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Abstract. We study the definability of constraint satisfaction problems
(CSP) in various fixed-point and infinitary logics. We show that test-
ing the solvability of systems of equations over a finite Abelian group, a
tractable CSP that was previously known not to be definable in Datalog,
is not definable in an infinitary logic with counting and hence that it is
not definable in least fixed point logic or its extension with counting.
We relate definability of CSPs to their classification obtained from tame
congruence theory of the varieties generated by the algebra of polymor-
phisms of the template structure. In particular, we show that if this
variety admits either the unary or affine type, the corresponding CSP
is not definable in the infinitary logic with counting. We also study the
complexity of determining whether a CSP omits unary and affine types.

1 Introduction

The classification of constraint satisfaction problems (CSP) according to their
tractability has been a major research goal since Feder and Vardi first formulated
their dichotomy conjecture [1]. The general form of the constraint satisfaction
problem takes as instance two finite relational structures A and B and asks if
there is a homomorphism from A to B. We think of the elements of A as the
variables of the problem and the universe of B as the domain of values which
these variables may take. The individual tuples in the relations of A act as
constraints on the values that must be matched to the relations holding in B.
The general form of the problem is NP-complete. In this paper we are mainly
concerned with the non-uniform version of the problem which gives rise, for each
fixed finite structure B to a different decision problem that we denote CSP(B),
namely the problem of deciding whether a given A maps homomorphically to B.
For many fixed B, this problem is solvable in polynomial time, while for others
it remains NP-complete.

In the present paper we are concerned with classifying constraint satisfaction
problems according to their definability in a suitable logic. This is an approach
that has proved useful in studying the tractability of constraint satisfaction prob-
lems [1-3]. In particular, it is known that many natural constraint satisfaction
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problems that are tractable are definable (or, to be precise, their complements
are definable) in Datalog, the language of function-free Horn clauses. Any class
of structures that is definable in Datalog is necessarily decidable in polynomial
time, but there are known constraint satisfaction problems that are tractable but
are not definable in Datalog. A classical example is the solvability of systems of
linear equations over the two-element field [1], which we denote CSP(Zz). Bula-
tov [4] (see also [5]) provides a uniform explanation for the tractability of these
by showing that any constraint language that has a Mal’tsev polymorphism is
solvable in polynomial time. Furthermore, there are NP-complete constraint sat-
isfaction problems, such as 3-colourability of graphs, which we can show are not
Datalog-definable, without requiring the assumption that P is different from NP.
Indeed, the class of constraint satisfaction problems whose complements are de-
finable in Datalog appears to be a robust, natural class of problems with many
independent and equivalent characterisations [6, 7).

A natural question that arises is whether we can offer any explanation based
on logical definability for the tractability of problems such as the satisfiability of
systems of linear equations over a finite field. Is there a natural logic such that
all problems definable in this logic are polynomial-time decidable and that can
express CSP(Z5)? In particular, is this problem definable in LFP—the exten-
sion of first-order logic with least fixed points or LFP 4+ C—the extension of LFP
with counting? Both these logics have been extensively studied in the context of
descriptive complexity as characterising natural fragments of polynomial time.
Interestingly, Blass et al. [8] proved that LFP + C is able to define the class of
non-singular square matrices over any fixed finite field, so it would not be very
surprising if this logic were able to express CSP(Z5). Despite this, it is a conse-
quence of our results that neither of these logics is able to express the solvability
of systems of linear equations over any finite field. Indeed, we show that these
problems are not definable in C¥ , the infinitary logic with bounded number of
variables and counting, a logic much more expressive than LFP + C. Combined
with the result of Blass, Gurevich and Shelah about non-singular matrices, our
result exhibits a fine-grained distinction between the problem of computing the
rank of a square matrix and the problem of computing its determinant.

