vs. LFP

Anuj Dawar and Stephan Kreutzer

1 University of Cambridge Computer Lab
anuj.dawar@cl.cam.ac.uk

2 Oxford University Computing Laboratory
kreutzer@comlab.ox.ac.uk

Abstract. We show that the homomorphism preservation theorem fails for LFP,
both in general and in restriction to finite structures. That is, there is a formula of
LFP that is preserved under homomorphisms (in the finite) but is not equivalent
(in the finite) to a Datalog program. This resolves a question posed by Atse-
rias. The results are established by two different methods: (1) a method of diag-
onalisation that works only in the presence of infinite structures, but establishes
a stronger result showing a hierarchy of homomorphism-preserved problems in
LFP; and (2) a method based on a pumping lemma for Datalog due to Afrati,
Cosmadakis and Yannakakis which establishes the result in restriction to finite
structures. We refine the pumping lemma of Afrati et al. and relate it to the power
of Monadic Second-Order Logic on tree decompositions of structures.

1 Introduction

Among the important classical results of model theory, relating syntactic to semantic
properties of first-order logic, are the preservation theorems. For instance, the Łoś-
Tarski theorem tells us that a sentence of first-order logic is equivalent to an existential
sentence if, and only if, the class of its models is closed under extensions and Lyndon’s
theorem states that a sentence is monotone in a relation R if, and only if, it is equivalent
to one that is positive in R (see [12]). The study of preservation theorems has played
an important role in the development of finite model theory, with many early results
demonstrating that such results fail when we restrict consideration to finite structures
(see, for instance, [8]).

One important exception to the general failure of preservation theorems in the finite
is Rossman’s proof of the homomorphism preservation theorem [17]. This shows that
on the class of finite structures, just as on the class of all structures (finite or infinite) a
sentence of first-order logic is equivalent to an existential positive sentence if, and only
if, it is preserved under homomorphisms. The homomorphism preservation property in
finite structures has aroused much interest in theoretical computer science through its
connections with questions in database theory and the study of constraint satisfaction
problems (CSPs).

Each of the preservation theorems mentioned has two directions, one of which is gen-
erally quite easy to establish: namely that the syntactic restriction (such as the restriction
to existential positive sentences) implies the semantic restriction (being preserved under
homomorphisms). Moreover, this direction holds generally on any class of structures C.

L. Aceto et al. (Eds.): ICALP 2008, Part II, LNCS 5126, pp. 160–171, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

On Datalog vs. LFP 161

The other direction, sometimes known as expressive completeness, states that any sen-
tence that satisfies the semantic restriction is equivalent to one of the simple syntactic
form. When we restrict this statement to a class C, we weaken both the hypothesis and
the conclusion of the statement. Thus, even for classes C and C′ where C ⊆ C′, it is im-
possible to deduce either the validity or the failure of a preservation theorem on C from
the statement for C′. In particular, the statements for the class of all structures and for
the class of finite structures alone are quite independent statements. Recently, there has
been a growing interest in investigating the status of preservation theorems for classes
C more restrictive than the class of all finite structures [5,6].

Atserias [3] (see [1, Question 4.3]) asked whether the homomorphism preservation
theorem holds for LFP—the extension of first-order logic with an operator for defin-
ing least fixed points of monotone formulas. Fixed-point logics have arguably played
a more important role in finite model theory than first-order logic. In particular, it is
known that LFP expresses all polynomial time computable properties of finite ordered
structures [13,18]. Thus, the question of whether a homomorphism preservation theo-
rem can be established for this logic arises naturally. The language formed by extending
existential positive formulas by means of a least fixed-point operator is Datalog and it
has been extensively studied as a database query language. It has also received atten-
tion in the study of constraint satisfaction problems as it provides a general means of
classifying many CSPs as tractable. It is easily seen that any query defined in Datalog is
preserved under homomorphisms. Thus, Atserias’ question asks whether it is the case
that every sentence of LFP that is preserved under homomorphisms is equivalent to a
Datalog program. We show in this paper that this is not the case, either on the class of
all (finite or infinite) structures or in restriction to the class of finite structures.

The homomorphism preservation question for extensions of first-order logic was also
studied by Feder and Vardi [10]. They showed that on finite structures, the homomor-
phism preservation property holds for a number of existential infinitary and fixed-point
logics. In particular, they established that any query definable in Datalog(¬, �=) that
is closed under homomorphisms is already definable in Datalog. The former language
is the extension of Datalog with inequality and negation on EDB predicates. Just as
Datalog can be seen as the existential positive fragment of LFP, Datalog(¬, �=) is its
existential fragment. Thus, our results show that the theorem of Feder and Vardi cannot
be extended from Datalog(¬, �=) to LFP.

