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RWTH Aachen University

Abstract. We study 0-1 laws for extensions of first-order logic by Lindström quantifiers. We state
sufficient conditions on a quantifier Q expressing a graph property, for the logic FO[Q] – the exten-
sion of first-order logic by means of the quantifier Q – to have a 0-1 law. We use these conditions
to show, in particular, that FO[Rig], where Rig is the quantifier expressing rigidity, has a 0-1 law.
We also show that extensions of first-order logic with quantifiers for Hamiltonicity, regularity and
self-complementarity of graphs do not have a 0-1 law. Blass and Harary pose the question whether
there is a logic which is powerful enough to express Hamiltonicity or rigidity and which has a 0-1
law. It is a consequence of our results that there is no such regular logic (in the sense of abstract
model theory) in the case of Hamiltonicity, but there is one in the case of rigidity. We also consider
sequences of vectorized quantifiers, and show that the extensions of first-order logic obtained by
adding such sequences generated by quantifiers that are closed under substructures have 0-1 laws.
The positive results also extend to the infinitary logic with finitely many variables.

1. Introduction

The study of random graphs in combinatorics has focused attention on the asymptotic probabilities of
graph properties. Informally, the asymptotic probability µ(P ) of a graph property P is the limit, as n
goes to infinity, of the proportion of graphs of cardinality n that satisfy P , if this limit exists. It turns
out that many interesting properties of graphs have asymptotic probability 0 or 1. Intuitively, this means
that such properties either hold in almost all (finite) graphs, or they hold in almost none of them. For
instance, almost all graphs are connected, rigid, and Hamiltonian, whereas almost no graph is planar or
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k-colourable, for any fixed k (see [4]). In contrast, it is clear that evenness – the property of the order of
a graph being even – does not have an asymptotic probability.

The study of the logical properties of random structures has focused on the existence of 0-1 laws,
and other limit laws, for a variety of logics. We say that a logic L has a 0-1 law if, for every property
that is expressible by a sentence of L, the asymptotic probability is defined and is either 0 or 1. Gleb-
skiı̆ et al. [12] and Fagin [10] independently showed that first-order logic has a 0-1 law. Such laws have
also been established for fragments of second-order logic [17], extensions of first-order logic by induc-
tive operators [1, 21, 22] and the infinitary logic with finitely many variables [18] (see [5] for a survey of
results on 0-1 and limit laws).

Most of the known 0-1 laws in logic are proved by means of extension axioms. For atomic types s, t
where s ⊆ t, the s-t-extension axiom is a first-order sentence stating that every tuple realizing the type s
can be extended to a tuple realizing t. It is an elementary exercise in probability theory to show that each
extension axiom has asymptotic probability 1. For graphs this amounts to saying that for all k ≤ m and
all collections v1, . . . , vm of m distinct nodes there almost surely exists a node w with an edge to each
of v1, . . . , vk but to none of vk+1, . . . , vm. Since every extension axiom holds in almost all graphs, the
same is true for any property that is a consequence of a finite collection of extension axioms.

A number of properties that hold for almost all graphs can be explained by means of extension
axioms, even for properties that are not definable in first-order logic. For instance, the property of having
diameter two is implied by the conjunction of two extension axioms. As a consequence, we obtain
that µ(connectivity) = 1, even though connectivity is not a first-order property. Similarly, given any
graph H , there is a finite collection of extension axioms implying that almost all graphs contain H
as an induced subgraph. Thus, every non-trivial property which is closed under taking subgraphs has
asymptotic probability 0; in particular this proves that µ(planarity) = 0 and µ(k-colourability) = 0.

However, there are important graph properties which have asymptotic probability 0 or 1 and for
which this does not follow from the extension axioms, the most notable being Hamiltonicity and rigidity.
Blass and Harary [3] prove that there is no first-order sentence with asymptotic probability 1 which
implies either Hamiltonicity or rigidity.

We can thus divide the properties of almost all graphs, or more generally, properties of almost all
finite structures, into three classes:

(1) Properties expressible in first-order logic. This includes only rather simple properties, such as
having diameter ≤ k, for any fixed k, or containing a copy of H as an induced subgraph, for any
fixed graph H .

(2) Properties that are not expressible in first-order logic, but are a consequence of a finite collection
of extension axioms. It has turned out that many, perhaps most, interesting properties of almost all
graphs fall into this class.

(3) Properties that hold for almost all finite graphs, but are not implied by any finite collection of
extension axioms (or equivalently, by any first-order sentence with asymptotic probability 1). This
class includes Hamiltonicity and rigidity [3], but also other properties such as not being self-
complementary, having two nodes of different degrees (non-regularity), and not having an Euler
tour [2].

We focus here on the third class. To prove that a property of almost all graphs (such as Hamiltonicity
or rigidity) is not implied by extension axioms, one typically proceeds as follows:
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Construct a sequence (Gn)n∈N of graphs that do not have the property, and prove that every finite
collection of extension axioms is satisfied by some graph Gn. A variation of this technique is based on
probabilistic arguments: Construct a sequence Γ = (Γn) of probability spaces such that the property
in question has asymptotic probability 0 on Γ, and prove that the extensions axioms have asymptotic
probability 1 on Γ.

This second technique has been used by Blass and Harary for Hamiltonicity and rigidity. We briefly
sketch the argument for rigidity. Let Γn be the space of random graphs with vertex set V = {1, . . . , n}∪
{−1, . . . ,−n} such that whenever i, j are adjacent, then so are −i,−j. For every potential pair of edges
(i, j), (−i,−j) decide whether to include none or both in G by tossing a fair coin. No graph in G ∈ Γn
is rigid, since π(i) = −i is a non-trivial automorphism of G. However, all extension axioms have
asymptotic probability 1 on Γ.

The first technique works, in particular, for properties of Paley graphs. Let p be a prime with p ≡ 1
(mod 4); then the Paley graph of order p has vertices 0, . . . , p − 1, so that x and y are connected by an
edge if, and only if, x− y is a quadratic residue modulo p. Notice that, since p ≡ 1 (mod 4), the field Fp
has a square root of −1, so x− y is a quadratic residue if, and only if, y − x is one. Hence Paley graphs
are indeed undirected graphs. The simplest Paley graph is C5, the cycle of length five.

It is known that Paley graphs are regular, self-complementary (by taking x to xa (mod p) where a is
any non-square in Fp) and Eulerian. Notice that all of these are properties that hold for almost no graph.
However, it has been shown in [2] that the Paley graph of order p satisfies the extension axioms with≤ n
vertices on each side provided that p > n224n. This proves that having vertices of distinct degrees, not
being self-complementary and not having an Euler tour are properties of almost all graphs that are not
implied by finitely many extension axioms.

We study the question, posed by Blass and Harary [3] of whether there is any natural logic that can
express properties in this class (such as Hamiltonicity or rigidity) and for which a 0-1 law holds. This
problem is also commented on in an informal way and reported as “still wide open” in [15]. Of course,
we need to clarify what is meant by a “natural logic”. A trivial solution to the problem posed by Blass
and Harary would be to add Hamiltonicity or rigidity as a sentence to first-order logic. However, such
a “logic” would lack the most basic closure properties that one usually requires from a logical system.
In model theory, the notion of a regular logic has been introduced, in order to make precise ideas of
what constitutes a natural extension of first-order logic. A regular logic can be described as a logic
that can express all atoms, and is closed under negation, conjunction, particularization (or existential
quantification), relativization and substitution (see [8]).