Another important means of classifying constraint satisfaction problems is
on the basis of the algebra of the template structure B. A polymorphism of
a structure is an operation of its universe that preserves all its relations (see
Section 2 for precise definitions). It is known that whether or not CSP(B) is
tractable depends only on the algebra B obtained from the universe of B endowed
with its polymorphisms. Indeed, it depends only on the variety generated by this
algebra. This is established in [9] by showing that if the algebra B’ of structure B’
is obtained from B as a power, subalgebra or homomorphic image, then CSP(B’)
is polynomial-time reducible to CSP(B). We show in the present paper that this
can be improved to Datalog-definable reductions. These are weak reductions
that, in particular, preserve definability in LFP and C&, . This allows us to
establish that definability of a CSP in these logics is also determined by var(5),
the variety generated by the algebra of B.



Using the tool of Datalog-reductions, which we expect to be useful for other
applications in the area, we relate definability of constraint satisfaction problems
in C¥ , to the classification of varieties of finite algebras from tame congruence
theory [10]. It is known [9] that CSP(B) is NP-complete if var(B) admits the
unary type (also known as type 1), and it is conjectured that CSP(B) is in P
otherwise. Similarly, Larose and Zddori showed [11] that CSP(B) is not definable
in Datalog if var(B) admits the unary or affine types (types 1 and 2), and
conjectured the converse. It is a consequence of our results that we can strengthen
the assertion by replacing Datalog with C% . This implies that, if the Larose-
Zadori conjecture is true, we obtain a dichotomy of definability whereby, for
every B, either CSP(B) is definable in Datalog or it is not definable in C¥ .

Finally, we consider the meta-problems of deciding, given a structure B or an
algebra B whether or not var(8) omits the unary and affine types. For algebras,
the problem was shown decidable in polynomial time in [12], while for structures
we show it is NP-complete.

2 Preliminaries

Structures and graphs A vocabulary o is a finite collection of relation symbols,
each with an associated arity. A o-structure A consists of a finite set A with a
relation RA C A" for each r-ary relation symbol R in o. A graph is a structure
with a binary relation that is symmetric and irreflexive. A homomorphism from
a o-structure A to a o-structure B is a map h : A — B such that for each R
in o and each a € A", if a € R then h(a) € RB. We write A — B to denote
that there exists a homomorphism from A to B. We write CSP(B) for the class
of finite structures A such that A — B and also for the decision problem of
determining membership in this class.

For the standard definition of the treewidth of a graph, we refer the reader
to [13]. In our proofs we will use the following alternative characterization in
terms of the cops and robber game [14]. The game is played by two players, one
of whom controls the set of k& cops attempting to catch a robber controlled by
the other player. The cop player can move any set of cops to any vertices of the
graph, while the robber can simultaneously move along any path in the graph as
long as there is no cop currently on the path. It is known [14] that the cop player
has a winning strategy on a graph using k + 1 cops if and only if the graph has
treewidth at most k. The treewidth of a graph G is denoted tw(G).

Logic A formula is positive quantifier-free if it is formed from the atomic formulas
using conjunctions and disjunctions. A formula is existential positive if it is
formed from the atomic formulas using conjunctions, disjunctions and existential
quantification. Datalog is the extension of existential positive formulas with a
recursion mechanism. Similarly, LE'P is the extension of full first-order logic with
an operator for forming the least fixed points of positive formulas. Finally, LFP+
C is the extension of LFP with a counting mechanism. For formal definitions,
which we will not need in this paper, we refer the reader to [15]. It is known that
every class of structures definable in LFP + C is decidable in polynomial time.



The formulas of the logic C., are obtained from the atomic formulas using
negation, infinitary conjunction and disjunction, and counting quantifiers (3*z¢
for any integer i > 0). The fragment CX_ consists of those formulas of C,, in
which only k distinct variables appear and C%,,, = |J;.c,, C¥.,. The significance
of C¥_, is that fixed-point logics can be translated into it. That is, any formula of
Datalog or LFP, and indeed of LFP + C is equivalent to one of C¥ ,. Moreover,
these translations into infinitary logics have provided some of the most effective
tools for proving inexpressibility results for the fixed-point logics. See [16, 17] for
a discussion of this and the role of these logics in descriptive complexity.