The two examples we construct separating LFP from Datalog bear some similarity to
each other in that they are defined in terms of graphs having path lengths in some set S.
In addition, to guarantee that the classes we consider are closed under homomorphisms,
we take the union with the class of all graphs containing a cycle. The main differences
in the two results are in the choice of the set S and in the method used to prove that the
resulting class of graphs is not definable in Datalog. In the case where we allow infinite
structures, the proof is somewhat simpler as we can construct a set S that is undefinable
in Datalog (over the natural numbers) using standard diagonalisation arguments and
then obtain the result by means of a reduction of the graph problem to this set. This
actually establishes something stronger. It shows that for every k, there are formulas
of LFP that are preserved under homomorphisms but not definable by a formula with

162 A. Dawar and S. Kreutzer

only k nested alternations of the fixed-point operator with negation. These results are
established in Section 4.

When we restrict ourselves to finite structures, such diagonalisation methods are un-
available and we adapt a pumping lemma due to Afrati et al. [2] for our purpose. Afrati
et al. use their pumping lemma to demonstrate polynomial-time monotone properties
that are not definable in Datalog. In order to adapt it to the LFP-definable properties we
are interested in, we need to show that it works on a class of acyclic graphs. What we es-
tablish is that if π is a Datalog program which accepts a directed acyclic graph (G, s, t)
if, and only if, G contains a path from s to t of length p for some p in a given set S,
then S cannot grow too fast (the precise statement is given in Lemma 5.2). This suffices
to establish the result we seek. An apparently stronger pumping lemma (saying that S
cannot grow faster than linearly) is stated in [2], but without the restriction to acyclic
graphs. In the absence of this restriction, we cannot use their lemma directly and it is not
clear from their description of the proof that it can be adapted. This is explained in more
detail in Section 5. One virtue of our proof of this pumping lemma is that it connects it
with other recent innovations in the analysis of Datalog queries, namely their relation-
ship with tree decompositions and with the power of monadic second-order logic over
these. This new insight into Datalog may be of independent interest.

One source of interest in the relationship between LFP and Datalog is research on
the classification of tractable constraint satisfaction problems. We can associate with
any structure B, the decision problem CSP(B) of determining for a given structure A
whether there is a homomorphism A → B. This is the constraint satisfaction problem
associated with B (see [9]). Much research work has been devoted to classifying those
structures B for which this problem is decidable in polynomial time. It is immediate
from the above definition that the complement of CSP(B) is closed under homomor-
phisms. If we could find a finite structure B for which the complement of CSP(B) is
definable in LFP but not in Datalog, this would resolve certain conjectures on the classi-
fication of tractable CSPs (see [4] for a discussion). We note here that our example of a
homomorphism closed class separating LFP from Datalog on finite structures is not the
complement of CSP(B) for any finite B, but is of this form for an infinite structure B.

We begin in Section 2 with definitions, including those of LFP and Datalog as well
as first-order and monadic second-order logic. We also recall the definitions of tree
decompositions of structures and relate them to Datalog programs.

2 Preliminaries

We briefly introduce the fundamental concepts and notation we need in later sections.

Homomorphisms and Preservation. Let σ be a finite signature. We use boldface let-
ters for structures A,B, ... and corresponding Roman letters A, B, ... to denote their
universe. We also write a for a tuple a1, . . . , ak.

Definition 2.1. Let σ be a relational signature possibly with constant symbols and let
A,B be σ-structures. A homomorphism from A to B is a function h : A → B such
that for every k-ary relation symbol R ∈ σ and every k-tuple a ∈ Ak if a ∈ RA then
(h(a1), . . . , h(ak)) ∈ RB and for every constant symbol c ∈ σ, h(cA) = cB. We write
A → B to denote that there is a homomorphism from A to B.

On Datalog vs. LFP 163

Definition 2.2. Let C be a class of structures. A subclass D ⊆ C is closed under ho-
momorphisms if whenever A,B ∈ C so that A ∈ D and there is a homomorphism
h : A → B then B ∈ D. We are particularly interested in model classes of sentences.
If ϕ is a sentence of a logic, we say ϕ is preserved under homomorphisms on C if the
class ModC(ϕ) := {A ∈ C : A |= ϕ} is closed under homomorphisms.

First-Order Logic, Monadic Second-Order Logic and Types. Let σ be a signature. We
assume that the reader is familiar with first-order logic. We write FO(σ) for the class
of all first-order formulas over the signature σ. Monadic Second-Order Logic (MSO) is
the extension of first-order logic by quantification over sets of elements, i.e. there are
quantifiers ∃X, ∀X , where X is a unary relation variable, and a formula ∃Xϕ is true in
a structure A, written A |= ∃Xϕ, if there is a set X ⊆ A such that (A, X) |= ϕ. The
semantics of ∀Xϕ is defined analogously. See e.g. [8] for more on MSO.

