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Abstract

A class of structures is said to have the homomorphism-preservation property just in case every first-
order formula that is preserved by homomorphisms on this class is equivalent to an existential-positive
formula. It is known by a result of Rossman that the class of finite structures has this property and
by previous work of Atserias et al. that various of its subclasses do. We extend the latter results by
introducing the notion of a quasi-wide class and showing that any quasi-wide class that is closed under
taking substructures and disjoint unions has the homomorphism-preservation property. We show, in
particular, that classes of structures of bounded expansion and that locally exclude minors are quasi-
wide. We also construct an example of a class of finite structures which is closed under substructures
and disjoint unions but does not admit the homomorphism-preservation property.

1 Introduction

Preservation theorems are model-theoretic results that link semantic restrictions on a logic with correspond-
ing syntactic restrictions. For instance, the Łoś-Tarskipreservation theorem guarantees that any first-order
formula whose models are closed under extensions is equivalent to an existential formula. In the early de-
velopment of finite model theory, it was noted that many classical preservation theorems of model theory
fail when we are only interested in finite structures (see [11]). The Łoś-Tarski theorem is an example of one
such—it was noted by Tait [16] that there are formulas of first-order logic whosefinite models are closed
under extension but that are not equivalent, even in restriction to finite structures, to an existential formula.
Similarly, Ajtai and Gurevich [1] established that Lyndon’s theorem—which implies that any formula that
is monotone on all structures is equivalent to one that is positive—also fails in the finite. One example
of a preservation theorem whose status in the finite remainedopen for many years is the homomorphism
preservation theorem. This states that a first-order formula whose models are closed under homomorphisms
is equivalent to an existential-positive formula. Rossmanrecently proved [13] that this holds, even when we
restrict ourselves to finite structures.

A recent trend in finite model theory has sought to examine model-theoretic questions, such as the
preservation properties, not just on the class of all finite structures but on subclasses that are of interest from
the algorithmic point of view (see [5] for an overview of results in this direction). Thus, prior to Rossman’s
result, Atserias et al. [4] proved that the homomorphism preservation theorem holds in any class of structures
C of bounded treewidth, which is closed under substructures and disjoint unions. More generally, they
showed that homomorphism preservation holds onC provided that theGaifman graphsof structures inC
exclude some minor andC is closed under substructures and disjoint unions. Note that these results are not
implied by Rossman’s theorem. Indeed, if we consider two classesC ⊆ C′, we cannot conclude anything
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about whether or not homomorphism preservation holds onC from the fact that it holds onC′. An example
of a class of finite structures on which homomorphism preservation fails is discussed in Section 5.

An open question that was posed in [4] was whether the resultsfrom that paper could be extended to
other classes, in particular by replacing the requirement thatC exclude a minor by the requirement thatC
havebounded local treewidthas defined in [9, 10]. This restriction is incomparable with the requirement
thatC excludes a minor, in the sense that there are classes with an excluded minor that do not have bounded
local treewidth and vice versa. However, there is a common generalisation of the two in the notion of
locally excluded minorsintroduced by Dawar et al. [6]. In this paper, we answer the open question from [4]
by showing that any classC of finite structures that locally excludes a minor and is closed under taking
substructures and disjoint unions satisfies the homomorphism preservation property. We also establish this
for classes ofbounded expansion, as defined by Nešetřil and Ossona de Mendez [14].

The proof given in [4] that classes of structures that exclude a minor satisfy homomorphism preservation
was composed of two elements. First, a result derived from a lemma by Ajtai and Gurevich [2] that showed
a certain density property for minimal models of a formulaϕ that is preserved under homomorphisms.
This implies that if a classC satisfies the condition of beingalmost wide(this is defined in Section 2
below) and is closed under substructures and disjoint unions, thenC satisfies homomorphism preservation.
Secondly, we showed, using a combinatorial construction from [12] that any class that excludes some graph
as a minor is almost wide. In order to extend these results to classes that locally exclude a minor and
classes of bounded expansion, we first define a relaxation of the almost wideness condition to one we term
quasi-wideness. We show that the Ajtai-Gurevich lemma can be adapted to showthat any classC which is
quasi-wide and closed under substructures and disjoint unions also satisfies homomorphism preservation.
This is established in Section 3. Then, an extension of the combinatorial argument from [4] establishes that
classes of bounded expansion and classes that locally exclude a minor arequasi-wide. These arguments are
presented in Section 4.

The steady recurrence of the requirement thatC is closed under substructures and disjoint unions arises
from the fact that these are the constructions used in the density argument of Ajtai and Gurevich. A nat-
ural question that arises is whether these conditions alonemight be sufficient to guarantee homomorphism
preservation. However, this is not the case, as we establishthrough a counter-example constructed in Sec-
tion 5.

The results presented here were announced (without proof) in an invited lecture [5]. Since then, Nešetřil
and Ossona de Mendez have extended the combinatorial argument from Section 4 and provided an elegant
characterisation of quasi-wide classes that are closed under substructures [15].

