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Abstract

A class of structures is said to have the homomorphism-pratien property just in case every first-
order formula that is preserved by homomorphisms on thissdeequivalent to an existential-positive
formula. It is known by a result of Rossman that the class dfefiatructures has this property and
by previous work of Atserias et al. that various of its substs do. We extend the latter results by
introducing the notion of a quasi-wide class and showing dhg quasi-wide class that is closed under
taking substructures and disjoint unions has the homonsrppreservation property. We show, in
particular, that classes of structures of bounded expareial that locally exclude minors are quasi-
wide. We also construct an example of a class of finite strastwhich is closed under substructures
and disjoint unions but does not admit the homomorphisnsgrration property.

1 Introduction

Preservation theorems are model-theoretic results tilas@mantic restrictions on a logic with correspond-
ing syntactic restrictions. For instance, the Los-Tapskiservation theorem guarantees that any first-order
formula whose models are closed under extensions is eguivel an existential formula. In the early de-
velopment of finite model theory, it was noted that many ata$preservation theorems of model theory
fail when we are only interested in finite structures (5eé)[Ilhe Los-Tarski theorem is an example of one
such—it was noted by Tait [16] that there are formulas of-farster logic whosdinite models are closed
under extension but that are not equivalent, even in réstmito finite structures, to an existential formula.
Similarly, Ajtai and Gurevich[[1] established that Lyndsrtheorem—which implies that any formula that
is monotone on all structures is equivalent to one that itipes-also fails in the finite. One example
of a preservation theorem whose status in the finite remaiped for many years is the homomorphism
preservation theorem. This states that a first-order famiose models are closed under homomorphisms
is equivalent to an existential-positive formula. Rossmeently proved [13] that this holds, even when we
restrict ourselves to finite structures.

A recent trend in finite model theory has sought to examine @htigkoretic questions, such as the
preservation properties, not just on the class of all firtitecsures but on subclasses that are of interest from
the algorithmic point of view (se&|[5] for an overview of résun this direction). Thus, prior to Rossman’s
result, Atserias et al._[4] proved that the homomorphisns@mneation theorem holds in any class of structures
C of bounded treewidthwhich is closed under substructures and disjoint union@reMyenerally, they
showed that homomorphism preservation holdCgorovided that theGaifman graphof structures irC
exclude some minor and is closed under substructures and disjoint unions. Notetllege results are not
implied by Rossman’s theorem. Indeed, if we consider twesdaC C C’, we cannot conclude anything
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about whether or not homomorphism preservation holdg &om the fact that it holds o6”’. An example
of a class of finite structures on which homomorphism presanm fails is discussed in Sectibh 5.

An open question that was posed [in [4] was whether the reBolts that paper could be extended to
other classes, in particular by replacing the requiremieatt@ exclude a minor by the requirement th@t
havebounded local treewidtlas defined in[[9, 10]. This restriction is incomparable witla tequirement
thatC excludes a minor, in the sense that there are classes wittchimded minor that do not have bounded
local treewidth and vice versa. However, there is a commarergdisation of the two in the notion of
locally excluded minorstroduced by Dawar et al. [6]. In this paper, we answer thenaguestion front [4]
by showing that any class of finite structures that locally excludes a minor and is etbsinder taking
substructures and disjoint unions satisfies the homom&rphreservation property. We also establish this
for classes obounded expansigms defined by NeSetfil and Ossona de Mendez [14].

The proof given in[[4] that classes of structures that exeldhinor satisfy homomorphism preservation
was composed of two elements. First, a result derived froemaria by Ajtai and Gureviclh [2] that showed
a certain density property for minimal models of a formyldhat is preserved under homomorphisms.
This implies that if a clasg satisfies the condition of beinglmost wide(this is defined in Sectiohl 2
below) and is closed under substructures and disjoint gnitnenC satisfies homomorphism preservation.
Secondly, we showed, using a combinatorial constructiomf{12] that any class that excludes some graph
as a minor is almost wide. In order to extend these resultdasses that locally exclude a minor and
classes of bounded expansion, we first define a relaxatidmedadlmost wideness condition to one we term
guasi-widenessWe show that the Ajtai-Gurevich lemma can be adapted to shatany clas€ which is
qguasi-wide and closed under substructures and disjoimtnsralso satisfies homomorphism preservation.
This is established in Sectidh 3. Then, an extension of thebamatorial argument froni [4] establishes that
classes of bounded expansion and classes that locallydexalminor arguasi-wide These arguments are
presented in Sectidn 4.