The quantifier rank qr(ϕ) of a formula ϕ (of FO or MSO) is the maximal depth of
nesting of quantifiers in ϕ. Note that up to logical equivalence there are only finitely
many MSO-formulas of quantifier rank at most q in a finite signature σ. We write MSOq

for the class of MSO-formulas of quantifier rank at most q. We write A ≡q B to denote
that two structures A and B cannot be distinguished in MSOq .

A type is a maximally consistent class of formulas. For a structure A and q ∈ N,
the MSOq-type of A is the class of MSO-sentences of quantifier rank at most q which
are true in A and if a ∈ Ak, then the MSOq-type of a in A is the class of all MSOq-
formulas ϕ(x) such that A |= ϕ(a). As, for each q ∈ N, MSOq only contains finitely
many formulas up to equivalence, the MSOq-type of a tuple or a structure can com-
pletely be described by a single formula in MSOq (see [8]). We will use the following
decomposition theorem for MSO. See e.g. [15] or [11].

Lemma 2.3. Let A and B be structures and let u be a tuple listing the vertices in the
intersection of A and B. The MSOq-type of u in A ∪ B is uniquely determined by the
MSOq-types of u in A and in B.

In particular, if A, B1 and B2 are structures such that A ∩ B1 = A ∩ B2 =: u and the
MSOq-types of u in B1 and B2 are the same, then A ∪ B1 ≡q A ∪ B2.

Least Fixed-Point Logic. We first present a brief introduction to least fixed-point logic.
For a detailed exposition see [8]. Let σ be a signature and let ϕ(R, x) be a formula
of signature σ which is positive in the k-ary relation variable R, i.e. every atom of the
form Rt in ϕ occurs within the scope of an even number of negation symbols. For
every σ-structure A, ϕ defines a monotone operator1 FA,ϕ : Pow(Ak) → Pow(Ak) via
FA,ϕ(P) := {a ∈ Ak : (A, P) |= ϕ[a]}, for every P ⊆ Ak. A theorem due to Knaster
and Tarski shows that on every structure A every monotone operator FA,ϕ has a least
fixed point which we denote by lfp(FA,ϕ).

The logic LFP(σ) is the extension of FO(σ) by least fixed-point operators. To be
precise: LFP(σ) contains FO(σ) and is closed under Boolean connectives and first-order
quantification; and if ϕ(R, x, z, Q) is an LFP(σ)-formula which is positive in the k-
ary relation variable R then for every k-tuple t of terms [lfpR,x ϕ](t) is an LFP(σ)-
formula such that for every

(
σ ∪̇ {z, Q}

)
-structure A and every tuple a ∈ Ak we have

A |= [lfpR,x ϕ](a) if, and only if, a ∈ lfp(FA,ϕ).
1 An operator F : Pow(M) → Pow(M) is monotone iff F (A) ⊆ F (B) for all A ⊆ B ⊆ M .

164 A. Dawar and S. Kreutzer

The alternation depth of an LFP formula ϕ is defined as the maximal number of
alternations between fixed-point operators and negations inside ϕ. We write LFPk for
the class of LFP formulas of alternation depth at most k.
Datalog. Datalog is a database query language which could be defined as the collection
of formulas of LFP which do not use negation or universal quantification. However, the
usual presentation of the language is in terms of function-free Horn clauses, and we
follow this presentation below as the structure of the program in terms of rules is useful
for our proof of the pumping lemma in Section 5.

A Datalog program is a finite set of rules of the form T0 ← T1, . . . , Tm, where
each Ti is an atomic formula. T0 is called the head of the rule, while the right-hand
side is called the body. The relation symbols that occur in the heads are the inten-
sional database predicates (IDBs), while all others are the extensional database pred-
icates (EDBs). Note that IDBs may occur in the bodies too, thus, a Datalog program
is a recursive specification of the IDBs with semantics obtained via least fixed-points
of monotone operators. The collection of EDB predicates occurring in π constitute its
signature σ, and a Datalog program of signature σ is interpreted in σ-structures. One
IDB predicate is distinguished as the goal predicate. In general, we will assume that
the goal predicate is a 0-ary predicate, so that the program defines a Boolean query.
In the interests of space, we will not give a formal definition of the semantics of the
program, which can be found in standard textbooks such as [8]. A key parameter in
analysing Datalog programs is the number of variables used. We write k-Datalog for
the collection of all Datalog programs with at most k distinct variables in total.

A formula of first-order logic is said to be a conjunctive query if it is obtained from
atomic formulas using only conjunctions and existential quantification. Every finite
structure A with n elements gives rise to a canonical conjunctive query ϕA, which
is obtained by first associating a different variable xi with every element ai of A,
1 ≤ i ≤ n, then forming the conjunction of all atomic facts true in A, and finally
existentially quantifying all variables xi, 1 ≤ i ≤ n. In other words, the formula ϕA is
the existential closure of the positive diagram of A (see [12]). The significance of these
queries lies in the fact (first noted by Chandra and Merlin [7]) that for any structure B,
B |= ϕA if, and only if, there is a homomorphism from A to B.