The expressive power of C¥  is characterised by a game known as the bijec-
tive game [18]. This is played by two players, Spoiler and Duplicator, on a pair
of structures A and B, with k pairs of pebbles (x;,y;) for 1 < i < k. At each
stage of the game, some of the pebbles may be on elements of the structures
with ; on an element of A and y; on an element of B. We write a; for the
element currently pebbled by z;, and b; for the element pebbled by y;. For each
move, Spoiler chooses a pair of pebbles (x;,¥;), Duplicator chooses a bijection
f+A— B such that f(a;) = b; for i # j, and Spoiler chooses a € A and places
x; on a and y; on f(a). If, after some move, the map a; — b;(1 <4 < k) is not
a partial isomorphism, Spoiler wins; Duplicator wins infinite plays. By a result
of Hella [18], Duplicator has a winning strategy if, and only if, A and B cannot

be distinguished by any formula of C*__, a fact denoted by A =C'pB,

ocow?

Universal algebra An n-ary operation f on a set A is a polymorphism of a relation
R C A" if, for any tuples a;,...a, € R, the r-tuple obtained by applying f
component-wise also belongs to R. We say that R is invariant under f.

A set with a collection of operations on it is called an algebra. Every structure
A can be naturally associated with an algebra Al(A), called the algebra of A,
whose base set is the universe of A, and whose operations are the polymorphisms
of A. A wariety is a class of algebras which, if it contains A also contains every
subalgebra of A, every homomorphic image of A, and every direct power of
A. The smallest variety containing A is called the variety generated by A and
denoted by var(A). For further background on universal algebra, see [19].

3 Definability of Equations

In this section we show that the problem of determining the solvability of linear
equations over the two-element field, which we mentioned above as a canonical
example of a tractable CSP whose complement is not definable in Datalog, is
also not definable in C¥ . Indeed, we prove a more general result by showing
that the solvability of equations over a finite Abelian group G with at least two
elements is not definable in C% . In the following we will write + for the group
operation in G and 0 for the identity.
Consider the following formulation of the problem.

Definition 1. Let G be a finite Abelian group over a set G and r be a positive
integer. We define the structure Eg , to have universe G and, for each a € G



and 1 < j < r, it has a relation RJ of arity j that consists of the set of tuples
(z1,...,2;) € GI that satisfy the equation 1 + -+ + z; = a.

Thus, any structure A in the signature of Eg , can be seen as a set of equa-
tions in which at most r variables occur in each equation. The universe of A is
the set of variables and the occurrence of a tuple (z1,...,2;) in a relation R},
signifies the equation x; + --- 4 2; = a. This set of equations is solvable if, and
only if, A — Eg,. In the sequel we will say “the equation 1 +---+z; = a
occurs in A” to mean that the tuple (z1,...,z;) is in RJ.

Our aim now is to exhibit, for each non-trivial finite Abelian group G and
each positive integer k, a pair of structures A and B such that A=C"B and
such that A € CSP(Eg 3) and B ¢ CSP(Eg 3). This will show that CSP(Eg 3) is
not definable in C¥, . This, of course, implies the result for all CSP(Eg ) with
r > 3. The structures we construct are sets of equations derived from 3-regular
graphs of large treewidth. From now on, fix a non-trivial finite Abelian group
G over a set G, a 3-regular graph H, and a distinguished vertex u of H. We
define, for each a € G, a set of equations E, H* as follows (note that E,H" is a
structure over the vocabulary of Eg 3):