The steady recurrence of the requirement ¢t closed under substructures and disjoint unions arises
from the fact that these are the constructions used in thsitgegrgument of Ajtai and Gurevich. A nat-
ural question that arises is whether these conditions alught be stficient to guarantee homomorphism
preservation. However, this is not the case, as we estahlisiigh a counter-example constructed in Sec-
tion[5.

The results presented here were announced (without proaf) invited lecture [5]. Since then, NeSetfil
and Ossona de Mendez have extended the combinatorial angfnme Sectiori ¥4 and provided an elegant
characterisation of quasi-wide classes that are closeersubstructures [15].

Acknowledgements: The results reported here were obtained during a visit madeambridge by
Guillaume Malod in the summer of 2007. | am grateful to himgbmulating discussions and for his help
with the material. | am also grateful to Jarik NeSetfil fis repeated encouragement to write this paper ever
since | told him the results.

2 Preliminaries
This section contains the definitions of some basic notiorssaminimum amount of background material.

2.1 Relational Structures

A relational vocabularyo is a finite set ofrelation symbolseach with a specifiedrity. A o-structure A
consists of ainiverse Aor domain and aninterpretationwhich associates to each relation symBot o



of some arityr, a relationR* C A". A graphis a structureG = (V, E), whereE is a binary relation that is
symmetric and irreflexive. Thus, our graphs are undiredtaghless, and without parallel edges.

A o-structureB is called asubstructureof A (and we writeB C A) if B € A andR® c R* for every
R e o. Itis called aninduced substructurd R® = R* n B' for everyR € o of arity r. Note that this
terminology is at variance with common usage in model thedngre the term “substructure” is used for
what we call an “induced substructure”. However, it is maravenient for us as, for the purpose of studying
properties preserved under homomorphisms, we are moresteée in substructures that are not necessarily
induced. Note also the analogy with the conceptsutfgraphandinduced subgrapifrom graph theory. A
substructuréd of A is proper ifA # B.

A homomorphisnirom A to B is a mappind : A — B from the universe oA to the universe oB that
preserves the relations, that isd@/(...,a;) € R*, then f(a1), ..., h(a)) € R®. We say that two structures
A andB arehomomorphically equivalent there is a homomorphism fromA to B and a homomorphism
from B to A. Note that, ifA is a substructure @8, then the injection mapping is a homomorphism frém
to B. If the homomorphisnh is bijective and its inverse is a homomorphism frmo A then A andB are
isomorphic and we writé\ = B.

For a pair of structured. andB, we write A @ B for the disjoint unionof A andB. That is,A & B is
the structure whose universe is the disjoint unio\@ndB and where, for any relation symbBland any
tuple of elements, we havet € R“®® just in case eithere R* ort € RE,

The Gaifman graphof a o-structureA, denoted byG(A), is the (undirected) graph whose set of nodes
is the universe of\, and whose set of edges consists of all pars/() of distinct elements of such thata
anda’ appear together in some tuple of a relatiomin

Let G = (V,E) be a graph. Moreover, lat € V be a vertex and ledl > 0 be an integer. The
neighborhoodof u in G, denoted b)Ng(u), is defined inductively as follows:

1. N$(u) = {u};
2. N&

G (W) =NPU) U{veV: (v,w) € E for somew e N®(u)}.

Where this causes no confusion, we also WKf&(u) for the subgraph o6 induced by this set of vertices.
For a structured and an elemerd in its universe, we writé\/*(a) for the substructure of induced by the
setN®(a).