For every positive integer k, let CQk be the collection of conjunctive queries that
have at most k distinct variables. Note that each variable may be reused, so its number
of occurrences may be arbitrarily large. The significance of CQk lies in that the number
of variables required to express ϕA is closely related to the tree width of A. We first
review the definition of tree width and then state its relationship with CQk.

Let A be a σ-structure. A tree-decomposition of A is a pair (T, B) where T is a
directed tree oriented from the root to the leaves and B is a labelling that associates to
each node t of T a non-empty set of elements Bt ⊆ A such that
1. for every tuple a in some relation R of A, there is a node t ∈ T such that a is

contained in Bt; and
2. for every a ∈ A, the set {t ∈ T : a ∈ Bt} forms a connected subtree of T.

The width of a tree-decomposition is the maximum cardinality of a set Bt minus one.
The treewidth of A is the smallest k for which A has a tree-decomposition of width k.

The connection between the number of variables in ϕA and the tree width of A can
now be summarised as follows (see [14,6]).

On Datalog vs. LFP 165

Lemma 2.4. If A has tree width less than k, then ϕA is equivalent to a formula of
CQk. For any satisfiable formula ϕ in CQk, there is a structure A with tree width less
than k, such that ϕA is logically equivalent to ϕ.

A Datalog program π can be unfolded into a conjunctive query, by repeatedly expanding
the rules. There are infinitely many such unfoldings for a recursive program. We are
interested in the structures, called expansions of π, for which these unfoldings are the
canonical conjunctive queries.

Definition 2.5. Given a Datalog program π, a partial unfolding of π is any conjunctive
query obtained using the following rules:

– The goal predicate G of π is a partial unfolding of π;
– If ϑ is a partial unfolding of π; R is an IDB predicate of π; R(x) is an atomic

formula occurring in ϑ; and R(y) ← T1(z1), . . . , Tm(zm) is a rule of π, let ϕ(x)
be the formula obtained from ∃z(T1(z1) ∧ · · · ∧ Tm(zm)) (where z includes all
variables occurring in the rule except for those in y) by replacing the variables in y
by x. Then, the formula ϑ′ obtained from ϑ by replacing the occurrence R(x) by
ϕ(x) is also a partial unfolding of π.

An unfolding of π is a partial unfolding in which no IDB predicate occurs.

It is not difficult to see that any unfolding of a Datalog program is a conjunctive query,
and more particularly, if π is a k-Datalog program, then any unfolding of π is in CQk.
It is also easily established that a structure A is in the query defined by π if, and only
if, there is some unfolding ϑ of π such that A |= ϑ.

Definition 2.6. An expansion of a k-Datalog program π is a structure A of tree width
less than k such that the canonical conjunctive query ϕA is logically equivalent to an
unfolding of π.

Now, it is clear, by Lemma 2.4, that B |= π if, and only if, A → B for some ex-
pansion A of π. Indeed, the models of π are generated from expansions whose tree
decompositions are given by the unfolding of π.

Definition 2.7. A decorated expansion of the k-Datalog program π is a tree decompo-
sition (T, B) of an expansion A of π along with a labelling L that associates to each
node t of T a pair (r, ρ) where r is either a rule of π or an atomic formula R(x) (for an
EDB predicate R); and ρ is an injective mapping from the variables of r to Bt.

The labelling L must satisfy the following conditions:

1. If L(t) = (r, ρ) and r is an atomic formula, then t is a leaf of T.
2. If L(t) = (r, ρ) and r is a rule R(x) ← T1(z1), . . . , Tm(zm), then t has exactly m

children t1, . . . , tm where for each i, if L(ti) = (ri, ρi) then ri is either an atomic
formula Ti(y) or a rule whose head is Ti(y). Further ρi(y) = ρ(zi).

3 LFP Definable Classes Closed Under Homomorphisms

In this section we introduce the classes of structures which we will use to separate LFP

from Datalog, and show that they are LFP definable, though proofs are omitted for lack
of space.

166 A. Dawar and S. Kreutzer

A source-target graph is a (finite or infinite) directed graph G with two distinguished
vertices s and t, i.e. a structure over the signature {E, s, t} where E is a binary relation
symbol and s, t are constant symbols. For a source-target graph A = (G, s, t), let nA

denote sup{p : G contains a simple path of length p starting at s}. Note that nA is
either a finite ordinal or ω. In the sequel, when we speak about a graph, we mean a
source-target graph.

Fix a set S ⊆ ω of natural numbers. We define the following classes of graphs.

– Cyc – the class of graphs that contain a cycle.
– Unb – the class of graphs A for which nA = ω.
– PS – the class of graphs A that contain a path from s to t of length p for some

p ∈ S.
– CS := PS ∪ Cyc.
– C∞

S = (PS ∩ Unb) ∪ Cyc.