Acknowledgements: The results reported here were obtained during a visit made to Cambridge by
Guillaume Malod in the summer of 2007. I am grateful to him forstimulating discussions and for his help
with the material. I am also grateful to Jarik Nešetřil forhis repeated encouragement to write this paper ever
since I told him the results.

2 Preliminaries

This section contains the definitions of some basic notions and a minimum amount of background material.

2.1 Relational Structures

A relational vocabularyσ is a finite set ofrelation symbols, each with a specifiedarity. A σ-structureA
consists of auniverse A, or domain, and aninterpretationwhich associates to each relation symbolR ∈ σ
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of some arityr, a relationRA ⊆ Ar . A graph is a structureG = (V,E), whereE is a binary relation that is
symmetric and irreflexive. Thus, our graphs are undirected,loopless, and without parallel edges.

A σ-structureB is called asubstructureof A (and we writeB ⊆ A) if B ⊆ A andRB ⊆ RA for every
R ∈ σ. It is called aninduced substructureif RB = RA ∩ Br for everyR ∈ σ of arity r. Note that this
terminology is at variance with common usage in model theorywhere the term “substructure” is used for
what we call an “induced substructure”. However, it is more convenient for us as, for the purpose of studying
properties preserved under homomorphisms, we are more interested in substructures that are not necessarily
induced. Note also the analogy with the concepts ofsubgraphandinduced subgraphfrom graph theory. A
substructureB of A is proper ifA , B.

A homomorphismfromA toB is a mappingh : A→ B from the universe ofA to the universe ofB that
preserves the relations, that is if (a1, . . . , ar) ∈ RA, then (h(a1), . . . , h(ar )) ∈ RB. We say that two structures
A andB arehomomorphically equivalentif there is a homomorphism fromA to B and a homomorphism
from B toA. Note that, ifA is a substructure ofB, then the injection mapping is a homomorphism fromA
to B. If the homomorphismh is bijective and its inverse is a homomorphism fromB toA thenA andB are
isomorphic and we writeA � B.

For a pair of structuresA andB, we writeA ⊕ B for the disjoint unionof A andB. That is,A ⊕ B is
the structure whose universe is the disjoint union ofA andB and where, for any relation symbolR and any
tuple of elementst, we havet ∈ RA⊕B just in case eithert ∈ RA or t ∈ RB.

TheGaifman graphof aσ-structureA, denoted byG(A), is the (undirected) graph whose set of nodes
is the universe ofA, and whose set of edges consists of all pairs (a, a′) of distinct elements ofA such thata
anda′ appear together in some tuple of a relation inA.

Let G = (V,E) be a graph. Moreover, letu ∈ V be a vertex and letd ≥ 0 be an integer. Ther-
neighborhoodof u in G, denoted byNG

d (u), is defined inductively as follows:

1. NG
0 (u) = {u};

2. NG
r+1(u) = NG

r (u) ∪ {v ∈ V : (v,w) ∈ E for somew ∈ NG
r (u)}.

Where this causes no confusion, we also writeNG
r (u) for the subgraph ofG induced by this set of vertices.

For a structureA and an elementa in its universe, we writeNAr (a) for the substructure ofA induced by the
setNG(A)

r (a).

2.2 Logic

Let σ be a relational vocabulary. Theatomic formulasof σ are those of the formR(x1, . . . , xr), where
R ∈ σ is a relation symbol of arityr, andx1, . . . , xr are first-order variables that are not necessarily distinct.
Formulas of the formx = y are also atomic formulas, and we refer to them asequalities. The collection
of first-order formulasis obtained by closing the atomic formulas under negation, conjunction, disjunction,
universal and existential first-order quantification. The semantics of first-order logic is standard. IfA is a
σ-structure andϕ is a first-order formula, we use the notationA |= ϕ[a] to denote the fact thatϕ is true inA
when its free variables are interpreted by the tuple of elementsa. Whenϕ is a sentence (i.e. contains no free
variables), we simply writeA |= ϕ. The collection ofexistential-positivefirst-order formulas is obtained by
closing the atomic formulas under conjunction, disjunction, and existential quantification. By substituting
variables, it is easy to see that equalities can be eliminated from existential-positive formulas.

We say that a first-order formulaϕ is preserved under homomorphismsif, wheneverA |= ϕ[a] and
h : A → B is a homomorphism fromA to B thenB |= ϕ[h(a)]. It is an easy exercise to show that any
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existential positive first-order formula is preserved under homomorphisms. The homomorphism preserva-
tion theorem provides a kind of converse to this statement: every first-order formula that is preserved under
homomorphisms is logically equivalent to an existential positive formula.