For each vertex v € V¥ and each edge e € EH that is incident on v, we
have m distinct variables x;" where i ranges over G. Since each vertex has three
edges incident on it, there are 3m variables associated to each vertex. For every
vertex v other than u, let eq, es, ez be the three edges incident on v. We then
include the following equation in E,H" for all 4, j,k € G:

x;hel + x;{v@ + xz7e3 =i+j+k. (1)

For the distinguished vertex u, instead of the above, we include the following
equation, again for all 4, j,k € G:

TP+l i =it j+ k+a. (2)

In addition, for each edge e € E let v, vy be its endpoints. We include the
following equations in E,H" for all 7,5 € G:

v1,€

Ty

+ a7 =i+ (3)

J
We refer to equations of the form (1) and (2) as verter equations and equations
of the form (3) as edge equations.

Lemma 2. E,H" is satisfiable if, and only if, a =0

Proof. To see that EqH" is satisfiable, just take the assignment that gives the
variable x;"“ the value i. To see that E,H" is unsatisfiable when a # 0, consider
the subsystem Sy of equations involving only the variables ;™ with subscript
0. Note that each such variable occurs exactly twice in Sy, once in a vertex
equation and once in an edge equation. Thus, if we add up the left hand sides
of all equations in Sy, we get 2> 7. Note also that each variable zy“ has a

companion variable J:g,’e where v’ is the other endpoint of the edge e and we



have the equation 24 + 24 © = 0. Thus 2 Yoo =23 (xg" +25°¢) = 0. On
the other hand, the right-hand side of all equa:tions is 0 except for the one vertex
equation for u, which has right-hand side a. Thus summing the right-hand sides
of all equations gives the sum a. Since a # 0, this shows that the subsystem S
and hence the system of equations E,H" is unsatisfiable.

Lemma 3. If tw(H) > k and H is connected, then EqH" =C"E,H for any
a€eg.

Proof. Our aim is to exhibit a winning strategy for Duplicator in the k-pebble
bijective game played on the two structures A = EqH" and B = E,H". Since
tw(H) > k, we know that in the k cops and robber game played on H, robber
has a winning strategy and Duplicator will make use of this strategy.

For each vertex v € V let X? denote the set of variables ! for edges
e incident on v. Similarly, for each e € E¥, let X denote the set of variables
involving e.

We say that a bijection f : A — B is good for a vertex v € V' if the following
conditions hold:

1. forallwe VI fXv =XV,
2. forallec EH, fX°¢ = X¢,
3. for all z,y, if x +y = i is an equation in A then f(z) 4+ f(y) = ¢ is an
equation in B; and
4. for all z,y, z, if x +y + z =i is an equation in A, then
— f(z)+ f(y) + f(2) =i is an equation in B if z,y,z ¢ X; and
— f(x)+ f(y) + f(z) =i+ a is an equation in B if z,y,z € X".

Note that the identity is a bijection that is good for u. Also, note that a bijection
that is good for v preserves all equations except the vertex equations for v.

Claim. Given a bijection f : A — B that is good for v, if there is a path in H
from v to w avoiding w1, ..., u; then there is a bijection f’: A — B that is good
for w such that f|xuiu..uxue) = f'l(xviu..uxer)-

Proof. : Let the path from v to w avoiding uq,...,u be v = vy,...,v, = w.
For each edge e = {v;,v;41} along this path, write x5~ for the variable ac;e
and x‘;+ for the variable 2"***°. We then define f" by f'(z57) = f(«5_,) and
1! (xj+) =f (acjia), and f’ agrees with f everywhere else. In particular, since
the path from v to w avoids uq,...,u, f’ agrees with f on X%t U---U XUk,

We now describe Duplicator’s winning strategy in the bijective k-pebble
game. Duplicator responds to Spoiler’s first move with the identity bijection.
She maintains a board on the side which describes a position in the k& cops and
robber game played on the graph H. At any point, if Spoiler’s pebbles are on
the position x1,...,z; in A and vq,...,v; are the vertices of H to which these
variables correspond, then the current position of the cops and robber game has
k cops on the vertices vy, . .., v. If the robber’s position according to its winning
strategy is v, then Duplicator will play a bijection that is good for v.