It is the classes CS and C∞
S (for suitable choices of the set S) which we show separate

LFP from Datalog. Note that all acyclic graphs in C∞
S are infinite, while CS may contain

finite as well as infinite acyclic graphs. We begin first by noting that these classes are
closed under homomorphisms.

Lemma 3.1. The classes CS and C∞
S are closed under homomorphisms.

It can be shown that even the classes PS are closed under homomorphisms. The reason
we work with the classes CS and C∞

S is for the sake of definability in LFP. It is difficult
to use LFP to determine the lengths of paths in the presence of cycles. In fact, the longest
path problem is NP-complete and hence unlikely to be definable in LFP. By including
all graphs with cycles, we make the problem easier, as then we only have to consider
the longest path in acyclic digraphs. We now aim to show that if the set S is definable
in LFP, in some sense, then the classes CS and C∞

S are also definable.
For an ordinal α ∈ [0, ω], we write (α, succ) to denote the structure whose universe

is {β : β < α} and where succ is interpreted as the binary successor relation.

Lemma 3.2. There is a uniform LFP interpretation of (nA, succ) in acyclic source-
target graphs A.

The proof of Lemma 3.2 relies on the use of stage comparison relations, see [16]. We
remark that the interpretation in Lemma 3.2 is already definable in LFP1, the alternation
free fragment of LFP.

Lemma 3.3. There is a formula ϕunb of LFP that defines Unb on acyclic graphs.

This is used to show the definability of the classes CS and C∞
S .

Lemma 3.4. If S ⊆ ω is definable in the structure (ω, succ) by a formula of LFPk, then
the class C∞

S is defined by a sentence of LFPk+1.

Note that the class of sets S that are definable by LFP formulas in (ω, succ) is very rich.
In particular, it includes all Π1

1 -definable sets of numbers.

Lemma 3.5. If the class of finite structures S = {(n, succ) : n ∈ S} is definable in
LFP, then CS is defined by a sentence of LFP.

Note that {(n, succ) : n ∈ S} is definable in LFP if, and only if, the set S, represented
in unary, is decidable in polynomial time.

On Datalog vs. LFP 167

4 The Diagonalisation Method

The main result of this section is the following theorem.

Theorem 4.1. There is a sentence of LFP that is preserved under homomorphisms on
the class of all structures but which is not equivalent to any Datalog program.

Since Datalog is in the negation-free fragment of LFP, it is clear that every Datalog
program is equivalent to a formula in LFP1. Using diagonalisation methods, one can
show that for each k there is a subset Sk ⊂ ω such that Sk can be defined in the
structure (ω, succ) by an LFPk+1 formula ϕk(x) but not by any formula in LFPk, where
succ denotes the successor relation on ω. See e.g. [16]. Thus, we can choose a set S of
natural numbers which is definable in LFP on the structure (ω, succ) but not in Datalog.
Our aim is to show that the class C∞

S is not definable in Datalog.

Lemma 4.2. For any set S, if there is a Datalog program defining C∞
S , then S is defin-

able in (ω, succ) by a Datalog program.

This allows us to prove Theorem 4.1, as we can choose a set S that is definable in LFP

but not in LFP1. Then, Lemma 3.4, 3.1 and 4.2 together imply the theorem. The proof
actually implies a somewhat stronger result.

Corollary 4.3. For every k, there is an LFPk+2-definable class of structures which is
closed under homomorphisms but which cannot be defined in LFPk.

5 The Pumping Method

The result in the previous section relies crucially on infinite structures. In particular, the
class C∞

S restricted to finite structures is just the class of all graphs containing a cycle,
and this is definable in Datalog. Moreover, the stronger Corollary 4.3 cannot hold on
finite structures since it is known that every formula of LFP is equivalent, in the finite, to
a formula of LFP1 (see [13]). Still, in this section we establish that the homomorphism
preservation property fails even when we restrict ourselves to finite structures.

Theorem 5.1. There is an LFP sentence ϕ which is preserved under homomorphisms
on the class of all finite structures such that there is no Datalog program equivalent to
ϕ on finite structures.

Specifically, we show that there are sets of numbers S, which are polynomial-time de-
cidable when written in unary, such that there is no Datalog program whose finite models
are exactly the ones in CS . This is established by showing the following pumping lemma.