We are interested in versions of homomorphism preservationon restricted classes of structures. IfC is
a class of structures, we say that a formulaϕ is preserved under homomorphisms onC if wheneverA and
B are structures inC, A |= ϕ[a] andh : A→ B is a homomorphism fromA to B thenB |= ϕ[h(a)]. We say
that two formulasϕ andψ areequivalent onC if every structureA in C verifiesA |= (ϕ ↔ ψ). We say that
C has thehomomorphism preservation propertyif every formulaϕ that is preserved under homomorphisms
onC is equivalent onC to an existential positive formula. By a theorem of Rossman [13], the class of finite
structures has the homomorphism preservation property.

For a sentenceϕ preserved under homomorphisms on a class of structuresC, we say thatA ∈ C is a
minimal modelof ϕ in C if A |= ϕ and for every substructureB ⊆ A such thatB ∈ C, B 6|= ϕ. The following
lemma is established by an easy argument sketched in [4].

Lemma 1. LetC be a class of finite structures closed under taking substructures and letϕ be a sentence
that is preserved under homomorphisms onC. Then the following are equivalent:

1. ϕ has finitely many minimal models inC.

2. ϕ is equivalent onC to an existential-positive sentence.

The main consequence of this lemma is that in order to establish thatC has the homomorphism preser-
vation property, it suffices to establish an upper bound on the size of the minimal models. To be precise, we
aim to prove that for anyϕ there is anN such that no minimal model ofϕ is larger thanN.

The quantifier rank of a first-order formulaϕ is just the maximal depth of nesting of quantifiers inϕ.
For every integerr ≥ 0, letδ(x, y) ≤ r denote the first-order formula expressing that the distancebetweenx
andy in the Gaifman graph is at mostr. Let δ(x, y) > r denote the negation of this formula. Note that the
quantifier rank ofδ(x, y) ≤ r is bounded byr. A basic local sentenceis a sentence of the form

∃x1 · · · ∃xn


∧

i, j

δ(xi , x j) > 2r ∧
∧

i

ψNr (xi )(xi)

 , (1)

whereψ is a first-order formula with one free variable. Here,ψNr (xi )(xi) stands for the relativization ofψ to
Nr(xi); that is, the subformulas ofψ of the form∃xθ are replaced by∃x(δ(x, xi) ≤ r∧θ), and the subformulas
of the form∀xθ are replaced by∀x(δ(x, xi ) ≤ r → θ). The locality radiusof a basic local sentence isr. Its
width is n. The formulaψ is called thelocal condition.

The main value of basic local sentences is that they form a building block for first-order logic. This
follows from Gaifman’s Theorem (for a proof, see, for example, [8, Theorem 2.5.1]), which states that every
first-order sentence is equivalent to a Boolean combinationof basic local sentences. We will need a refined
version of this, which takes account of quantifier rank. The following statement follows immediately from
the proof given in [8].

Theorem 2(Gaifman). Every first-order sentenceϕ of quantifier rank at most q is equivalent to a Boolean
combination of basic local sentences of locality radius at most7q.

Note, in particular, that the upper bound on the locality radius does not depend on the signatureσ.
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2.3 Graphs

We are interested in classes of finite structuresC defined by a graph-theoretic restriction on their Gaifman
graphs. In order to define these restrictions, we introduce some graph theoretic concepts. For further details
on graph minors, the reader is referred to [7]. For a graphG, we often writeVG for the set of its vertices
andEG for the set of its edges. ForA ⊆ VG, we writeG[A] to denote the subgraph ofG induced by the set
of verticesA.

We say that a graphG is aminor of H (written G � H) if G can be obtained from a subgraph ofH by
contracting edges. The contraction of an edge (u, v) consists in replacing its two endpoints with a new vertex
w whose neighbours are all nodes that were neighbours of either u or v. An equivalent characterization (see
[7]) states thatG is a minor ofH if there is a map that associates to each vertexv of G a non-emptyconnected
subgraphHv of H such thatHu andHv are disjoint foru , v and if there is an edge betweenu andv in G
then there is an edge inH between some node inHu and some node inHv. The subgraphsHv are called
branch sets.

We say that a classC of finite graphsexcludesG as a minorif, for every H in C, G 6� H. We say that
C excludes a minorif there is some graphG such thatC excludesG as a minor. Note that ifG is a graph
on n vertices andKn is the clique onn vertices, thenG � Kn. Thus, ifC excludes a minor, then there is an
n such thatC excludesKn as a minor. Among classes of graphs that exclude a minor are the class of planar
graphs, or more generally, the class of graphs embeddable into any given fixed surface.

The notion of graph classes with locally excluded minors is introduced in [6]. We say that a classC
locally excludes minorsif there is a functionf : � → � such that for eachG in C and each vertexv in G,
K f (r) 6� NG

r (v). That is, for everyr, the class of graphsCr , formed fromC by taking the neighbourhoods of
radiusr around all vertices of graphs inC, excludes a minor.