2.2 Logic

Let o be a relational vocabulary. Thretomic formulasof o are those of the forniR(xy,..., %), where
R € o is a relation symbol of arity, andx, ..., X are first-order variables that are not necessarily distinct
Formulas of the formx = y are also atomic formulas, and we refer to themegsalities The collection
of first-order formulass obtained by closing the atomic formulas under negationjunction, disjunction,
universal and existential first-order quantification. Thenantics of first-order logic is standard. Afis a
o-structure ang is a first-order formula, we use the notatiér= ¢[a] to denote the fact that is true inA
when its free variables are interpreted by the tuple of efggee Wheng is a sentence (i.e. contains no free
variables), we simply writé\ = ¢. The collection okexistential-positivdirst-order formulas is obtained by
closing the atomic formulas under conjunction, disjunttiand existential quantification. By substituting
variables, it is easy to see that equalities can be elindnfaten existential-positive formulas.

We say that a first-order formula is preserved under homomorphisifiswheneverA E ¢[a] and
h: A — Bis a homomorphism fromi to B thenB E ¢[h(a)]. It is an easy exercise to show that any



existential positive first-order formula is preserved unlggmomorphisms. The homomorphism preserva-
tion theorem provides a kind of converse to this statemestryefirst-order formula that is preserved under
homomorphisms is logically equivalent to an existentiaifpee formula.

We are interested in versions of homomorphism preservatiorestricted classes of structuresClfs
a class of structures, we say that a formuls preserved under homomorphisms @nf wheneverA and
B are structures i, A E ¢[al andh : A — Bis a homomorphism from to B thenB E ¢[h(a)]. We say
that two formulasy andy areequivalent orC if every structureA in C verifiesA E (¢ < ). We say that
C has thehomomorphism preservation propeityevery formulay that is preserved under homomorphisms
on(C is equivalent orC to an existential positive formula. By a theorem of Rossrid], [the class of finite
structures has the homomorphism preservation property.

For a sentence preserved under homomorphisms on a class of structiirege say thatA € C is a
minimal modebf ¢ in C if A | ¢ and for every substructui® C A such tha € C, B }£ ¢. The following
lemma is established by an easy argument sketchéd in [4].

Lemma 1. LetC be a class of finite structures closed under taking subsirastand letp be a sentence
that is preserved under homomorphisms®iThen the following are equivalent:

1. ¢ has finitely many minimal models ¢h
2. p is equivalent orC to an existential-positive sentence.

The main consequence of this lemma is that in order to estatiiatC has the homomorphism preser-
vation property, it stiices to establish an upper bound on the size of the minimal isotie be precise, we
aim to prove that for any there is arlN such that no minimal model @f is larger than\.

The quantifier rank of a first-order formudais just the maximal depth of nesting of quantifiersgin
For every integer > 0, letd(x,y) < r denote the first-order formula expressing that the distheteeenx
andy in the Gaifman graph is at most Let (X, y) > r denote the negation of this formula. Note that the
guantifier rank ob(x,y) < r is bounded by. A basic local sentences a sentence of the form

B Ixa| N\ 60 x5) > 2 &\ g, ()

i#] i

wherey is a first-order formula with one free variable. Hepd"%)(x;) stands for the relativization aof to
N:(x); that is, the subformulas @f of the form3xg are replaced b¥x(6(x, ;) < r A6), and the subformulas
of the formVx@ are replaced by x(6(x, %) < r — 6). Thelocality radiusof a basic local sentenceris Its
widthis n. The formulay is called thdocal condition

The main value of basic local sentences is that they form lalibgi block for first-order logic. This
follows from Gaifman’s Theorem (for a proof, see, for exaep8, Theorem 2.5.1]), which states that every
first-order sentence is equivalent to a Boolean combinatidiasic local sentences. We will need a refined
version of this, which takes account of quantifier rank. Tdlltving statement follows immediately from
the proof given in[[3].