Lemma 5.2. Let S ⊆ ω be an infinite set of numbers and π a Datalog program which
accepts a directed acyclic graph (G, s, t) if, and only if, G contains a path from s to
t of length p for some p ∈ S. Then, there is a constant c and an increasing sequence
(ai)i∈ω of numbers such that:

1. ai+1 < ac
i for all i; and

2. S ∩ [ai, ai+1] �= ∅ for all i.

168 A. Dawar and S. Kreutzer

Before we give a proof, a few remarks are in order. Recall that a Datalog program π
determines a collection C of expansions of bounded tree width such that a structure B
is accepted by π if, and only if, A → B, for some A ∈ C. If π is as in Lemma 5.2, then
it accepts a structure (G, s, t) where G is a simple path of length p ∈ S. The expansion
A that maps to this structure must be an acyclic graph in which all paths from s to t
are of length p. To prove the lemma, we proceed from a decorated expansion for A to
“pump” a portion of the tree decomposition and obtain a sequence of expansions Ai

which are all acyclic and such that the lengths of all paths in Ai from s to t are in the
interval [ai, ai+1] for a suitably defined sequence (ai)i∈ω . This establishes the result.

It should be noted that a similar pumping lemma is stated by Afrati et al. [2], and
proved by similar means. Indeed, their statement is apparently stronger in that condition
(1) can be replaced by ai+1 < c + ai, which is to say that the sequence (ai)i∈ω can
be chosen to grow linearly in i rather than exponentially. However, their statement is
not confined to acyclic graphs, which is an essential restriction for our result. It would
suffice for our purposes if, in the proof of the pumping lemma of Afrati et al., it could
be shown that when an acyclic expansion is pumped, we always obtain an acyclic ex-
pansion, but we are unable to recover this fact from their proof. To be precise, they
present the proof in detail only for the case when the expansion A is itself a simple
path. In this case, the proof below can also be used to yield a linear sequence (ai)i∈ω .
They then state that the general case can be handled similarly, by choosing in the dec-
orated expansion of A a collection of pairs of points to pump such that each simple
path crosses exactly one such pair. We are unable to determine how such a collection
could be chosen and, if the points at which we pump an expansion are crossed by more
than one path, it is quite possible that pumping may create shortcuts. This is the reason
why, in the proof below, we have to pump each pair of points multiple times, forcing an
exponential growth in the sequence (ai)i∈ω. However, this is still sufficient to establish
Theorem 5.1, which is our aim here. We now proceed to a proof of Lemma 5.2.

Proof of Lemma 5.2. Let π be a Datalog-program that accepts a directed acyclic graph
(G, s, t) if, and only if, G contains a path from s to t of length p for some p ∈ S and
let k be the number of variables in π. Then, for any such (G, s, t), there is an expansion
A of π such that A → (G, s, t), and there is a corresponding decorated expansion
(T, B, L) where (T, B) is a tree decomposition of A of width k − 1. We can assume,
without loss of generality that each Bu, u ∈ T , has exactly k elements. It will be
clear how to adapt the construction to the case where this is not so. Since A is acyclic
(otherwise there would be no homomorphism A → G), we let < be the (partial) order
on vertices of A induced by distance from sA (where vertices that are not reachable
from s have distance ∞).

We now represent the decorated expansion (T, B, L) as a relational structure D as
follows:

– the universe of D is D := T ∪̇A, the disjoint union of T and A;

– the constants s and t are interpreted in D by sA and tA;

– D has a k + 1-ary relation B such that for each u ∈ T there is exactly one tuple
(u, a1, . . . , ak) ∈ B, and it satisfies: Bu = {a1, . . . , ak} and a1 ≤ a2 · · · ≤ ak;
and

On Datalog vs. LFP 169

– for every rule r of π and every mapping ρ from the variables of π to {1, . . . , k},
there is a unary relation Lr,ρ interpreted in D by {u ∈ T : L(u) = (r, ρ′)}, where
ρ′ is the map that takes x to aρ(x) where (u, a1, . . . , ak) ∈ B.

We will not distinguish notationally between (T, B, L) and D in the sequel, as it will
always be clear from the context in which presentation we formally work. It is easily
seen that we can write a formula ϕ of MSO such that D |= ϕ if, and only if, D is
a decorated expansion of π and the underlying expansion A is acyclic. Let q be the
quantifier rank of ϕ and let Q be the number of distinct MSO-types of quantifier rank at
most q. Note that the values of q and Q are determined by π and do not depend on the
choice of the expansion A.

For x ∈ T , we write Dx for the substructure of D induced by the subtree of T rooted
at x, and the elements related to nodes of this subtree by B. Note that the only elements
that Dx shares with the rest of D are in Bx. We write D[x/D′] for the structure obtained
from D by replacing Dx by D′. That is, it is the disjoint union of the structure D \
Dx, obtained by removing Dx from D, with the structure D′ while identifying the
elements in BD′

r (where r is the root of D′) with BD
x . It is then an easy consequence of

Lemma 2.3 that D ≡q D[x/D′] if Dx ≡q D′. In particular this implies that if D is an
acyclic decorated expansion then D[x/D′] is also an acyclic expansion. For x, y ∈ T ,
we write y ≺ x to denote that y is an ancestor of x in T.