Finally, we define classes of bounded expansion, as introduced by Nešetřil and Ossona de Mendez [14].
Suppose a graphG is a minor ofH as witnessed by the collection of branch sets{Hv | v ∈ VG}. We say that
G is aminor at depth rof H (and writeG �r H) if each of these branch sets is contained in a neighbourhood
of H of radiusr. That is, for eachv ∈ VG, there is aw ∈ VH such thatHv ⊆ NH

r (w). For any graphH, the
greatest reduced average density(or grad) of radius rof H, written∇r (H) is defined as

∇r (H) = max
{ |EG|

|VG|
| G �r H

}
.

In other words,∇r(H) is half the maximum average degree that occurs among minorsof H of depthr. In
particular, ifd(G) denotes the average degree ofG, then∇0(H) = max

{1
2d(G) | G ⊆ H

}
.

A class of graphsC is said to be ofbounded expansionif there is a functionf : � → � such that
for every graphG in C, ∇r (G) ≤ f (r). It is known that for everyn, any graph with average degree 10n2

containsKn as a minor (see [7, Theorem 7.2.1]. It follows immediately that if C excludesKn as a minor, it
has bounded expansion. Indeed, the constant functionf (r) = 10n2 witnesses this.

Any classC that excludes a minor both has bounded expansion and locallyexcludes minors. However,
the lat two restrictions are known to be incomparable in the sense that there are classesC that locally exclude
minors but are not of bounded expansion and vice versa (see [6]). Another condition on a classC, considered
in [4] is that it hasbounded degree. That is to say that there is a constantd such that every vertex in every
graph inC has degree at mostd. This restriction is incomparable with the requirement that C excludes a
minor but again, it is immediate that any class of bounded degree both locally excludes minors and has
bounded expansion. See [5] for a map of these various conditions and implications between them.
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2.4 Homomorphism Preservation Theorems

In [4], the homomorphism preservation property is established for a number of classes of structures, based
on certain combinatorial properties that were calledwideandalmost widein [3]. In the following, when we
talk of a class of finite structuresC satisfying a graph-theoretic restriction, such as excluding a minor, we
mean that the collection of Gaifman graphsG(A) of structuresA in C satisfies the condition.

Definition 3. A set of elements B in aσ-structureA is r-scatteredif for every pair of distinct a, b ∈ B we
have NAr (a) ∩ NAr (b) = ∅.

We say that a class of finiteσ-structuresC is wide if for every r and m there exists an N such that every
structure inC of size at least N contains an r-scattered set of size m.

It is easy to see that ifC has bounded degree, then it is wide.

Definition 4. A class of finiteσ-structuresC is almost wide with margink if for every r and m there exists
an N such that every structureA with at least N elements inC contains a set B with at most k elements such
thatG(A)[A \ B] contains an r-scattered set of size m.

We say thatC is almost wideif there is some k such that it is almost wide with margin k.

An example is the class of acyclic graphs, which is not wide (as we have arbitrarily large trees where the
distance between any two vertices is 2) but is almost wide with margin 1. More generally, it is shown in [4]
that ifC excludesKn as a minor, thenC is almost wide with marginn− 2.

A theorem of [4] shows that almost wideness, along with some natural closure properties of a classC is
sufficient to guarantee the homomorphism preservation property.

Theorem 5([4]). Any classC of finiteσ-structures that is almost wide and is closed under taking substruc-
tures and disjoint unions of structures has the homomorphism preservation property.

This is proved using a lemma of Ajtai and Gurevich which we review in Section 3. Thus, as long asC
is closed under substructures and disjoint unions, if it hasbounded degree, bounded treewidth or excludes
a minor, it has the homomorphism preservation property. An open question posed in [4] was whether the
same could be proved in the case whereC hasbounded local treewidth. We will not define this notion
formally here but only note that any class of bounded local treewidth also locally excludes minors. Thus, by
establishing the homomorphism preservation property for classes that locally exclude minors, we settle the
open question.

3 Quasi-Wide Classes of Structures

By Theorem 5, the homomorphism preservation property holdsfor classes of structures which are almost
wide and closed under taking substructures and homomorphisms. Unfortunately, knowing that a classC has
bounded expansion or that it locally excludes minors is not sufficient to establish that it is almost wide. Our
aim in this section is to show that the condition of almost wideness can be relaxed to a weaker condition that
is satisfied by the classes we consider. We proceed to define this condition.

Definition 6. Let f : � → � be a function. A class of finiteσ-structuresC is quasi-wide with marginf if
for every r and m there exists an N such that every structureA with at least N elements inC contains a set
B with at most f(r) elements such thatG(A)[A \ B] contains an r-scattered set of size m.

We say thatC is quasi-wideif there is some f such thatC is quasi-wide with margin f .
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In other words, unlike in the definition of almost wide classes, the number of elements we need to
remove to guarantee a large scattered set in a large enough structureA can be allowed to depend on the
radiusr of the neighbourhoods we consider.

Theorem 5 is obtained from the following lemma proved by Ajtai and Gurevich [2] and the observation
that the only constructions used in the proof involve takingsubstructures and disjoint unions. We sketch an
outline of the proof later.