To see that Duplicator can do this forever, suppose Spoiler lifts a pebble from
x;. Duplicator responds with a current bijection f that is good for v. Since the
only equations not preserved by f are those associated with the vertex v, Spoiler
must place at least three pebbles on variables associated with v to win the game.
However, Duplicator responds to Spoiler placing the pebble on a new position
by updating the position of the cops and robber game. Suppose robber’s winning
strategy dictates that the robber move from v to w. Since robber’s move must
be along a path avoiding the current cop positions, by Claim 3, Duplicator can
update the bijection f to an f’ that is good for w and agrees with f on all
currently pebbled positions. It is now clear that Duplicator can play forever.

Theorem 4. Let G be a non-trivial finite Abelian group. Then CSP(Eg 3) is not
definable in C¥,,

Proof. Suppose, to the contrary, that there is a k such that CSP(Eg 3) is defin-
able in C* . Let H be any connected, 3-regular graph with tw(H) > k and u
any vertex of H. For instance, H could be a sufficiently large brick graph. Let
a be any element of G distinct from 0. Then, by Lemma 2, E¢H* € CSP(Eg 3)

and E,H" ¢ CSP(Eg 3). But, by Lemma 3, EcH* =C* E,H", a contradiction.

4 Logical Reductions

4.1 Definition

Let 0 and 7 = (Ry,..., Rs) be two relational vocabularies. A k-ary interpre-
tation with p parameters of T in o is an (s + 1)-tuple I = (py,@1,...,ps) of
formulas over the vocabulary 7, where ¢y = ¢y (x,y) has k + p free variables
x=(2',...,2¥) andy = (y1,...,¥p), and ¢; = @;(X1,...,X,,y) has kr free vari-
ables where r is the arity of R; and each x; = (le, cee mj) andy = (y1,---,Yp)-

Let A be a o-structure. A tuple ¢ = (a1,...,a,) of of pairwise different
points of A is called proper. The interpretation of A through I with parameters c,
denoted by I(A, c), is the T-structure whose universe is {a € A* : A |= pp(a,c)},
and whose interpretation for R; is the set of tuples (a,...,a,) € (A¥)" such
that A E ¢y(ai,c) A -+ Apular,c) A pi(ag,...,a,,c). If each formula in I
belongs to a class of formulas ©, we say that I is a @-interpretation.

Now we are ready to define the notion of logical reduction:

Definition 5. Let C be a class of o-structures, D a class of T-structures closed
under isomorphisms, and © be a class of formulas. A ©O-interpretation with p
parameters I of T in o is a O-reduction from C to D if, for every o-structure A
with at least p elements, A € C if, and only if, I(A,c) € D for some proper c.

If such a reduction exists, we say that C reduces to D under ©-reductions,
and write C <g D. We use the collections of positive quantifier-free formulas,
existential positive formulas, and datalog formulas (i.e. datalog programs) and
write <pqr, <ep and <datalog, respectively. These are reductions of increasing

power, and definability in C¥ , is preserved downwards by all three.



4.2 Expansions by reduced invariant relations

Let A be a set and let R C A® be a relation on A. We define an equivalence
relation 0(R) on {1,...,s} by setting (¢,j) € 0(R) if, and only if, a; = a; for
every (ai,...,as) € R. We say that R is reduced if §(R) is the trivial equivalence
relation (i.e. equality). Note that the equality relation on A is not reduced. The
proof of the following lemma appears in the full version of this paper.

Lemma 6. Let B be a finite structure, and D be an expansion of B by a reduced
relation invariant under all polymorphisms of B. Then, CSP(D) <, CSP(B).