We begin with an informal account of the proof of Lemma 5.2. The idea is to start
with an acyclic expansion D that maps homomorphically to a simple path of length N ,
for some large enough N . This enables us to find a pair x, y ∈ T such that Dx ≡q Dy

and y ≺ x. We can then pump, i.e. consider the expansions D′ := D[x/Dy] and
D′′ := D[x/D′

y], etc. in order to obtain larger acyclic expansions with longer s-t-
paths. If D itself consisted of a single path, x and y could be chosen so that the pumped
expansions themselves consisted of simple paths and we would obtain a set of such
paths growing linearly in length. However, if D contains multiple intersecting paths, the
process of pumping may create new paths, including ones shorter than N . Moreover,
in order to ensure that all paths in the new expansion are affected by pumping, it is
not sufficient to choose one pumping pair (x, y), rather we need pairs intersecting (in a
suitable way) all s-t-paths in D. Unfortunately, these pairs may overlap and we need to
define the process of pumping carefully.

The difficult part of the proof is therefore to choose the set of pairs (x, y) we want to
use, and to define the process of pumping carefully. In the construction outlined below,
we show how such a set of pairs can be found such that after repeating the pumping
process n times, every s-t-path has length at least n and at most nc, for some c ∈ N

that depends on D but not on n. This is enough to prove the lemma. We begin by giving
a definition of pumping for a set C of pairs (x, y) which form an anti-chain in D (in
a sense we make precise below). We then use this to inductively define the pumped
expansions for more general sets C.

Pumping at an antichain: Let D = (T, B, L) be a decorated expansion and C ⊆ T 2 a
set of pairs (x, y) such that y ≺ x and if (x, y), (x′, y′) ∈ C then x �= x′ and y �� y′. We
define the expansions DC

n by induction on n: DC
0 := D and DC

n+1 := D[x/(DC
n)y :

(x, y) ∈ C].

170 A. Dawar and S. Kreutzer

In other words, DC
n is obtained from D by pumping each pair (x, y) in C simultane-

ously n times. Since, for distinct pairs (x, y) and (x′, y′), y and y′ (and hence also x and
x′) are incomparable, this is well-defined. We now use this to define pumping for sets
of pairs C which are not necessarily incomparable. To be specific, suppose that C ⊆ T 2

is a set of pairs (x, y) with y ≺ x and x �= x′ for distinct pairs (x, y) and (x′, y′). We
define a partial order on C by letting (x, y) � (x′, y′) just in case y′ ≺ y and let ht(x, y)
denote the length of the maximal �-chain below the pair (x, y). Let m be the maximal
value of ht(x, y) among all pairs in C. Write Cp for the set {(x, y) ∈ C : ht(x, y) = p}.

Pumping: We define the pumped expansions by induction on p: D0
n = DC0

n and
Dp+1

n = (Dp
n)Cp+1

n . Finally, let DC
n denote Dm

n .
Intuitively, given D and C we pump D by working bottom-up in D and replacing

recursively for each pair (x, y) ∈ C the tree rooted at x by the tree rooted at y and
repeat n times. Note that if C is chosen so that for each (x, y) ∈ C, Dx ≡q Dy , then
we also have DC

n ≡q D. In particular, DC
n is an acyclic expansion of π. The following

claim is easily established by induction on p.

Claim. Every s-t-path in DC
n is of length at most nm · N .

Let b be the maximal branching degree in any decorated expansion of π (note that this
depends only on π) and choose N ∈ S with N > bQ·K , where K := 2k2 · k4. Let
A be an expansion witnessing that a simple path of length N is accepted by π and
D = (T, B, L) be the corresponding decorated expansion. By the choice of N , every
s-t-path P in A must contain K distinct internal vertices v1, . . . vK such that there is a
chain xP := x1 ≺ · · · ≺ xK in T with Dxi ≡q Dxj for all i, j and vi ∈ Bxi . Choose
for each s-t-path such a chain and let Γ := {xP : P is an s-t-path in A}.

If Bx consists of the elements a1, . . . , ak in order, we say that a path P crosses x at
(α, β) (for 1 ≤ α < β ≤ k) if P contains aα and aβ and no intermediate element of
Bx. For a fixed xP , by the choice of K , we can find a pair (α, β) and a subsequence
x′

P of xP of length at least 2k2 · k2 such that for each x in x′
P , P crosses x at (α, β).

Let Γ ′ be the collection of the pairs (x′
P , (α, β)) for xP ∈ Γ .

Distant: Say a pair (u, v) ⊆ By , for some y ∈ T , is distant if for every path P from u
to v in A there is some (x, (α, β)) ∈ Γ ′ such that P crosses each x ∈ x at (α, β).