Theorem 2 (Gaifman) Every first-order sentencg of quantifier rank at most g is equivalent to a Boolean
combination of basic local sentences of locality radius astidd.

Note, in particular, that the upper bound on the localityuadloes not depend on the signatuate



2.3 Graphs

We are interested in classes of finite structuCedefined by a graph-theoretic restriction on their Gaifman
graphs. In order to define these restrictions, we introdoogesgraph theoretic concepts. For further details
on graph minors, the reader is referred[to [7]. For a gi@plve often writeV® for the set of its vertices
andEC for the set of its edges. Férc VC, we write G[A] to denote the subgraph & induced by the set
of verticesA.

We say that a grap® is aminor of H (written G < H) if G can be obtained from a subgraphtbtby
contracting edges. The contraction of an edge&)(consists in replacing its two endpoints with a new vertex
wwhose neighbours are all nodes that were neighbours of eithiev. An equivalent characterization (see
[7]) states thaG is a minor ofH if there is a map that associates to each verieiG a non-emptyconnected
subgraphH, of H such thatH, andH, are disjoint foru # v and if there is an edge betwearandv in G
then there is an edge iH between some node i, and some node ikl,. The subgraphsl, are called
branch sets

We say that a class of finite graphsexcludesG as a minorif, for everyH in C, G £ H. We say that
C excludes a minoif there is some grapls such thaiC excludesG as a minor. Note that i is a graph
onn vertices and ,, is the clique om vertices, therG < K. Thus, ifC excludes a minor, then there is an
n such thatC excludeK as a minor. Among classes of graphs that exclude a minor argdhs of planar
graphs, or more generally, the class of graphs embeddablariy given fixed surface.

The notion of graph classes with locally excluded minorsitsoduced in[[6]. We say that a clags
locally excludes minor# there is a functionf : N — IN such that for eacks in C and each vertex in G,
Ktry) £ NE(v). That is, for every, the class of graphs;, formed fromC by taking the neighbourhoods of
radiusr around all vertices of graphs @\ excludes a minor.

Finally, we define classes of bounded expansion, as intemthg NeSetfil and Ossona de MendeZ [14].
Suppose a grapB is a minor ofH as witnessed by the collection of branch déts | v € VC}. We say that
G is aminor at depth rof H (and writeG <, H) if each of these branch sets is contained in a neighbourhood
of H of radiusr. That is, for eaclv € V©, there is av € VM such thatH, ¢ NH(w). For any graptH, the
greatest reduced average dendity grad) of radius rof H, written V,(H) is defined as

Vi(H) = max{B

| G <y H}.
In other words,V;(H) is half the maximum average degree that occurs among mafdisof depthr. In
particular, ifd(G) denotes the average degreexfthenVy(H) = max{%d(G) | G C H}.

A class of graphg is said to be obounded expansioif there is a functionf : N — N such that
for every graphG in C, V,(G) < f(r). It is known that for evenyn, any graph with average degreenf0
containskK , as a minor (see [7, Theorem 7.2.1]. It follows immediatebt ihC excludesK, as a minor, it
has bounded expansion. Indeed, the constant funéign= 10n witnesses this.

Any classC that excludes a minor both has bounded expansion and laatlydes minors. However,
the lat two restrictions are known to be incomparable in #rse that there are clasgethat locally exclude
minors but are not of bounded expansion and vice versal(heé\[tother condition on a clags, considered
in [4] is that it hasbounded degreeThat is to say that there is a constarguch that every vertex in every
graph inC has degree at most This restriction is incomparable with the requirement thaxcludes a
minor but again, it is immediate that any class of boundedatedoth locally excludes minors and has
bounded expansion. See [5] for a map of these various condiind implications between them.



2.4 Homomorphism Preservation Theorems

In [4], the homomorphism preservation property is establisfor a number of classes of structures, based
on certain combinatorial properties that were callede andalmost widen [3]. In the following, when we
talk of a class of finite structures satisfying a graph-theoretic restriction, such as exagdi minor, we
mean that the collection of Gaifman gragh&) of structuresA in C satisfies the condition.