Next we show that reduced relations are general enough. First a piece of
notation: Let a = (as,...,a,) be a sequence and let I = (i1,...,7,) be a se-
quence of indices, where 1 < i; < m for every j € {1,...,r}. We write a; for
the sequence (a;,,...,a;.). Now let R be a relation of arity s and I a sequence
of indices from {1,...,s}. Then pr;R denotes the relation {a; : a € R}.

Let R be a relation of arity s and 6(R), the equivalence relation on {1,...,s}
as defined in the previous section. Let I be a set of representatives of the
equivalence-classes of 8(R), ordered in an arbitrary way, and define red(R) =
pr;R. Note that red(R) does not depend on the choice of I. Besides, for every
i & I there exists some j € I such that a; = a; for every tuple (ai,...,as) € R.
We call red(R) the reduced version of R. A reduced structure is a structure all
whose relations are reduced. To every structure B we can associate a reduced
structure, called the reduced version of B, whose universe is the universe of B
itself and whose relations are the reduced versions of the relations of B. Note
that the vocabularies of a structure and its reduced version may be different.
Note that the polymorphisms of B and its reduced version are the same.

Lemma 7. Let B a finite structure and let D be the reduced version of B. Then
CSP(B) <datalog CSP(D) and CSP(D) <,4 CSP(B).

Proof: For space constraints, we only sketch the reduction CSP(B) <gatalog
CSP(D). Let A be an instance of CSP(B). We define an instance C of CSP(D).
The universe of C is A itself. For the relations, the basic idea is to project every
relation R® to the coordinates of a set of representatives I of the #-classes,
where 8 = 6(R). However, before we do that, we need to close each R* under
all equalities implied by the equivalences (i,j) € 8. We do that using Datalog-
definable intermediate relations.

Let E be the binary relation on A defined by the following Datalog program:

E(z;,xzj) + — R(x1,...,x5)

E(z,y) : = E(y,z)
E(IVZ) :7E($ay)/\E(y’Z)a

where the first rule is introduced for every symbol R in o and every (i,5) € 0(R).
It is obvious that F is an equivalence relation on A; reflexivity follows from the
fact that (¢,7) € 0(R) in the first rule, symmetry is enforced by the second rule,



and transitivity is enforced by the third. Next, for every r-ary symbol R in o, let
R’ be the relation defined by R'(x1) : — R(y1,...,ys) AE(z1,y1)A - -AE(zs,ys),
where I is a set of representatives of the §( R)-classes ordered in an arbitrary way.
This defines C, and we defined it by a Datalog program interpreted on A. It
remains to argue that this datalog-interpretation is indeed a reduction. The
argument may be found in the full version of this paper. d

4.3 Powering, subalgebras, and homomorphic images

In this subsection we show how the basic algebraic constructions of powering,
subalgebra and homomorphic images can be handled by Datalog-reductions. In
the following, fix a finite structure B and its corresponding algebra B.

Suppose B’ is an algebra that has a homomorphic image A = h(B’) that is
a reduct of B. Note that A = B = h(B’), i.e. the universes of A and B are the
same and are the image of the universe of B’ under h. We define a new structure
B’ = pre(B, h), the preimage of B, whose universe is B’ and whose relations are
the preimages h™1(RB) of the relations RB of B.

Lemma 8. Let the algebras B and B’, and the structures B and B’ = pre(B, h)
be as above. Then CSP(B) <,qr CSP(B’) and B’ is a reduct of Al(B’).

Suppose B’ is an algebra that has a subalgebra A C B’ that is a reduct of
B. Note that A = B C B’, i.e. the universes of A and B are the same and are
a subset of the universe of B’. We define a new structure B’ = ext(B, B’), the
extension of B, with universe B’ and the same relations as B.

Lemma 9. Let the algebras B and B', and the structures B and B’ = ext(B, B’)
be as above. Then CSP(B) <,qt CSP(B’) and B’ is a reduct of Al(B’).