Here substitution means the replacement of basic relations by defined ones: if the logic can express
a property P of the structures A on which it is evaluated, then it should also be able to express that the
property P is satisfied in the modified structure that is obtained from A by replacing a basic relation
R by a defined relation ϕA := {ā : A |= ϕ(ā)}, for any appropriate formula ϕ(x̄) of the logic. This
is intimately related to the notion of a generalized quantifier or Lindström quantifier. For any class
K of structures A = (A,R1, . . . , Rk), which is closed under isomorphism, we may add a quantifier
QK to first-order logic, to obtain the extension FO[Qk] that allows for the construction of formulae
QK x̄(ψ1, . . . , ψk) saying that the structure defined by ψ1, . . . , ψk belongs to the class K. For a more
detailed definition, see Sect. 2.2 below. It is easy to see that, for any class K of σ-structures, FO[QK ] is
the minimal logic closed under negation, conjunction, particularization and substitution that can express
K.
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However, notice that FO[QK ] is not necessarily regular since it need not be closed under relativiza-
tion. Here relativization means the restriction to definable substructures. To obtain a regular logic one
needs to modify the notion of a generalized quantifier, adding to the scope of the quantifier a formula
δ(x) that defines the universe. Then QK x̄(δ, ψ1, . . . , ψk) expresses that the structure whose universe is
defined by δ and whose relations are defined by ψ1, . . . , ψk lies in the class K.

To address the question posed by Blass and Harary, we investigate 0-1 laws for extensions of first-
order logic by Lindström quantifiers. Such extensions were also considered, from the point of view of
0-1 laws by Fayolle et al. [11], where a sufficient condition was established on a quantifier Q, for a
restricted fragment of the logic FO[Q] to have a 0-1 law. We extend such results and formulate other
sufficient conditions on quantifiers Q associated with graph properties which guarantee that the logic
FO[Q] has a 0-1 law in the language of graphs.

We use our conditions to establish, in particular, that FO[Rig] has a 0-1 law, where Rig is the quan-
tifier associated with the class of rigid graphs. By contrast, for all the other mentioned properties K
that hold for almost all graphs but are not implied by extension axioms, we find examples showing that
FO[QK ] does not have a 0-1 law. We also extend the result for FO[Rig] to its closure under relativiza-
tions. This enables us to establish that there is no regular logic (in the sense in which this term is used in
abstract model theory) which can express Hamiltonicity, regularity, self-complementarity, or existence
of Euler tours and which has a 0-1 law, but there is one in the case of rigidity.

We also consider, in Section 6 extensions of first-order logic by means of vectorized quantifiers. In
particular, we show that for any quantifier that is closed under substructures, the corresponding extension
of first-order logic by means of a vectorized sequence of quantifiers has a 0-1 law, greatly generalizing
a result of [11]. This establishes 0-1 laws for the extensions of first-order logic by the sequences of
quantifiers obtained by vectorizing the graph quantifiers for 3-colourability and planarity.

Finally, we show in Section 7 that our positive results on the existence of 0-1 laws can be extended
from logics FO[Q] to Lω∞ω[Q], i.e. the extension by means of the quantifier Q of the infinitary logic with
finitely many variables. This applies both to the results where Q is a single quantifier and when it is
vectorized.

2. Preliminaries

Let σ, τ be finite relational signatures. We denote structures by A,B, . . . and their universes byA,B, . . ..
Let Str(σ) and Strn(σ) denote, respectively, the set of all finite σ-structures and the set of all σ-structures
with universe [n] = {0, . . . , n − 1}. For a σ-structure A and a formula ψ(x1, . . . , xk), we write ψA to
denote {ā ∈ Ak : A |= ψ(ā)}, i.e. the relation that ψ defines on A. Similarly, if ψ has additional free
variables ȳ, then for any valuation b̄ of those variables, we define ψA,b̄ as {ā ∈ Ak : A |= ψ(ā, b̄)},
i.e. the relation defined by ψ on A by fixing the interpretation of the parameters ȳ to be b̄. For a sentence
ϕ, we write Mod(ϕ) to denote the set of all (finite) models of ϕ. A structure B is a substructure of A, if
B ⊆ A, and the relations on B are the restrictions of the corresponding relations on A to the universe B.

Definition 2.1. An atomic type in x1, . . . , xk over σ is a maximal consistent set of σ-atoms and negated
σ-atoms in the variables x1, . . . , xk. Often, we call an atomic type in k variables a k-type. We denote
atomic types by t, t′, s, . . . or by t(x1, . . . , xk), . . . to display the variables. By abuse of notation, we do
not distinguish between an atomic type and the conjunction over all formulae in it.
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The following lemma is immediate.

Lemma 2.1. Every quantifier-free formula is equivalent to a disjunction of atomic types.

Proof:
Let ϕ(x1, . . . , xk) be a quantifier-free formula over σ. Then

ϕ(x1, . . . , xk) ≡
∨
t|=ϕ

t(x1, . . . , xk),

where t ranges over the atomic types in x1, . . . , xk over σ. ut

2.1. Asymptotic Probabilities

Let 0 ≤ p ≤ 1. A Bernoulli trial with mean p is a random variable X that takes only the values 0 and 1
and such that P [X = 1] = p.

Let Γ(σ) = (Γn(σ))n∈N be a sequence of probability spaces over σ-structures, where Γn(σ) is
obtained by assigning a probability distribution µn to Strn(σ). Some important examples are:

• Ωn(σ, 1/2) denotes the probability space with the uniform probability distribution, i.e. every struc-
ture A ∈ Strn(σ) has the same probability µ(A) = 1/|Strn(σ)|.

• For arbitrary functions p : N → [0, 1] we define the probability spaces Ωn(σ, p) as follows: the
truth of all instances R(i1, . . . , ir) of σ-atoms over universe [n] are determined by independent
Bernoulli trials with mean p(n).

It is clear that when p is the constant function 1/2, this gives the uniform probability distri-
bution. Where σ is understood, we simply write Ω(p) to denote the sequence of distributions
(Ωn(σ, p))n∈N.

• G(n, p) is the probability space of random graphs with edge probability p (again p may depend
on n). We write G(p) for the sequence (G(n, p))n∈N. Note that G(n, p) is not the same space as
Ωn({E}, p), since a graph is assumed to be undirected and loop–free.

For a fixed sequence Γ(σ) = (Γn(σ))n∈N of probability spaces, define the probability µn(P ) of a
class P of σ-structures as the probability that a structure A with universe {0, . . . , n − 1} is in the class
P . Define the asymptotic probability of P as µ(P ) = limn→∞ µn(P ), if this limit exists. If the limit
does not exist, we say that P has no asymptotic probability for Γ(σ).

For any logic L, we define the asymptotic probability µ(ϕ) of a sentence of L to be µ(Mod(ϕ)). If
every sentence of L in the vocabulary σ has an asymptotic probability for Γ(σ), we say that L has a limit
law for Γ(σ). Furthermore, if µ(ϕ) is 0 or 1 for every σ-sentence ϕ of L, we say that L has a 0-1 law for
Γ(σ).

The following theorem is at the core of the proof due to Glebskiı̆ et al. [12] that first-order logic has
a 0-1 law (see also [13]). It can be seen as establishing an “almost sure” quantifier elimination property
for the theory of finite structures.

Theorem 2.1. For every formula ψ(x̄) of first-order logic, there is a quantifier free formula θ(x̄) such
that the sentence ∀x̄(θ ↔ ψ) has asymptotic probability 1 in Ω(p) for any constant p.
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Furthermore, it is an easy adaptation to see that the same holds for the distributions G(p), for constant
p. For formulae ψ and θ as in Theorem 2.1 above, we will say that ψ and θ are equivalent almost
everywhere.

2.2. Interpretations and Quantifiers

Let the signature τ be {R1, . . . , Rm} where Ri is a relation symbol of arity ri. A sequence Ψ =
ψ1(x̄1), . . . , ψm(x̄m) of formulae of signature σ, where ψi(x̄i) has the free variables x1, . . . , xri defines
an interpretation

Ψ : Str(σ) → Str(τ)
A 7→ ΨA = (A,ψA

1 , . . . , ψ
A
m).

An interpretation with parameters is given by a sequence Ψ(ȳ) = ψ1(x̄1, ȳ), . . . , ψm(x̄m, ȳ) of σ-
formulae ψi which may contain, besides x̄i, additional free variables ȳ. For any σ-structure A and any
valuation ā for ȳ we obtain an interpreted structure

Ψ(A, ā) = (A,ψA,ā
1 , . . . , ψA,ā

m ).

The following definition of a generalized quantifier is essentially due to Lindström [20].