Definition 3. A set of elements B in @-structureA is r-scatteredf for every pair of distinct ab € B we
have N(a) N N2 (b) = 0.

We say that a class of finite-structuresC is wide if for every r and m there exists an N such that every
structure inC of size at least N contains an r-scattered set of size m.

It is easy to see that @& has bounded degree, then it is wide.

Definition 4. A class of finiter-structuresC is almost wide with margirk if for every r and m there exists
an N such that every structure with at least N elements i@l contains a set B with at most k elements such
that G(A)[A\ B] contains an r-scattered set of size m.

We say thaC is almost wideif there is some k such that it is almost wide with margin k.

An example is the class of acyclic graphs, which is not wideNa have arbitrarily large trees where the
distance between any two vertices is 2) but is almost widke miérgin 1. More generally, it is shown inl [4]
that if C excludeK , as a minor, the® is almost wide with margim — 2.

A theorem of[4] shows that almost wideness, along with soataral closure properties of a classs
suficient to guarantee the homomorphism preservation praperty

Theorem 5([4]). Any clas<C of finiteo-structures that is almost wide and is closed under takirgssuc-
tures and disjoint unions of structures has the homomormphiseservation property.

This is proved using a lemma of Ajtai and Gurevich which wdeenin Sectiorl 8. Thus, as long s
is closed under substructures and disjoint unions, if ith@mesded degree, bounded treewidth or excludes
a minor, it has the homomorphism preservation property. penoquestion posed ihl[4] was whether the
same could be proved in the case whérbasbounded local treewidth We will not define this notion
formally here but only note that any class of bounded loegviidth also locally excludes minors. Thus, by
establishing the homomorphism preservation property lsses that locally exclude minors, we settle the
open guestion.

3 Quasi-Wide Classes of Structures

By Theoren b, the homomorphism preservation property himidslasses of structures which are almost
wide and closed under taking substructures and homomanghignfortunately, knowing that a cla8has
bounded expansion or that it locally excludes minors is ofiicsent to establish that it is almost wide. Our
aim in this section is to show that the condition of almostewiess can be relaxed to a weaker condition that
is satisfied by the classes we consider. We proceed to defmeaindition.

Definition 6. Let f : N — N be a function. A class of finite-structuresC is quasi-wide with margirf if
for every r and m there exists an N such that every structuvéth at least N elements i@ contains a set
B with at most {r) elements such thg(A)[A \ B] contains an r-scattered set of size m.

We say thaC is quasi-widef there is some f such thatis quasi-wide with margin f.



In other words, unlike in the definition of almost wide classthe number of elements we need to
remove to guarantee a large scattered set in a large enaugtust A can be allowed to depend on the
radiusr of the neighbourhoods we consider.

Theorenib is obtained from the following lemma proved by iAgiad Gurevich[[2] and the observation
that the only constructions used in the proof involve talgngstructures and disjoint unions. We sketch an
outline of the proof later.

Lemma 7 (Ajtai-Gurevich) For any sentence that is preserved under homomorphisms and aryIX,
there are rm € N such that ifA is a minimal model op and BC A is a set of its elements wilB| < k, then
G(A)[A\ B] does not contain an r-scattered set of size m.

Our aim here is to show that in the proof of Lempia 7, the value @dn be chosen independently of
the value ok. This willimmediately allow us to extend Theorém 5 to quasie classes of structures. We
proceed with an outline of the proof of Ajtai and Gurevich.

The first step in the proof is to prove it for the case wken0. Then, the general case is reduced to this
special case. So, suppogés a sentence of quantifier ragkthat is preserved under homomorphisms. Let
Y = {¢1,...,ps} be a collection of basic local sentences (obtained by The@esuch that is equivalent
to a Boolean combination of them. For eaclett; be the radius of localityp; the width andy;(X) the local
condition ofj. Also lett = max tji andn = max n;. We taker = 2t andm = 25 + 1. For each, we write
6i(y) for the following formula

XG0 Y) <t Aw ().