Let R be an r-ary relation on the set A™. Then the flattening of R, denoted
fla(R,n), is the rn-ary relation on A that contains all tuples (x1,...,2,) such
that ((z1,...,2n),. .., (Z(—1)nt1,--->%rn)) € R. Suppose B’ is an algebra that
has a direct power A = B'" that is a reduct of B. Note that A = B = B'", i.e.
the universes of A and B are the same and are the n-th power of the universe of
B’. We define a new structure B’ = fla(B, n), the flattening of B, whose universe
is B and whose relations are the flattenings of the relations of B.

Lemma 10. Let the algebras B and B', and the structures B and B’ = fla(B,n)
be as above. Then CSP(B) <,qt CSP(B’) and B’ is a reduct of Al(B’).

These lemmas allow us to derive the following consequence we require.

Theorem 11. Let B and B’ be finite structures and let B and B’ be their respec-
tive algebras. If var(B') contains a reduct of B, then CSP(B) <gatalog CSP(B’).

Proof: Suppose that some algebra A of var(B’) is a reduct of B. By the HSP-
theorem [19, Theorem 9.5] A is a homomorphic image of a subalgebra of a
direct power of B'. Let B,, Bs, and Bj, be the direct power, its subalgebra, and



the homomorphic image, respectively. We have A = Bj. Let n be such that
B, = B'™, an let h be a homomorphism from B to By,

We use three intermediate structures B = pre(B, h), B, = ext(By, B,), and
B; = fla(B,,n) that, by the definition, have the universes of the algebras Bs,
B, and B’ respectively. By Lemma 8, CSP(B) <,qs CSP(B;) and B; is a reduct
of Al(B;). By Lemma 9, CSP(B;) <,qt CSP(B,) and B, is a reduct of Al(B,).
By Lemma 10, CSP(B,,) <,qt CSP(By), and B’ is a reduct of Al(By). Now, let
D be the reduced version of By. Then CSP(Bf) <gatalog CSP(D) by Lemma 7.
We prove that CSP(D) <, CSP(B’) and the result will follow by composing.

Let D’ be the expansion of D obtained by adding all the relations of B’.
Since B’ is a reduct of the algebra of By and D’ is the flattening of By, it is
straightforward that every relation of D’ is invariant under all polymorphisms of
B’. Moreover, the relations in D’ that are not in B’ are reduced, so CSP(D’) <, s
CSP(B’) by Lemma 6. It is also obvious that CSP(D) <,q; CSP(D’) through the
mapping that sends a structure to its expansion with empty relations. Composing
we get CSP(D) <pqr CSP(B’). O

4.4 Reduction from the idempotent case

To every finite structure B we associate a new structure, the singleton-expansion
of B, by adding one unary relation {b} for every b € B. In other words, if B =
{b1,...,b,}, then the structure (B,{b1},...,{bn}) is the singleton-expansion of
B. Note that the polymorphisms of the singleton-expansion of B are exactly the
idempotent polymorphisms of B, that is polymorphisms f satisfying the identity
f(z,...,2) = z. Indeed, every singleton set {b} is preserved by any idempotent
polymorphism of B, and any polymorphism of B that preserves every singleton
set {b} must by idempotent.

Lemma 12. Let B be a finite structure, and let D be the singleton-expansion
of B. Then CSP(B) <,q CSP(D) and if B is a core with at least two points,
then CSP(D) <., CSP(B).

5 Omitting types and Results

Let A be an algebra. A congruence of A is an equivalence relation « that is
invariant with respect to all operations of A. In other words, for any (n-ary)
operation f of A and any ay,...,an,b1,...,b, € A such that (a;,b;) € a we
have (f(a1,...,ay), f(b1,...,b,)) € . The congruences of A form its congruence
lattice con(A). A prime quotient in this lattice is a pair of congruences «, § such
that a < 3, a # 3, and for any v with a < v < (8 we have either a = =, or
8 = ~. The fact that «, 3 is a prime quotient will be denoted by a < 8.