Lemma 7 (Ajtai-Gurevich). For any sentenceϕ that is preserved under homomorphisms and any k∈ �,
there are r,m ∈ � such that ifA is a minimal model ofϕ and B⊆ A is a set of its elements with|B| ≤ k, then
G(A)[A \ B] does not contain an r-scattered set of size m.

Our aim here is to show that in the proof of Lemma 7, the value ofr can be chosen independently of
the value ofk. This will immediately allow us to extend Theorem 5 to quasi-wide classes of structures. We
proceed with an outline of the proof of Ajtai and Gurevich.

The first step in the proof is to prove it for the case whenk = 0. Then, the general case is reduced to this
special case. So, supposeϕ is a sentence of quantifier rankq that is preserved under homomorphisms. Let
Σ = {ϕ1, . . . , ϕs} be a collection of basic local sentences (obtained by Theorem 2) such thatϕ is equivalent
to a Boolean combination of them. For eachi, let ti be the radius of locality,ni the width andψi(x) the local
condition ofϕi. Also let t = maxi ti andn = maxi ni . We taker = 2t andm = 2s

+ 1. For eachi, we write
θi(y) for the following formula

∃x
(
δ(x, y) ≤ ti ∧ ψ

Nti (x)
i (x)

)
.

Suppose then thatA is a model ofϕ that contains anr-scattered set of sizem. We wish to show that
A cannot be minimal. Suppose thatC = {c1, . . . , cm} is the r-scattered set. Then, by definitionNAr (ci) ∩
NAr (c j ) = ∅ for i , j. Furthermore, sincem > s, there arei and j with i , j such that for alll, A |= θl[ci ]
if, and only if,A |= θl[c j ]. Let B be the substructure ofA obtained by removing some tuple that includes
ci from some relationR of A (if there is no such relation, then we can get a model ofϕ by removing the
elementci , showing thatA is not minimal in any case). Finally, we takeBn to be the structure that is the
disjoint union ofn copies ofB andAn to be the structure that is the disjoint union ofA andBn. Ajtai and
Gurevich prove that the structuresAn andBn must agree on the sentenceϕ. Sinceϕ is preserved under
homomorphisms, and there are homomorphisms fromA to An and fromBn to B, it follows that if A is a
model ofϕ so isB. Thus, sinceB is a substructure ofA, the latter is not a minimal model ofϕ.

Note that, ifC is a class of structures that is closed under substructures and disjoint unions then, when-
ever it containsA, it also containsB, Bn andAn. Thus the above argument showing thatA is not minimal
works in restriction to such a class. Note further that in theabove argument establishing Lemma 7 fork = 0,
the values ofr andmdepend onϕ, but r can be bounded above by 2· 7q whereq is the quantifier rank ofϕ,
independently of the signatureσ. A similar upper bound form is not obtained as this depends on the number
of inequivalent basic local sentences of a given quantifier rank and locality radius that can be expressed and
this, in turn, depends on the signature.

The proof of Lemma 7 by Ajtai and Gurevich then proceeds to reduce the casek > 0 to the casek = 0
by means of the construction of what they callplebian companions. That is, for every structureA and a
tuple of elementsa = (a1, . . . , ak) from A we define a structurepAa called theplebian companionof A.
This is a structure over a richer vocabulary thanA and has the property thatG(pAa) � G(A)[A \ a]. In
particular,pAa contains anr-scattered set ofm elements if, and only if, removing the elementsa1, . . . , ak

from A creates such a set. Furthermore, Ajtai and Gurevich give a translation that takes a formulaϕ in the
signatureτ of A to a formulaϕ̂ in the signatureτ′ of pAa so thatA |= ϕ if, and only if, pAa |= ϕ̂ andϕ̂ is
preserved under homomorphisms ifϕ is. This then allows us to deduce Lemma 7 since ifA is a model ofϕ
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andB = {a1, . . . , ak} a set of elements such thatG(A)[A \ B] contains anr-scattered set ofm elements, we
can note (from the casek = 0) that pAa is not a minimal model of̂ϕ. Moreover, from a submodel of the
latter we can reconstruct a proper substructure ofA that is a model ofϕ establishing thatA is not minimal.

Our aim here is to observe that in the translation ofϕ to ϕ̂ while the signature of̂ϕ depends on the value
of k, the quantifier rank is actually the same as that ofϕ. To this end, we give the translation in detail.

Fix a structureA in a relational signatureτ and a tuple of elementsa1, . . . , ak from A. The signature
τ′ contains all the relation symbols inτ. In addition, for each relation symbolR of arity r in τ and each
non-empty partial functionm : {1, . . . , r} ⇀ {a1, . . . , ak}, τ′ contains a new relation symbolRm whose arity
is r − j where j is the number of elements of{1, . . . , r} on whichm is defined. In particular, ifm is total,
r = j andRm is then a 0-ary relation symbol. That is to say, it is a Booleansymbol that is interpreted as
either true or false in anyτ′-structure.