By construction, (s, t) is distant. For each (x, (α, β)) ∈ Γ ′ we can choose a pair
x, y ∈ x with (x, a1, . . . , ak) ∈ B and (y, b1, . . . , bk) ∈ B such that y ≺ x and (ai, aj)
is distant if, and only if, (bi, bj) is distant for all i, j. Indeed, as x has at least 2k2 · k2

elements, we have at least k2 distinct choices for x. This ensures that we can choose C
to be a collection of such pairs (x, y), including one from each (x, (α, β)) ∈ Γ ′ such
that no two pairs in C share the same first component.

For u, v ∈ Bx, for some x ∈ T, define the pumping height of (u, v) to be the length
of the maximal chain (with respect to the order �) in C below x. The following claim
is the key to the pumping argument.

Claim. For all p, n, if the pumping height of (u, v) is at most p and (u, v) is distant then
the distance of u and v in Dp

n is at least n.

In particular, the claim implies that for n ∈ N, every s-t-path in DC
n is of length at

least n. As C, and hence m, only depend on the initial choice of D and not on n, we

On Datalog vs. LFP 171

have that every s-t-path in DC
n is of length at most nm · N . To complete the proof of

Lemma 5.2, take a1 = N + 1 and ai+1 = am+1
i . �

To complete the proof of Theorem 5.1, consider the class CS where S = {22n2

: n ∈
N} which is clearly decidable in polynomial time. It is easily verified that there is no
sequence (ai)i∈ω that satisfies the conditions of Lemma 5.2 for this set. Finally, we note
also that the restriction of the class CS to finite structures can be characterised as {A :
A finite and A �→ B} for a fixed infinite structure B. Simply take B to be the structure
formed from the disjoint union of all finite A �∈ CS by identifying all copies of s and t.

References

1. Open Problems List for the MathsCSP Workshop, Oxford (2006),
http://www.cs.rhul.ac.uk/home/green/mathscsp/

2. Afrati, F., Cosmadakis, S., Yannakakis, M.: On Datalog vs. Polynomial Time. Journal of
Computer and System Sciences 51, 177–196 (1995)

3. Atserias, A.: The homomorphism preservation property. In: Talk at International Workshop
on Mathematics of Constraint Satisfaction, Oxford (2006)

4. Atserias, A., Bulatov, A., Dawar, A.: Affine systems of equations and counting infinitary
logic. In: Proc. 34th International Colloquium on Automata, Languages and Programming.
LNCS, vol. 4596, pp. 558–570. Springer, Heidelberg (2007)

5. Atserias, A., Dawar, A., Grohe, M.: Preservation under extensions on well-behaved finite
structures. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP
2005. LNCS, vol. 3580, pp. 1437–1449. Springer, Heidelberg (2005)

6. Atserias, A., Dawar, A., Kolaitis, P.G.: On preservation under homomorphisms and unions
of conjunctive queries. Journal of the ACM 53, 208–237 (2006)

7. Chandra, A.K., Merlin, P.M.: Optimal implementation of conjunctive queries in relational
databases. In: Proc. 9th ACM Symp. on Theory of Computing, pp. 77–90 (1977)

8. Ebbinghaus, H.-D., Flum, J.: Finite Model Theory, 2nd edn. Springer, Heidelberg (1999)
9. Feder, T., Vardi, M.Y.: Computational structure of monotone monadic SNP and constraint

satisfaction: A study through Datalog and group theory. SIAM Journal of Computing 28,
57–104 (1998)

10. Feder, T., Vardi, M.Y.: Homomorphism closed vs existential positive. In: Proc. of the 18th
IEEE Symp. on Logic in Computer Science, pp. 311–320 (2003)

11. Grohe, M.: Logic, graphs, and algorithms. In: Flum, J., Grädel, E., Wilke, T. (eds.) Logic and
Automata History and Perspectives, Amsterdam University Press (2007)

12. Hodges, W.: Model Theory. Cambridge University Press, Cambridge (1993)
13. Immerman, N.: Relational queries computable in polynomial time. Information and Con-

trol 68, 86–104 (1986)
14. Kolaitis, P.G., Vardi, M.Y.: Conjunctive query containment and constraint satisfaction. Jour-

nal of Computer and System Sciences 61, 302–332 (2000)
15. Makowsky, J.A.: Algorithmic uses of the Feferman-Vaught theorem. Annals of Pure and

Applied Logic 126, 159–213 (2004)
16. Moschovakis, Y.N.: Elementary Induction on Abstract Structures. North Holland, Amster-

dam (1974)
17. Rossman, B.: Existential positive types and preservation under homomorphisisms. In: 20th

IEEE Symposium on Logic in Computer Science, pp. 467–476 (2005)
18. Vardi, M.Y.: The complexity of relational query languages. In: Proc. of the 14th ACM

Symp. on the Theory of Computing, pp. 137–146 (1982)

http://www.cs.rhul.ac.uk/home/green/mathscsp/

	Introduction
	Preliminaries
	LFP Definable Classes Closed Under Homomorphisms
	The Diagonalisation Method
	The Pumping Method

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