Definition 2.2. Let K be a collection of structures of some fixed signature τ , which is closed under
isomorphisms, i.e. if A ∈ K and A ∼= B then B ∈ K. With K we associate the generalized quantifier
QK , which can be adjoined to first-order logic to form an extension FO[QK ], which is defined by closing
FO under the following rule for building formulae:

If Ψ(ȳ) = (ψ1, . . . , ψk) is an interpretation with parameters ȳ from σ to τ then QK x̄(ψ1, . . . , ψk)
is a formula of FO[QK ] of signature σ with free variables ȳ. Here x̄ denotes the list of free variables of
ψ1, . . . , ψk, not including the parameters ȳ.

The semantics of QK is given by the following rule: for a σ-structure A and a valuation ā for ȳ,

(A, ā) |= QK x̄(ψ1, . . . , ψk)⇐⇒ Ψ(A, ā) ∈ K.

An interpretation Ψ from σ-structures to τ -structures also maps a probability space Γn(σ) to a new
probability space ΨΓn(σ) of τ -structures, defined by assigning to B ∈ Strn(τ) the probability

ν(B) =
∑

ΨA=B

µ(A),

where µ(A) is the probability of A in Γn(σ).
On the other hand, if we are given Ψ(ȳ), an interpretation with parameters, it does not define a map

from σ-structures to τ -structures. Rather, it defines a map from pairs (A, ā), where A is a σ-structure
and ā is a valuation of the parameters ȳ in A, to τ -structures. Thus, we will assume we are given a
probability space Γn(σ, ȳ) that assigns a probability to (A, ā) for each A ∈ Strn(σ) and each valuation ā
of the parameters ȳ in A. We then define the probability space ΨΓn(σ, ȳ) by assigning to B ∈ Strn(τ)
the probability

ν(B) =
∑

Ψ(A,ā)=B

µ(A, ā).

One of the goals of this paper is to elucidate the structure of ΨΓn(σ, ȳ).
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2.3. Graph quantifiers

In this paper, a graph always means a loop-free undirected graph G = (V,E). A graph quantifier is a
generalized quantifier given by an isomorphism closed class H of graphs. It is applied to interpretations
that map graphs to graphs. Thus, a graph quantifier binds two variables, say x and y, and is applied to
a single formula ϕ(x, y, z̄) of signature {E}. A little complication arises because we have to make sure
that the interpreted structure Φ(G, ā) is indeed a graph. To avoid the necessity of verifying the semantic
condition that a formula does indeed define an irreflexive and symmetric relation (a condition that has to
be met for all valuations of the parameters), we impose no restriction on the formulae, but modify the
interpretation of formulae.

Definition 2.3. For any class L of formulae over {E} and any isomorphism closed class H of graphs,
we define the logic L[QGH] by closing L under the following rule: given any formula ϕ(x, y, z̄), we can
also build the formula QGHx, y ϕ, with free variables z̄.

The semantics is given by the equivalence

QGHx, y ϕ ≡ QHx, y (x 6= y ∧ (ϕ(x, y) ∨ ϕ(y, x))).

(where ϕ(y, x) is ϕ(x, y) with variables x and y interchanged.)

For any formula ϕ(x, y, z̄) we will refer to the interpretation with parameters Φ(z̄) defined by the
formula x 6= y∧ (ϕ(x, y, z̄)∨ϕ(y, x, z̄)) as the graph interpretation associated with ϕ. We also call QGH
the graph quantifier associated withH.

3. Properties of Almost All Graphs Not Implied by Extension Axioms

We now proceed to investigate conditions that can be imposed on a class of graphs H in order for the
logic FO[QGH] to have a 0-1 law. We begin, in this section, by formulating some necessary conditions
and showing that they are not sufficient. We also obtain a necessary and sufficient condition for a certain
fragment of FO[QGH] to have a 0-1 law.

Further for the examples described above of properties of almost all graphs that are not implied by
extension axioms, with the exception of rigidity, we construct sentences in the associated logic FO[Q]
that do not have an asymptotic probability, thus giving, for all these cases, a negative answer to the
question of Blass and Harary.

For any property K, let FOr[QK ] denote those sentences of FO[QK ] of the form QK x̄ϕ, where ϕ
is first-order, i.e. FOr[QK ] can express exactly those properties that are reducible to K by means of
a first-order interpretation without parameters. This fragment was considered by Fayolle et al. [11],
who showed for any generalized quantifier QK , and any signature σ, a sufficient condition for the logic
FOr[QK ] to have a 0-1 law on the class of σ-structures is thatK is monotone and closed under extensions.
Clearly a necessary condition is that K itself has asymptotic probability 0 or 1, because the property K
can be trivially expressed by a sentence of FOr[QK ]. We first show that this latter condition is not
sufficient, by means of an example.

Example 3.1. Let E be the class of Eulerian graphs. It is well known that a connected graph G is
Eulerian if, and only if, every vertex in G has even degree. Furthermore it follows from known results
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about degrees in random graphs (see [4], chapter 3) that E has asymptotic probability 0 for G(p) for any
constant 0 ≤ p < 1. However, consider the following sentence of FOr[Eul]:

ϕ ≡ (Eulx, y (x 6= y))

It is clear that a graph G on n satisfies ϕ if, and only if, Kn, the complete graph on n vertices is Eulerian.
This is true if, and only if, n is odd. It follows that ϕ does not have an asymptotic probability for G(p)
for any p.

The above example shows that a graph property might have asymptotic probability 0 or 1 for G(p)
for a fixed p, without the logic FOr[QGH], let alone FO[QGH], having a 0-1 law. The next result establishes
a necessary and sufficient condition for FOr[QGH] to have a 0-1 law for G(p).

Theorem 3.1. For any graph propertyH, FOr[QGH] has a 0-1 law for G(p) if, and only if,H has asymp-
totic probability 0 or 1 for each of G(0), G(1), G(p) and G(1− p).

Proof:
Let ϕ ≡ QGHx, y ψ be a sentence of FOr[QGH]. By Theorem 2.1, there is a quantifier free formula θ
that is equivalent to ψ almost everywhere. The asymptotic probability of ϕ is given by the asymptotic
probability ofH on ΘG(p), where Θ is the graph interpretation defined by the formula θ.

Up to equivalence, there are only four quantifier-free formulae in two variables that define an irreflex-
ive and symmetric relation:

True, False, Exy and ¬Exy.

Thus, ΘG(p) is one of G(1), G(0), G(p) or G(1− p). ut

In Example 3.1 above, the class of Eulerian graphs does not have an asymptotic probability defined
for G(1). To take another example, recall that the class of Hamiltonian graphs has asymptotic probability
1 for G(p) for any constant p > 0 (see [4]). Since it is clear that this class has asymptotic probability 0
for G(0), it follows from Theorem 3.1 that FOr[Ham] has a 0-1 law. We will show next that there is no
such law for FO[Ham], which implies that the condition in Theorem 3.1 is, in general, not sufficient to
establish a 0-1 law for the unrestricted logic FO[QGH].

Example 3.2. Consider the sentence:

ϕ ≡ ∃z(Hamx, y ψ), where ψ ≡ Exz ∧ ¬Eyz

The interpretation Ψ(z) defined by ψ maps a pair (G, v) (where G = (V,E) is a graph and v a
distinguished vertex of G) to the complete bipartite graph H = (V,E′), where E′ = {(a, b) | (v, a) ∈
E and (v, b) 6∈ E}. Letting D(v) denote the set {a ∈ V | (v, a) ∈ E}, it can be verified that the graph
H has a Hamiltonian cycle if and only if |D(v)| = |V −D(v)|. In particular, if G is a graph of odd size,
then it cannot satisfy the sentence ϕ. On the other hand, ϕ is true in a graph of cardinality 2n just in case
the graph contains a vertex of degree n. But, as n goes to infinity this happens almost surely in G(p) for
any constant p > 0 (see [4, Chapter 3]). We conclude that ϕ does not have an asymptotic probability for
G(p).
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Notice that precisely the same example applies to (non-)regularity. Indeed the bipartite graph H =
(V,E′), defined by the interpretation Ψ(z) from G = (V,E), is regular if, and only if, it is Hamiltonian.