The universe ofpAa is obtained from that ofA by excluding the elementsa1, . . . , ak. For each relation
symbolR in τ, the interpretation ofR in pAa is the restriction ofRA to the universe ofpAa. To define the
interpretation ofRm, let b be anr − j tuple of elements frompAa. Let b′ be ther-tuple of elements ofA
obtained fromb by inserting in positioni the elementm(i). We say thatb ∈ RpAa

m if, and only if, b′ ∈ RA. In
the special case thatRm is 0-ary, we say that it is interpreted as true if, and only if,the unique empty tuple is
in Rm by the above rule.

To describe the translation ofϕ to ϕ̂, we consider an expansion of the signatureτ with constants for
the elementsa1, . . . , ak (we do not distinguish between the elements and the constants that name them).
Note that these constants appear neither inϕ nor in ϕ̂ but they are useful in the inductive definition of the
translation. So we proceed to define the translation by induction on the structure of a formulaϕ in the
expanded signature.

• If ϕ is the atomic formulaRt and the tuple of termst does not contain any of the constantsa1, . . . , ak,
thenϕ̂ := ϕ.

• If ϕ is the atomic formulaRt andt contains constants froma1, . . . , ak, let mbe the partial function that
takesi to the constant appearing in positioni of t. Also, let t′ be the tuple of variables obtained from
t by removing the constants. Then̂ϕ := Rmt′.

• If ϕ is ¬ψ, thenϕ̂ := ¬ψ̂ and ifϕ is ψ1 ∧ ψ2 thenϕ̂ := ψ̂1 ∧ ψ̂2.

• If ϕ is ∃xψ thenϕ̂ := ∃xψ̂ ∨
∨k

i=1
̂ψ[x/ai ].

It is clear from this translation that, while the signature of ϕ̂ depends on the value ofk, its quantifier
rank is the same as the quantifier rank ofϕ. Combining this with the fact that in the proof of Lemma 7 for
the casek = 0, we could bound the value ofr by 2 · 7q independently of the signature ofϕ, gives us the
following strengthening of Lemma 7.

Lemma 8. For any sentenceϕ of quantifier rank q that is preserved under homomorphisms and any k∈ �,
there is an m∈ � such that ifA is a minimal model ofϕ and B⊆ A is a set of its elements with|B| ≤ k, then
G(A)[A \ B] does not contain a2 · 7q-scattered set of size m.

Since, by the observation in [4], this holds relativised to any class of structuresC closed under substruc-
tures and disjoint unions, we obtain the following theorem.

Theorem 9. Any classC of structures that is quasi-wide and closed under substructures and disjoint unions
has the homomorphism preservation property.
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Proof. Let f : � → � be such thatC is quasi-wide with marginf . Let ϕ be a sentence that is preserved
under homomorphisms onC. By Lemma 1 it suffices to prove that there is anN such that no minimal model
of ϕ in C has more thanN elements.

Write q for the quantifier rank ofϕ, let r := 2·7q and letk := f (r). Lemma 8 then gives us anmsuch that
in any minimal model ofϕ the removal ofk elements cannot create anr-scattered set of sizem. However,
Definition 6 ensures that there is anN such that any structure inC with more thanN elements containsk
elements whose removal creates just such a scattered set. Weconclude that no minimal model ofϕ contains
more thanN elements. �

4 Bounded Expansion and Locally Excluded Minors

Our aim in this section is to show that classes of graphs that locally exclude minors or that have bounded
expansion are quasi-wide. The proof of this is an adaptationof the proof from [4] that classes of structures
that exclude a minor are almost wide. To be precise, it is shown there that the following holds.

Theorem 10([4]). For any k, r,m ∈ � there is an N∈ � such that ifG = (V,E) is a graph with more than
N vertices then

1. eitherK k � G; or

2. there is a set B⊆ V with |B| ≤ k− 2 such thatG[V \ B] contains an r-scattered set of size m.

The proof of Theorem 10 is a Ramsey-theoretic argument that proceeds by starting with a set ofS ⊆ V
with N elements and constructing two sequences of sets:S =: S0 ⊇ S1 ⊇ · · · ⊇ Sr and∅ =: B0 ⊆ B1 ⊆

· · · ⊆ Br such that for eachx, y ∈ Si we haveNG[V\Bi ]
i (x)∩NG[V\Bi ]

i (y) = ∅. If K k 6� G then we can carry the
construction through forr stages and|Sr | ≥ m and|Br | ≤ k − 2. If the construction fails at some stagei ≤ r,
it is because we have found thatK k is a minor ofG and this can happen in one of three ways.

• We find that there ares1, . . . , sk ∈ Si such that for each 1≤ j < l ≤ k, there is an edge between some
vertex inNG[V\Bi ]

i (sj) andNG[V\Bi ]
i (sl). In this case, we can take the collection of setsNG[V\Bi ]

i (sj) for
1 ≤ j ≤ k as branch sets.