Tame congruence theory [10] allows one to assign to each prime quotient of
the congruence lattice con(A) of a finite algebra A one of five types. The type
reflects the local structure of the algebra, which can be one of the following: 1
a finite set with a group action on it (unary type), 2 a finite vector space over



a finite field (affine type), 3 a two-element Boolean algebra, 4 a two-element
lattice, 5 a two-element semilattice. We use tame congruence as a black box
extracting properties we need from existing results, and we do not therefore
need a precise definition of the types.

The type of a prime quotient o < 8 is denoted by typ(«, 3), while typ(.A)
denotes the set of types appearing as types of some prime quotient of A. If A
is a class of algebras, typ(2) denotes the set |J 4o typ(A). If i & typ(A), we say
that A omits type i. Otherwise, we say 2 admits type i. We need the following:

Lemma 13. Let A be a finite idempotent algebra. If var(A) admits types 1 or
2 then it contains a finite idempotent reduct of a module.

Recall from Section 3 the definition of the structure Eg, for every finite
Abelian group G and every integer r > 1.

Lemma 14. Let M be a finite module, let G be its underlying Abelian group,
and let A be an idempotent reduct of M. Then A is a reduct of the algebra of
Eg,, for everyr > 1.

Bringing together these results with those of Section 4 we get:

Theorem 15. Let B be a finite structure and let B be its algebra. If var(B)
admits the unary or affine types, then there exists a mon-trivial finite Abelian
group G such that CSP(Eg ;) <datalog CSP(B) for every r > 1.

Proof. Since CSP(B) = CSP(core(B)), where core(B) is the core of B, we may
assume that B is a core. Let D be the singleton-expansion of B and let D be its
algebra, which is idempotent. By Lemma 12, we have CSP(D) <gatalog CSP(B).
Moreover, if var(B) admits types 1 or 2, so does var(D) because D is a reduct
of B (see [10, Chapter 5]). By Lemma 13, the variety var(D) contains a finite
idempotent reduct A of a module. Let G be the Abelian group underlying the
module. Then G is non-trivial and finite. Moreover, A is a reduct of the algebra of
Eg, for every r > 1 by Lemma 14. It follows that CSP(Eg ;) <datalog CSP(D).
Composing we get the result. ad

We have seen in Section 3 that CSP(Eg 3) is not definable in C%  when
G is non-trivial. Since definability in C%, is preserved downwards by Datalog-

reductions, this yields the following corollary:

Corollary 16. Let B be a finite structure and let B be its algebra. If CSP(B)
is definable in C¥,, then var(B) omits the unary and affine types.

oow

Corollary 16 can be seen as a strengthening of the result of Larose and
Zadori [11] that if the complement of CSP(B) is definable in Datalog then
var(BB) omits the unary and affine types. Larose and Zadori also conjectured
the converse, namely that if var(B) omits the unary and affine types then the
complement of CSP(B) is definable in Datalog. By Corollary 16 this conjecture
would imply that every CSP(B) is either definable in Datalog or not definable
in C¥ , which can be seen as a definability dichotomy.

oow



Finally, we consider three decision problems. In ALGEBRA OF TYPE 2 we
are given a finite set A and operation tables of idempotent operations fi,..., f,
on A, and the question is whether var(A), where A = (A4;{f1,..., fn}), omits
types 1 and 2. In RELATIONAL STRUCTURE OF TYPE 2 we are given a finite
relational structure A, and the question is whether var(Al(A)) omits types 1 and
2. In RELATIONAL STRUCTURE OF TYPE 2(k) we are given a finite relational
structure A, |A| < k, and the question is whether var(Al(A)) omits types 1 and
2. The problems ALGEBRA OF TYPE 2 and RELATIONAL STRUCTURE OF TYPE
2(k) were shown tractable in [12].

Theorem 17. RELATIONAL STRUCTURE OF TYPE 2 is NP-complete.
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