We next consider the case of self-complementary graphs.

Example 3.3. Recall that a graph G = (V,E) is self-complementary if it is isomorphic to its comple-
ment Ḡ = (V, Ē) where Ē is the set of edges (u, v) such that u 6= v and (u, v) 6∈ E.

A simple example of a self-complementary graph is P4, the simple path on four vertices v0−v1−v2−
v3, as its complement is the path v1 − v3 − v0 − v2. We can generalize this example by considering four
disjoint sets V0, V1, V2 and V3 each with n vertices and the graphG on the set of vertices V0∪V1∪V2∪V3

which induces a clique on each of V1 and V2 and an independent set on each of V0 and V3 and in addition
has the edges V0 × V1, V1 × V2 and V2 × V3. Then, this graph is self-complementary by any bijection
that maps V0 to V1, V1 to V3, V2 to V0 and V3 to V2.

Let SC be the quantifier for self-complementarity and consider the sentence

ϕ ≡ ∃z1∃z2(SCx, y ψ)

where

ψ ≡

(
E(x, z1) ∧ ¬E(x, z2) ∧ E(y, z1) ∧ ¬E(y, z2)

)
∨(

¬E(x, z1) ∧ E(x, z2) ∧ ¬E(y, z1) ∧ E(y, z2)
)
∨(

¬E(x, z1) ∧ ¬E(x, z2) ∧ E(y, z1) ∧ ¬E(y, z2)
)
∨(

E(x, z1) ∧ ¬E(x, z2) ∧ ¬E(y, z1) ∧ E(y, z2)
)
∨(

¬E(x, z1) ∧ E(x, z2) ∧ E(y, z1) ∧ E(y, z2)
)

Given a graph G = (V,E) and two vertices u and v interpreting the parameters z1 and z2 respectively,
the interpretation Ψ defined by ψ gives a graph which consists of a clique on each of V1 and V2 and
an independent set on each of V0 and V3 and in addition has the edges V0 × V1; V1 × V2 and V2 × V3,
where V0 is the set of vertices that are adjacent to neither of u and v; V1 contains the vertices adjacent
to u but not v; V2 contains the vertices adjacent to v but not u; and V3 contains the vertices adjacent to
both u and v. Thus, in particular, if the four sets of vertices have the same size, the graph Ψ(G, u, v)
is self-complementary. Now, it follows from a simple probability calculation (such as in [4, Chapter 3])
that in any graph with 4n vertices we can find, with probability tending to 1, two vertices u and v, each
of which has 2n neighbours and so that there are exactly n vertices that are neighbours of both. Hence,
the sentence ϕ is true almost surely on any graph with 4n vertices.

On the other hand, note that for any graph G and pair of vertices u, v, in Ψ(G, u, v), the set V1 ∪ V2

induces a clique and V0 ∪ V3 induces an independent set. If Ψ(G, u, v) is self-complementary by a
bijection π, the image of V1 ∪ V2 under π must be an independent set in Ψ(G, u, v) and similarly the
image of V0 ∪ V3 under π must be a clique. Thus, we must have |V1 ∪ V2| = |V0 ∪ V3|. We conclude
that Ψ(G, u, v) cannot be self-complementary if G has odd order. Thus, ϕ does not have an asymptotic
probability for G(p) for any constant p.

The following result follows immediately from the above examples, since any regular logic that can
express that a graph has an Eulerian tour will have a sentence equivalent to the one in Example 3.1 and
similarly any regular logic that can express Hamiltonicity will have one equivalent to the sentence in
Example 3.2, etc.
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Theorem 3.2. There are no regular logics that can express any of the following properties

• the existence of an Eulerian tour;

• the existence of a Hamiltonian cycle;

• regularity of a graph; and

• self-complementarity of a graph

and which have a 0-1 law for G(1/2).

Indeed, we can strengthen the theorem by replacing “regular logics” with weaker closure conditions
on the logics which can be extracted from the examples. In particular, none of these properties can be
expressed in a logic that has a 0-1 law and that is closed under substitutions by quantifier-free formulas
and existential quantification. Thus, in particular, it follows that none of these properties is expressible
in the fragments of second-order logic for which 0-1 laws have been proved in [17].

The contrast between the examples for Hamilton cycles and Euler tours also reveals that quantifier-
free interpretations with parameters can be much more complex than those without parameters. We take
up the analysis of the case with parameters in the next section.

4. Probability Spaces Defined by Graph Interpretations

In order to formulate a condition on the graph quantifiers Q which guarantees that the logic FO[Q] has a
0-1 law, we will construct an argument by quantifier elimination. That is, we will state sufficient condi-
tions onQ so that, for every quantifier free formula ψ, Qx, y ψ is itself equivalent, almost everywhere, to
a quantifier free formula. This, along with Theorem 2.1 will then enable us to derive the required result.

To establish this quantifier elimination, we consider the action of a quantifier-free interpretaion with
parameters Ψ(ȳ) on a probability distribution that assigns probabilities to structures (G, ā). For this,
we consider each atomic type of the tuple ā separately. That is, for each atomic type t, we define a
distribution Gt,n(p) which assigns a probability to each pair (G, ā), where ā is a tuple of elements of G.
This probability is 0 if ā is not of type t in G, and otherwise it is the same for all tuples of type t in G.

More formally, let t be an atomic type in the variables z̄ = z1, . . . , zm such that for each 1 ≤ i <
j ≤ m, t |= zi 6= zj . We denote by Gt,n(p) the probability space obtained from Gn(p) as follows: for
each graph G ∈ Gn, and each m-tuple ā of elements in G, let the probability µt,n(G, ā) = 0 if G 6|= t[ā]
and µt,n(G, ā) = µn(G)/k otherwise, where k is the number of distinct tuples in G of type t. In other
words, µt,n(G, ā) is the probability of obtaining the pair G, ā subject to the condition G |= t(ā) for
edge probability p and equal probability for each tuple of type t. We write Gt(p) for any sequence of
probability spaces (Γn)n∈N such that Γn is Gt,n(p) for n ≥ m.

Definition 4.1. Let Ψ be an interpretation inm parameters and t a type inm variables, as above. A class
of graphsH converges quickly to 1 (resp. 0) for ΨGt(p) if µt,n(H) = 1− o(n−m) (resp. o(n−m)).

This definition enables us to formulate the following lemma.
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Lemma 4.1. If ψ(x, y, z̄) is a first-order formula, Ψ(z̄) is the associated graph interpretation, andH is a
class of graphs which converges quickly to 1 for ΨGt(p), then the sentence ∀z̄(t(z̄)→ (QGHx, y ψ)) has
asymptotic probability 1 for G(p). Similarly, if H converges quickly to 0 for ΨGt(p), then the sentence
∃z̄(t(z̄) ∧ (QGHx, y ψ)) has asymptotic probability 0 for G(p).

Proof:
We sketch the proof for the universal case, the existential case being dual. The number of tuples of type
t in a graph G of cardinality n tends to nm/c for some constant c as n goes to infinity. Thus, if H
converges quickly to 1 on ΨGt(p), then in almost all graphs, for all tuples ā of type t, Ψ(G, ā) ∈ H.
Hence ∀z̄(t(z̄)→ (QGHx, y ψ)) has asymptotic probability 1 for G(p). ut

Lemma 4.1 is used in proving the next result, which defines the conditions for one step of our quan-
tifier elimination.

Lemma 4.2. If ψ is a formula defining a graph interpretation Ψ(z̄) in m parameters, andH is a class of
graphs which converges quickly to 0 or 1 for ΨGt(p), for every m-type t, then there is a quantifier free
formula θ(z̄) such that the sentence ∀z̄(θ ↔ QGHx, y ψ) has asymptotic probability 1 for G(p).

Proof:
Let θ ≡

∨
{t(z̄) : H converges quickly to 1 for ΨGt(p)}. ut

We now proceed to study the structure of the spaces ΨGt(p). By Theorem 2.1, it suffices to consider
the case where the interpretation Ψ(z̄) is given by a quantifier-free formula. For the remainder of this
section, we will also confine ourselves to the case where p is the constant function 1/2.