• We find that there ares1, . . . , sk ∈ Si such that there are distinct verticesx jl for each 1≤ j < l ≤ k,
where eachx jl is a neighbour to some vertex inNG[V\Bi ]

i (sj) and to some vertex inNG[V\Bi ]
i (sl). In this

case, we find thatK k is a minor ofG by taking as branch setsNG[V\Bi ]
i (sj)∪ {x jl | j < l} for 1 ≤ j ≤ k.

• We find s1, . . . , sk−1 ∈ Si and verticesx1, . . . , xk−1 such thatx j has edges connecting it to each of the
setsNG[V\Bi ]

i (sj). Thus,K k is found as a minor ofG by taking as branch sets:NG[V\Bi ]
i (sj) ∪ {x j} for

1 ≤ j ≤ k− 2 along withNG[V\Bi ]
i (sk−1) and{xk−1}.

The point of this brief recapitulation of the proof is to notethat whenK k is found as a minor ofG in
case (1) of the theorem, the branch sets have radius at mostr + 1. Thus, we actually obtains the following
stronger theorem.

Theorem 11. For any k, r,m ∈ � there is an N∈ � such that ifG = (V,E) is a graph with more than N
vertices then

1. eitherK k �r+1 G; or

9



2. there is a set B⊆ V with |B| ≤ k− 2 such thatG[V \ B] contains an r-scattered set of size m.

We writeN(k, r,m) for the value ofN obtained from Theorem 11 for givenk, r andm.
The following result now follows immediately.

Theorem 12. Any class of graphs of bounded expansion is quasi-wide.

Proof. Suppose thatC is a class of graphs of bounded expansion and letf be a function such that for any
graphG in C, ∇r (G) ≤ f (r). Let k(r) := 2 f (r + 1)+ 2. Note that

|EK k(r) |

|VK k(r) |
=

k(r) − 1
2

> f (r + 1)

and therefore, by the definition of bounded expansion,K k(r) 6�r+1 G for any graphG in C. Thus, by
Theorem 11, ifG has more thanN(k(r), r,m) vertices, it contains a setB with at mostk(r) − 2 vertices such
thatG[VG \ B] contains anr-scattered set of sizem. Thus,C is quasi-wide with margink(r) − 2. �

We now consider the case of classes with locally excluded minors. It is useful to first derive a straight-
forward corollary to Theorem 11.

Corollary 13. If G = (V,E) is a graph with more than N(k, r,m) vertices then

1. either there is a v∈ V such thatK k � NG
3r+4(v); or

2. there is a set B⊆ V with |B| ≤ k− 2 such thatG[V \ B] contains an r-scattered set of size m.

Proof. Suppose condition (2) fails. Then, by Theorem 11, we haveK k �r+1 G. Let H1, . . . ,Hk be the
branch sets that witness this and letv1, . . . , vk be vertices such thatH i ⊆ NG

r+1(vi). Then, for anyj and any
vertexu in H j there is a path of length at most 3r + 4 from vi to u. This is because there is an edge between
some vertexw in H i and a vertexw′ in H j. Moreover, there is a path of length at mostr + 1 fromvi to w and
sinceu,w′ ∈ NG

r+1(v j), there is a path of length at most 2r + 2 from w′ to u. Thus,
⋃k

j=1 H j ⊆ NG
3r+4(vi) and

henceK k � NG
3r+4(vi). �

Theorem 14. Any class of graphs that locally excludes minors is quasi-wide.

Proof. SupposeC is a class of graphs that locally excludes minors. In particular, let f be a function such
that for anyr, K f (r) 6� NG

r (v) for any graphG in C and any vertexv of G.
Now, for any r, let k(r) := f (3r + 4). By definition, for any graphG in C and any vertexv of G,

Kk(r) 6� NG
3r+4(v). Thus, by Corollary 13, ifG has more thanN(k(r), r,m) vertices, it contains a setB with at

mostk(r) − 2 vertices such thatG[VG \ B] contains anr-scattered set of sizem. Thus,C is quasi-wide with
margink(r) − 2. �

We can now state the main results of the paper.

Theorem 15. Any classC of finite structures that has bounded expansion and is closedunder taking sub-
structures and disjoint unions has the homomorphism preservation property.

Proof. Immediate from Theorem 9 and Theorem 12. �

Theorem 16. Any classC of finite structures that locally excludes minors and is closed under taking sub-
structures and disjoint unions has the homomorphism preservation property.

Proof. Immediate from Theorem 14 and Theorem 12. �
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5 Failure of Preservation

In this section we give an example of a class of structuresS which is closed under substructures and disjoint
unions but does not have the homomorphism preservation property.

The classS is over a signatureτ with two binary relationsO andS and one unary relationP. For any
n ∈ �, let Ln be theτ-structure over the universe{1, . . . , n} in whichO is interpreted as the usual linear order,
i.e. O(i, j) just in casei < j; S is the successor relation:S(i, j) just in casej = i + 1; andP is interpreted
by the set{1, n} containing the two endpoints. LetL be the class of structures isomorphic toLn for somen.
ThenS is the closure ofL under substructures and disjoint unions. Note that every structureA in S is the
disjoint union of a collectionA1, . . . ,As of structures, each of which is a substructure of someLn.

We begin with some observations about structures inS.

Lemma 17. If A is a structure such thatA ⊆ Lm for some m and there is a homomorphism h: Ln → A for
some n≥ 2, then Ln � A.

Proof. Note that, by definition of the structuresLm, if O(a, b) for two elementsa, b of A thena , b. Since
Ln contains two elements 1, n in the setP with O(1, n) we conclude thatA contains both endpoints ofLm and
they are both in the setPA. Furthermore,Ln contains anS-path from 1 ton. The image of this path under
h must be anS-path between the end points ofLm and we conclude thatm = n andh is the identity map.
Finally, suppose that for somei, j in Lm with i < j, the pair (i, j) is not inOA. But then, since (i, j) ∈ OLn

andh is the identity,h is not a homomorphism. We conclude thatA � Ln. �

Say that a structureA ∈ S contains a complete orderif there is somen ≥ 2 such thatLn ⊆ A.

Lemma 18. If A and B in S are such thatA contains a complete order and there is a homomorphism
h : A→ B, thenB contains a complete order.

Proof. SupposeLn ⊆ A andB = B1 ⊕ · · · ⊕ Bs where for eachi, Bi ⊆ Lm for somem. Since theBi are
pairwise disjoint andLn is connected there is somei such thath(Ln) ⊆ Bi. But then, by Lemma 17,Bi � Ln

and soB contains a complete order. �

Our aim now is to construct a first-order sentence that definesthose structures inS that contain a com-
plete order.

We write x ≤ y as an abbreviation for the formulaO(x, y) ∨ x = y. Let β(x, y, z) denote the formula
x ≤ z∧ z ≤ y and letλ(x, y) denote the formula that asserts thatO(x, y) and that≤ linearly orders the set of
elements{z | x ≤ zandz≤ y}. That is,λ(x, y) is the formula:

O(x, y) ∧ ∀z1∀z2(β(x, y, z1) ∧ β(x, y, z2))→ (z1 ≤ z2 ∨ z2 ≤ z1).

Let ν(z1, z2) denote the formulaO(z1, z2)∧ ∀w¬(O(z1,w) ∧O(w, z2)). In words,ν(z1, z2) defines the pairs of
elements in the relationO with nothing in between them. We are now ready to define the sentenceϕ:

∃x∃y(P(x)∧P(y) ∧ λ(x, y)∧
∧∀z2∀z2(β(x, y, z1) ∧ β(x, y, z2) ∧ ν(z1, z2))→ S(z1, z2)).

That is,ϕ asserts that there exist two elementsx andy in the relationP such that the set{z | x ≤ zandz≤ y}
is linearly ordered byO and any two successive elements in that linear order are related byS.

Lemma 19. For anyA in S, A |= ϕ if, and only if,A contains a complete order.
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Proof. It is clear that ifLn ⊆ A, thenA |= ϕ with the endpoints ofLn being witnesses to the outer existential
quantifiers. For the converse, suppose thatA |= ϕ anda andb are elements witnessing the outer existential
quantifiers. By the factsP(a), P(b) andO(a, b) we know that there is anAi ⊆ A and ann such thatAi ⊆ Ln

with a, b being the endpoints ofLn. The sentenceϕ then guarantees thatAi contains all elements ofLn and
all tuples in the relations. ThusAi � Ln and soA contains a complete order. �

Lemma 20. The formulaϕ is preserved under homomorphisms on the classS.

Proof. Immediate from Lemmas 18 and 19. �

Lemma 21. There is no existential positive formula equivalent toϕ onS.

Proof. By Lemma 1, it suffices to show thatϕ has infinitely many minimal models inS. But this is imme-
diate as for everyn ≥ 2, Ln is a model ofϕ but no substructure ofLn is a model ofϕ. �

It is worth remarking that the collection of Gaifman graphs of structures inS is the class of all graphs
and hence is certainly not quasi-wide.

6 Conclusions

WhenC is a class of finite structures, there are essentially two methods known for showing that it has the
homomorphism preservation property. One is the method usedby Rossman to establish the property for
the class of all finite structures, based on constructing sufficiently saturated structures. This method works
on any class closed under co-retracts. The other, quite distinct method, developed by Atserias et al., is
based on the density of minimal models and works for classes of sparse structures, i.e. classes in which any
sufficiently large structure is guaranteed not to be dense. In thepresent paper, we have pushed the latter
method further and established the homomorphism preservation property for a richer collection of classes.
None of these classes, it appears, is closed under the kind ofsaturation construction used by Rossman and
therefore those methods would not apply.
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