Let ψ(x, y, z̄) be a quantifier free formula defining a graph interpretation Ψ(z̄) with m parameters.
By Lemma 2.1, ψ is equivalent to a disjunction of (m + 2)-types. Let S be the collection of the types
in this disjunction that extend the m-type t. Clearly, ΨGt(1/2) is completely determined by which types
are in S.

Furthermore, if s is a type in the variables x, y, z̄ extending t(z̄), then s is determined by its subtypes
s1(x, z̄), s2(y, z̄) and whether or not s |= Exy. Moreover, in the case where either s |= x = zi or
s |= y = zi for some i, the last of these is already determined by the two (m+ 1)-types s1 and s2. Thus,
given two (m+ 1)-types s1 and s2 extending t, there may be one or two (m+ 2)-types consistent with
s1 and s2. For our purposes, we can identify a set S of (m+ 2)-types extending t with a function f that
maps pairs of (m+ 1)-types extending t into the set {0, 1, 1/2}. Thus, f(s1, s2) = 0 if there is no type
in S that extends s1 and s2; f(s1, s2) = 1/2 if there are two (m + 2)-types that extend s1 and s2 and
exactly one of them is in S; and f(s1, s2) = 1 if all the (m + 2)-types that extend s1 and s2 (whether
there are one or two of them) are in S.

Now, there are m+ 2m distinct types in the variables x, z̄, extending t. These are obtained by taking
x = zi for some i, yielding m distinct types, and for the case when x 6= zi for all i, by taking the 2m

ways in which x can be connected by edges to z1, . . . , zm.
Thus, given a random graph G and a tuple ā such that G |= t[ā], we can divide the vertices b ∈ G

into m + 2m sets according to the (m + 1)-type of (b, ā). Of these sets, m are singletons (containing
the vertices that are in the tuple ā) and the rest of the vertices are distributed randomly among the other
2m sets. The probability that a pair (b1, b2) satisfies G |= ψ[b1, b2, ā], and therefore that there is an edge
(b1, b2) in Ψ(G, ā), is then given by f(s1, s2) where si is the (m + 1)-type of (bi, ā). This discussion
motivates the following definitions.
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Definition 4.2. A pair (m, f) is an interpretive measure for G(1/2) if and only if m ∈ N and there are
disjoint sets P = {p1, . . . , pm} and Q = {q1, . . . , q2m} such that f is a function from (P ∪ Q)2 to
{0, 1, 1/2} subject to the following conditions: f(x, y) = f(y, x) and if either x ∈ P or y ∈ P , then
f(x, y) ∈ {0, 1}.

Definition 4.3. For any interpretive measure (m, f), and any n ≥ m, let Tn be the collection of all
functions T : {0, . . . , n−1} → (P ∪Q), for which there arem distinguished points 0 ≤ a1, . . . , am < n
such that T (x) = pi if and only if x = ai.

For each T ∈ Tn, the probability space ΓT is obtained by determining for each pair of points a, b ∈
{0, . . . , n − 1} whether there is an edge between them by means of independent Bernoulli trials with
mean f(T (a), T (b)).

Finally, the probability space Γn(m, f) is defined by assigning to each graph G with n vertices the
probability (

∑
T∈Tn

µT (G))/card(Tn), where µT (G) is the probability assigned to G in the probability
space ΓT .

We write Γ(m, f) for the sequence (Γn(m, f))n∈N, where for n < m, Γn is chosen arbitrarily.

The relevance of the above definition to ΨGt(1/2) emerges in the following lemma.

Lemma 4.3. If ψ(x, y, z̄) is a quantifier-free first-order formula, Ψ(z̄) is the associated graph interpre-
tation, and t is a type in the variables z̄, then ΨGt(1/2) is Γ(m, f) for some interpretive measure (m, f).

Proof:
Let ψ∗ be the formula x 6= y ∧ (ψ(x, y) ∨ ψ(y, x)), i.e. the formula that defines the interpretation Ψ.
By Lemma 2.1, we can assume that ψ∗ is presented as a disjunction over a set R of atomic types in the
variables x, y, z̄. Let S be the set of all types s in the variables x, y, z̄ such that:

s |= x 6= y; and

s |= t, i.e. s extends t.

Clearly, ΨGt(1/2) is completely determined by the set R ∩ S.
We proceed to define the measure (m, f). Let m be the number of distinct parameters in z̄, i.e. it is

the cardinality of a maximal set P = {zi1 , . . . , zim} of variables from z̄ such that t |= zij 6= zik . We will
assume without loss of generality, by renaming variables if necessary, that P consists of the variables
{z1, . . . , zm}. Let Q = {q1, . . . , q2m} be the power set of P .

Intuitively, P ∪ Q represents the m + 2m sets of vertices as mentioned in the discussion preceding
Definition 4.2. Therefore, each pair (x, y) ∈ (P ∪Q)2 either uniquely determines a type s ∈ S (if either
x or y is in P ), or it determines two types s0, s1 ∈ S. Thus, for each pair (x, y) ∈ (P ∪ Q)2, we will
determine the value of the function f based on whether or not the corresponding types are in R.

We formally define f as follows:

1. f(z, z) = 0 for all z ∈ P ;

2. For zi, zj ∈ P, i < j, let s be the unique type in S such that s |= x = zi ∧ y = zj . We let
f(zi, zj) = f(zj , zi) = 1 if s |= ψ, and f(zi, zj) = f(zj , zi) = 0 otherwise.

3. For zi ∈ P and q ∈ Q, let s be the unique type in S satisfying:
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s |= x = zi;

s |= y 6= zj , for zj ∈ P ;

s |= Eyzj , for zj ∈ q; and

s |= ¬Eyzj , for zj 6∈ q.

We let f(zi, q) = f(q, zi) = 1 if s |= ψ and f(zi, q) = f(q, zi) = 0 otherwise.

4. for qi, qj ∈ Q, i ≤ j, let s0 and s1 be the two types in S satisfying:

sc |= x 6= zk, for zk ∈ P and c = 0, 1;

sc |= y 6= zk, for zk ∈ P and c = 0, 1;

sc |= Exzk, for zk ∈ qi and c = 0, 1;

sc |= ¬Exzk, for zk 6∈ qi and c = 0, 1;

sc |= Eyzk, for zk ∈ qj and c = 0, 1;

sc |= ¬Eyzk, for zk 6∈ qj and c = 0, 1;

s0 |= Exy; and

s1 |= ¬Exy.

We let:
f(qi, qj) = f(qj , qi) = p,

where,

p =


0 if s0 6|= ψ and s1 6|= ψ

1 if s0 |= ψ and s1 |= ψ

1/2 if s0 |= ψ and s1 6|= ψ

1/2 if s0 6|= ψ and s1 |= ψ

It then follows from the discussion preceeding Definition 4.2 that ΨGt(1/2) is Γ(m, f). ut

Lemma 4.3 tells us the structure of the probability spaces on which H must converge quickly in
order for us to be able to apply Lemma 4.2 to eliminate an occurrence of a quantifier. If this can be
done for every Γ(m, f), then starting with an arbitrary sentence ϕ of FO[QGH], by repeated application
of this procedure, we can obtain a quantifier free sentence that is equivalent to ϕ almost everywhere.
Furthermore, suppose Q is a collection of quantifiers, each of which is of the form QGH for a class of
graphs H that converges quickly on every Γ(m, f). Let FO[Q] denote the extension of first-order logic
with all the quantifiers inQ. Then, again for any sentence ϕ of FO[Q], we can apply the above procedure
to eliminate all quantifiers and obtain a quantifier free sentence that is equivalent to ϕ almost everywhere.
This then yields the main theorem of this section:

Theorem 4.1. If Q is a collection of quantifiers, each of the form QGH for a graph property H that
converges quickly to 0 or 1 on Γ(m, f) for every interpretive measure (m, f), then FO[Q] has a 0-1 law
for G(1/2).
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Proof:
Let ϕ be a sentence of FO[Q]. We prove, by induction on the total number of quantifiers in ϕ, that ϕ
is equivalent almost everywhere to a quantifier free sentence, i.e. to True or False. This is trivially true
when this number is 0. Let ϕ contain q + 1 quantifiers. There is a subformula χ of ϕ which is either
of the form ∃xψ, or of the form QGHx, yψ, where ψ is quantifier free. In either case, χ is equivalent
almost everywhere to a quantifier free formula θ. In the first case this is true by Theorem 2.1 while
in the second it follows from Lemma 4.2 and Lemma 4.3. Thus, by replacing χ by θ in ϕ, we obtain
a sentence ϕ′ that is equivalent to ϕ over a class with asymptotic probability 1, and that has only q
quantifiers. But then, by the induction hypothesis, ϕ′ is equivalent to a quantifier free sentence, on a
class of asymptotic probability 1. Since the intersection of two classes that have asymptotic probability
1 must itself have asymptotic probability 1, we conclude that ϕ is equivalent almost everywhere to a
quantifier free sentence. ut

We have assumed throughout this paper that we are working with purely relational signatures. It
is well known that when we have constants in our signature, then even the 0-1 law for first order logic
fails. However, one can still show that every sentence is equivalent almost everywhere to a quantifier free
sentence (cf. Theorem 2.1). This extends also to the above Theorem 4.1. Thus, for any Q that satisfies
the hypotheses of the theorem, any sentence of FO[Q], perhaps including constants, is equivalent almost
everywhere to a quantifier free sentence.

5. Rigidity

We now use the characterization provided by Theorem 4.1 to show that FO[Rig] has a 0-1 law, where
Rig is the graph quantifier formed from the class of rigid graphs.

Theorem 5.1. For every interpretive measure (m, f), the probability that a graph is rigid converges
exponentially fast to either 0 or 1 for Γ(m, f).

Proof:
We distinguish three cases for interpretive measures (m, f). Recall that f : (P ∪Q)2 → {0, 1, 1/2}.

(i) There exists a non-trivial permutation π on P such that f(p, p′) = f(πp, πp′) for all p, p′ ∈ P ,
and f(p, q) = f(πp, q) for all p ∈ P , q ∈ Q.

(ii) There exists a q ∈ Q such that f(q, q′) ∈ {0, 1} for all q′ ∈ Q.

(iii) All other cases.

In case (i) the permutation π defines a non-trivial automorphism on all G ∈ Γn(m, f). In case (ii)
we have a non-trivial automorphism for G ∈ Γn(m, f) provided G contains at least two nodes in the
class defined by q. But, this holds with probability tending to 1 exponentially fast. We now aim to prove
that in case (iii), the graphs G ∈ Γn(m, f) are almost surely rigid.

The random process of constructing G ∈ Γn(m, f) can be split into two subprocesses. In the first
stage, the nodes from [n] = {0, . . . , n− 1} are distributed over the m+ 2m classes P ∪Q. In the second
stage, edges are determined according to the probabilities given by f .
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Recall that the first subprocess randomly selects m points to form the singleton sets p ∈ P , and then
distributes the remaining n−m nodes over the sets q ∈ Q. For every q ∈ Q, the probability that q gets
precisely k points is described by a binomial distribution b(k;n−m, 2−m), where b(k;n, p) is the usual
abbreviation for (

n

k

)
pk(1− p)n−k.

Obviously, the expected number of elements in every class q is 2−m(n −m). More precisely, basic
facts on binomial distributions (see e.g. [4, pp. 10-14]) imply that for every δ > 0, the probability that
some class q contains less than (1 − δ)2−m(n − m) or more than (1 + δ)2−m(n − m) elements, is
bounded by 2−εn for some ε > 0.

It is convenient to exclude from further consideration those rare events, where the nodes are not
‘evenly’ distributed over Q. Fix a constant d > 0, and let Γdn(m, f) be a new probability space, obtained
from Γn(m, f) by throwing away all those graphs where the first stage of the construction produces any
class q ∈ Q with less than (1− d)2−mn elements. Since these graphs form a set whose measure goes to
0 exponentially fast, it suffices to prove our result for the sequence of probability spaces Γdn(m, f).

Let X(G) be the number of non-trivial automorphisms of G. We will prove that the expectation
E(X) on Γdn(m, f) tends exponentially fast to 0 as n goes to infinity. Since, by Markov’s inequality,
P [X ≥ 1] ≤ E(X), this immediately implies the desired result. For π ∈ Sn, let Xπ be the indicator
random variable, defined by

Xπ(G) =

{
1 if π ∈ Aut(G)
0 otherwise

By linearity of expectation we have that

E(X) =
∑

π∈Sn−{id}

E(Xπ).

The support of a permutation π, denoted supp(π) is the set of points moved by π. Let h = |supp(π)|
and Tn,h = {π ∈ Sn : |supp(π)| = h}.

It is sufficient to prove the following claim.

Claim. There exists a δ > 0 such that
E(Xπ) ≤ 2−δhn

for all h and all π ∈ Tn,h.

Indeed, the claim implies that

E(X) ≤
n∑
h=1

|Tn,h|2−δhn

≤
n∑
h=1

2h logn2−δhn ≤ 2−εn

for some ε > 0.

We first prove a bound on E(Xπ) that holds for arbitrary size of the support.
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Lemma 5.1. If π 6= id, then E(Xπ) ≤ 2−εn for some ε > 0 and sufficiently large n.

Proof:
π moves at least one point, say π(i) = j. Assume that the first subprocess produces p = {i} and
p′ = {j} for p, p′ ∈ P . Then, since condition (i) does not hold, there exists a class q ∈ Q such that
f(p, q) 6= f(p′, q). Thus, to be an automorphism of G, π has have to move the whole class q. But this
means that π must preserve Ω(n2) non-trivial edge events.

Otherwise, at least one of the nodes i and j is put into a class q ∈ Q. But then, there exists an entire
class q′ ∈ Q such that the edge-probabilities from this node to q′ are 1/2. Since q′ has Ω(n) elements,
the result follows. ut

Note that Lemma 5.1 proves the claim for h < k where k is fixed (independent of n).

Before we prove the claim for permutations that move more points, we make some general observa-
tions that hold for arbitrary probability spaces of graphs.

Let π ∈ Sn and K be the set of potential edges, i.e. the set of unordered pairs of elements of [n].
We call R ⊆ K a witness set for π if K − R intersects every orbit of the operation of π on K; in other
words, for every pair (i, j) ∈ R there exists k ∈ N such that (πk(i), πk(j)) 6∈ R. If R is a witness set for
π ∈ Aut(G) and we fix the edges and non-edges of G outside of R, then those inside R are determined
as well.

The following is a possible way to construct witness sets: Let B,C ⊆ supp(π) such that B ∩C = ∅
and C contains, for every b ∈ B, precisely one element of the orbit of b under π. Further, let D =
[n]− (B ∪ C). Then B ×D is a witness set.

Thus, given a permutation π ∈ Sn we can establish an upper bound for E(Xπ) as follows: We
choose suitable sets B,C and prove that the first stage of the construction of a random graph must assign
edge probability 1/2 to at least r pairs in the associated witness set B ×D. Then E(Xπ) ≤ 2−r.

Lemma 5.2. Let c < (1 − d)2−m and let 2m < h ≤ cn. Then there exists an ε > 0 such that
E(Xπ) ≤ 2−ε(h/2−m)n for π ∈ Tn,h.

Proof:
Let C ⊂ supp(π) be any set obtained by picking precisely one element out of every nontrivial cycle
of π, and let B = supp(π) − C. Thus, D = [n] − (B ∪ C) coincides with the set of fixed points of
π and therefore contains at least (1 − c)n elements. B contains at least h/2 nodes, since the support
of π is decomposed into cycles of length ≥ 2 and C contains only one element of each cycle. Thus,
at least h/2 −m of the nodes of B are put into some q ∈ Q so that each of these has nontrivial edge-
probabilities to at least one entire class q′ ∈ Q. Since |q′| ≥ (1− d)2−mn, it follows that |D ∩ q′| ≥ εn
where ε = (1− d)2−m − c. Thus B ×D contains at least ε(h/2−m)n pairs with edge probability 1/2.
Thus the probability that a random graph G ∈ Γdn(m, f) is fixed by π is bounded by 2−ε(h/2−m)n. ut

Lemma 5.3. For the same constant c as in the previous lemma and h > cn, there exists a δ > 0 such
that E(Xπ) ≤ 2−δn

2
.

Proof:
Let B,C be disjoint subsets of supp(π) such that |B| = cn/2 and C contains precisely one element
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of each cycle of π that intersects with B. Again D = [n] − (B ∪ C) has at least (1 − c)n elements.
With precisely the same reasoning as in the previous lemma, we infer that B × D contains at least
(cn/2−m)εn pairs with edge probability 1/2. By choosing δ > 0 such that δn2 ≤ (cn/2−m)εn, the
result follows. ut

Together, the three lemmata prove the claim, and therefore the theorem. ut

Theorem 5.1, together with Theorem 4.1 yields:

Corollary 5.1. FO[Rig] has a 0-1 law on G(1/2).

In order to show that there is a regular logic that can express rigidity on graphs and has a 0-1 law, we
need to consider the closure of FO[Rig] under relativization. This can be obtained by considering a rela-
tivized version of the rigidity quantifier, denoted Rig′, which binds two formulae δ(x, z̄) and ϕ(x, y, z̄).
Let ψ = (x 6= y)∧ (ϕ(x, y, z̄)∨ϕ(y, x, z̄)) be the irreflexive and symmetric formula associated with ϕ.
Then the meaning of a formula Rig′ x, y(δ, ϕ) ∈ FO[Rig′] in a structure A with valuation b̄ for z̄, is that
the graph (δA,b̄, ψA,b̄) is rigid.

A simple modification of the proof of Theorem 5.1 extends the result to the logic FO[Rig′]. We
outline the modification here. Define a relativized interpretive measure as a triple (m, d, f) such that
m ∈ N and there are disjoint sets P = {p1, . . . , pm} and Q = {q1, . . . , q2m} such that d ⊆ P ∪Q and
f : d × d → {0, 1, 1/2} is a function satisfying the restrictions in Definition 4.2. We let the class of
functions Tn be as in Definition 4.3, but now define the probability distribution ΓT over the collection
of graphs with vertex set T−1(d). In particular, edge probabilities for a, b ∈ T−1(d) are determined by
Bernoulli trials with mean f(T (a), T (b)).

We can then define the probability distribution Γn(m, d, f) as before as
∑

T∈Tn
µT (G)/card(Tn).

Note that Γn(m, d, f) is a probability distribution over all graphs whose vertex set is a subset of {0, . . . , n−
1}. Then, the following lemma can be established along the lines of Lemma 4.3.

Lemma 5.4. If Ψ is a graph interpretation defined by quantifier-free formulae δ(x, z̄) and ϕ(x, y, z̄),
and t is a type in z̄, then ΨGt(1/2) is Γ(m, d, f) for some relativized interpretive measure (m, d, f).

Similarly, in the case distinction at the beginning of the proof of Theorem 5.1, we need to relativize
the cases to the set d. This leads us to the result.

Theorem 5.2. FO[Rig′] is a regular logic that has a 0-1 law for G(1/2).

6. Vectorized Quantifiers

In this section, we consider extensions of first-order logic formed by adding vectorized quantifiers. A
single Lindström quantifier can be seen as giving rise to an infinite sequence of quantifiers formed by
vectorization. This allows us to consider interpretations that are not bound by the universe of a given
structure and can map it to potentially larger structures. Vectorized interpretations and quantifiers cap-
ture a natural notion of logical reduction. For a discussion of this and its significance for descriptive
complexity, see [9, Chapter12] and [6].
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We begin with some definitions. Let τ = {R1, . . . , Rm} be a signature where Ri has arity ri. A vec-
torized interpretation of τ in σ of width k is given by a sequence of σ-formulas, ψ1(x̄1, ȳ), . . . , ψm(x̄m, ȳ),
where the length of x̄i is k · ri. The variables in ȳ are parameters. The interpretation maps a σ-structure
A along with an interpretation ā of the parameters in A to a τ -structure B, whose universe is Ak, with
the relation RB

i given by ψA,ā
i .

For any graph quantifierQH, we define its kth vectorizationQkH as a quantifier that binds 2k variables
and whose semantics is given by the following rule: if ψ(x̄, ȳ), where x̄ and ȳ are, respectively, a 2k-tuple
and an m-tuple of variables, defines a vectorized interpretation Ψ(ȳ) of width k, then (G, ā) |= QkHx̄ψ
if and only if Ψ(G, ā) ∈ H. We define FO[Q?H] to be the extension of first-order logic by the infinite
sequence of quantifiers {QkH|k ∈ N}.

Let Φ be a vectorized interpretation of width k given by a quantifier-free formula ϕ with m param-
eters. Let G and H be graphs and ā, b̄ be m-tuples of vertices from G and H respectively, such that
there is an isomorphic embedding f : H → G with f(b̄) = ā. Let Φf denote the map from Φ(H, b̄) to
Φ(G, ā) given by the natural extension of f to k-tuples. The following lemma is based on the observation
that quantifier free formulas are preserved under isomorphic embeddings.

Lemma 6.1. Φf is an isomorphic embedding of Φ(H, b̄) in Φ(G, ā).

Proof:
If h̄1 and h̄2 are two k-tuples of vertices in H , then whether or not there is an edge between them in
Φ(H, b̄) is determined by the quantifier-free formula ϕ. However, quantifier-free formulae are clearly
preserved under the isomorphic embedding f , and therefore Φf(h̄1) and Φf(h̄2) have an edge if and
only if h̄1 and h̄2 do. ut

Let H be any fixed graph, b̄ an m-tuple of vertices in H and t the atomic type of b̄ in H . Recall
that Gt,n(p) is a probability space on structures (G, ā), for graphs G of cardinality n and m-tuples ā of
vertices of G, such that the probability µt,n(G, ā) is non zero only if ā has type t in G. Let F(H,b̄) denote
those structures (G, ā) for which there is an isomorphic embedding f : (H, b̄)→ (G, ā).

Lemma 6.2. For any graph H , and any m-tuple b̄ of vertices of atomic type t in H ,

µt,n(F(H,b̄)) = 1− o(n−m).

Proof:
The proof is immediate from the fact that the probability of each of the extension axioms converges
exponentially quickly to 1 [10]. ut

Let H be a collection of graphs that is closed under taking extensions. The following lemma, which
is analogous to Lemma 4.2, is derived from Lemmas 6.1 and 6.2.

Lemma 6.3. For any quantifier free formula ψ defining a vectorized interpretation Ψ(ȳ) of width k, with
parameters ȳ, there is a quantifier free formula θ such that the sentence ∀ȳ(θ ↔ QkHx̄ ψ) has asymptotic
probability 1 for G(p), for any constant p.
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Proof:
We show that for any m-type t, either there is no pair (H, b̄), such that b̄ has type t in H , and (H, b̄) |=
QkHx̄ ψ, and thereforeH converges quickly to 0 for Gt(p); orH converges quickly to 1 for Gt(p). It then
follows that we can take θ to be the disjunction of types t such that there is such a pair (H, b̄).

Suppose now, that for a given t, there is a graph H and a tuple b̄ of type t in H such that (H, b̄) |=
QkHx̄ ψ, i.e., Ψ(H, b̄) ∈ H. Then, by Lemma 6.1, there is an isomrphic embedding of Ψ(H, b̄) in
Ψ(G, ā). Since H is closed under extensions, this implies that Ψ(G, ā) ∈ H. In other words, for every
(G, ā) ∈ F(H,b̄), Ψ(G, ā) ∈ H. Therefore, by Lemma 6.2H converges quickly to 1 for Gt(p). ut

Observe that, by duality, the argument outlined above also works for classes of graphs that are closed
under substructures rather than extensions. This enables us to prove the following theorem, by an elimi-
nation of quantifiers along the lines of Theorem 4.1.

Theorem 6.1. For any class of graphs H closed under taking extensions (or, dually, substructures), the
logic FO[Q?H] has a 0-1 law for G(p), for any constant p.

Theorem 6.1 should be compared with a result in [11] which shows that the logic FOr[QH] has a 0-1
law if H is monotone and closed under extensions. We have weakened the hypothesis by dropping the
requirement of monotonicity and greatly strengthened the theorem by allowing both vectorization and
nesting of quantifiers.

Writing 3-Col for the graph quantifier defined by the class of 3-colourable graphs, and Plan for the
graph quantifier corresponding to the class of planar graphs, the following two corollaries of Theorem 6.1
are immediate.

Corollary 6.1. FO[3-Col?] has a 0-1 law for G(p), for any constant p.

Corollary 6.2. FO[Plan?] has a 0-1 law for G(p), for any constant p.

Moreover, Corollaries 6.1 and 6.2 are easily extended to the closure of these logics under relativiza-
tions by arguments entirely analogous to those used to establish Theorem 5.2. Indeed, it is easily shown
that these classes converge quickly even under relativized interpretive measures. These results, first es-
tablished in [7] show that 3-colourability and planarity are expressible in a regular logic that is closed
under vectorization and has a 0-1 law. Corollary 6.1, in particular, answered a question posed by Iain
Stewart. Grohe has since shown that graph planarity is definable in least-fixed-point logic [14]. This
provides an alternative proof of Corollary 6.2, since this logic has a 0-1 law.

It should also be pointed out that the various quantifiers can be combined in a single logic, as in
Theorem 4.1. Thus, there is a 0-1 law for the logic FO[3-Col,Plan] which extends first-order logic with
quantifiers for both 3-colourability and planarity. This tells us that there is, for example, a regular logic
that can express the property of a graph being planar and not 3-colourable, and that still has a 0-1 law.

7. Infinitary Logic

We write L∞ω for the infinitary logic that is formed by adding to first-order logic the ability to take
conjunctions and disjunctions over infinite sets of formulae. To be precise, if S is an arbitrary set of
formulae of L∞ω, then so is

∧
ϕ∈S ϕ and

∨
ϕ∈S ϕ. We write Lk∞ω for the collection of formulae of L∞ω
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which use only the variables x1, . . . , xk, free or bound, and Lω∞ω for the collection of all formulae that
are in Lk∞ω for some k. That is, Lω∞ω consists of those formulae of L∞ω which contain only finitely
many distinct variables. The logic Lω∞ω has been much studied in finite model theory as it provides an
upper bound on the expressive power of interesting fixed-point logics (see [9, 19]) and indeed provides
a powerful tool for showing inexpressibility in such logics. It was shown by Kolaitis and Vardi [18] that
the logic admits a 0-1 law. It is a natural question to ask whether the extensions of Lω∞ω by means of
the generalized quantifiers we have considered here also admit 0-1 laws. Of course, this question makes
sense only for those quantifiers Q where we have shown that the 0-1 law holds for FO[Q]. In this section
we briefly outline how Theorems 4.1 and 6.1 can be extended to the case of infinitary logic.

For a generalized quantifier Q, let Lk∞ω[Q] denote the logic Lk∞ω extended with the formula forma-
tion rule for the quantifier Q as in Definition 2.2, and let Lω∞ω[Q] denote the collection of all formulae
that are in Lk∞ω[Q] for some k.

The proof by Kolaitis and Vardi that Lω∞ω has a 0-1 law relies on the fact that for each k, there are
only finitely many extension axioms using the variables x1, . . . , xk. They show that for any sentence ϕ
of Lω∞ω, either ϕ or ¬ϕ is a logical consequence of the conjunction of all such axioms. Since each axiom
individually has asymptotic probability 1, so does the finite conjunction, and the result follows. At first
sight, such an argument cannot be extended to the quantifier-elimination technique in the proof of Theo-
rem 4.1 since, while a sentence of Lω∞ω[Q] only has finitely many variables, it may have infinitely many
occurrences of quantifiers. If the induction on quantifier rank in the proof of Theorem 4.1 is carried into
the transfinite, we may need to take infinite intersections of classes of graphs of asymptotic probability 1,
and these may have smaller probability. Nevertheless, we are able to prove that Theorem 4.1 does extend
to the infinitary logic as we show next, provided that the collection Q of quantifiers is itself finite.

Theorem 7.1. If Q is a finite collection of quantifiers, each of the form QGH for a graph property H that
converges quickly to 0 or 1 on Γ(m, f) for every interpretive measure (m, f), then Lω∞ω[Q] has a 0-1
law for G(1/2).

Proof:
Suppose ϕ(x̄) is a formula of Lk∞ω[Q] for some k. We wish to show that there is a quantifier-free
formula θ such that µ(∀x̄(ϕ ↔ θ)) = 1. Note that there are, up to logical equivalence, only finitely
many distinct quantifier-free formulae in the variables x1, . . . , xk and each of these is equivalent to a
finitary formula, i.e. one without infinitary connectives. Let Θ be a finite collection of such formulae
including representatives of all up to equivalence. Let ψ1, . . . , ψl be an enumeration of all formulae of
the form ∃xiα or QGHxixj α for i, j ∈ {1, . . . , k}, QGH ∈ Q and α ∈ Θ. Then, each ψi is a formula
of FO[Q] and by the proof of Theorem 4.1, there is a class Ci and a quantifier-free formula θi such that
µ(Ci) = 1 and ψi is equivalent on Ci to θi. Let C =

⋂
1≤i≤l Ci. As C is a finite intersection of classes

of asymptotic probability 1, we have that µ(C) = 1. We claim that there is a quantifier-free formula θ
such that all graphs in C satisfy ϕ↔ θ. This is proved by a transfinite induction on the structure of ϕ.

If ϕ is quantifier-free, there is nothing to prove. The case where ϕ is ¬ψ is equally easy. If ϕ is ∃xψ
or QGHxy ψ then, by induction hypothesis, ψ is equivalent on C to a quantifier-free formula and therefore
ϕ is equivalent, on C, to one of the formulas ψi. But since C ⊆ Ci and ψi is equivalent on Ci to θi, it
follows that ϕ is equivalent, on C, to θi. Finally, if ϕ is

∧
S and for each ψ ∈ S, there is a quantifier-free

formula θψ that is equivalent to ψ on C, then ϕ is equivalent, on C, to
∧
ψ∈S θψ. ut

Combining this with Theorem 5.1 immediately yields the following corollary.
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Corollary 7.1. Lω∞ω[Rig] has a 0-1 law on G(1/2).

A related result, more general than Corollary 7.1, has been obtained by Kaila [16]. This establishes
a 0-1 law on G(1/2) for the extension of Lω∞ω with rigidity quantifiers for all signatures, rather than
just graphs. Corollary 7.1 could further be extended to G(p) for any constant probability p. This would
require a more complicated definition of probability spaces associated with interpretive measures. In
Definition 4.3, the probability assigned to a graph G would not be obtained by a simple sum over Tn but
a suitably weighted sum. We have omitted this generalization in the interests of clarity.

An entirely analogous argument applies to extensions of the results in Section 6 to infinitary logics.
To be precise, suppose H is a graph property and let Lk∞ω[Q?H] denote the extension of Lk∞ω with the
vectorized quantifiers generated by the class H. Then, since any formula ϕ of Lk∞ω[Q?H] contains only
k distinct variables, it is easy to see that any occurrence of a generalized quantifier in ϕ can be replaced
by a quantifier QlH for l ≤ k. Thus, the logic is equivalent to an extension of Lk∞ω with finitely many
generalized quantifiers and an argument like in the proof of Theorem 7.1 above shows that there are only
finitely many formulas with one quantifier. If each of the quantifier-free interpretations yields a measure
on whichH converges quickly, we can construct a class C with µ(C) = 1 on which each of the formulas
with one quantifier is equivalent to a quantifier-free formula. This yields, in particular, the following
generalization of Theorem 6.1.

Theorem 7.2. For any class of graphs H closed under taking extensions (or, dually, substructures), the
logic Lω∞ω[Q?H] has a 0-1 law for G(p), for any constant p.
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