Suppose then that is a model ofp that contains am-scattered set of size. We wish to show that
A cannot be minimal. Suppose that= {c;,...,Cm} is ther-scattered set. Then, by definitidd*(c) N
NZ(cj) = 0 for i # j. Furthermore, sincen > s, there aré and j with i # j such that for all, A £ 6[c]
if, and only if, A | 6[c;]. Let B be the substructure df obtained by removing some tuple that includes
¢ from some relatiorR of A (if there is no such relation, then we can get a modep by removing the
elementc;, showing thatA is not minimal in any case). Finally, we tai to be the structure that is the
disjoint union ofn copies ofB and A, to be the structure that is the disjoint unionfdfandB,. Ajtai and
Gurevich prove that the structurds, and B, must agree on the sentenge Sincey is preserved under
homomorphisms, and there are homomorphisms ffoto A, and fromB,, to B, it follows that if A is a
model ofy so isB. Thus, sinceB is a substructure of, the latter is not a minimal model gf

Note that, ifC is a class of structures that is closed under substructmetsligjoint unions then, when-
ever it containg, it also contain$3, B, andA,. Thus the above argument showing thais not minimal
works in restriction to such a class. Note further that ingheve argument establishing Lemimha 7Kat O,
the values of andmdepend orp, butr can be bounded above by 29 whereq is the quantifier rank ap,
independently of the signatuse A similar upper bound fomis not obtained as this depends on the number
of inequivalent basic local sentences of a given quantiéiek and locality radius that can be expressed and
this, in turn, depends on the signature.

The proof of Lemma&l7 by Ajtai and Gurevich then proceeds taicedhe cas& > 0 to the casé& = 0
by means of the construction of what they galltbian companionsThat is, for every structuré and a
tuple of elementa = (ay, ..., a) from A we define a structur@A, called theplebian companiorof A.
This is a structure over a richer vocabulary thiarand has the property that(pAs) = G(A)[A\ a]. In
particular, pA, contains arr-scattered set ah elements if, and only if, removing the elemeats. .., ax
from A creates such a set. Furthermore, Ajtai and Gurevich givarelation that takes a formuain the
signaturer of A to a formulay in the signature’” of pA, so thatA [ ¢ if, and only if, pA; E v andy is
preserved under homomorphismsifs. This then allows us to deduce Lemiia 7 sinc& i§ a model ofp
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andB = {a,,...,a} a set of elements such th&A)[A \ B] contains arr-scattered set ah elements, we
can note (from the cade= 0) thatpA, is not a minimal model o%. Moreover, from a submodel of the
latter we can reconstruct a proper substructur& tiat is a model o establishing thah is not minimal.

Our aim here is to observe that in the translatio ¢d ¢ while the signature dp depends on the value
of k, the quantifier rank is actually the same as that.ofo this end, we give the translation in detalil.

Fix a structureA in a relational signature and a tuple of elements, ..., a from A. The signature
7/ contains all the relation symbols i In addition, for each relation symb®& of arity r in r and each
non-empty partial functiom: {1,...,r} — {a,...,a}, ¥ contains a new relation symbB},, whose arity
isr — j wherej is the number of elements ¢1,...,r} on whichm s defined. In particular, imis total,

r = j andRy is then a O-ary relation symbol. That is to say, it is a Boolsgmbol that is interpreted as
either true or false in any -structure.

The universe 0pA; is obtained from that ofA by excluding the elements, ..., ax. For each relation
symbolRin 7, the interpretation oR in pAj is the restriction oR” to the universe opA,. To define the
interpretation ofRy, letb be anr — | tuple of elements fronpA,. Letb’ be ther-tuple of elements oA
obtained fromb by inserting in position the elementn(i). We say thab € RmAa if, and only if, b’ € R®. In
the special case th&;, is 0-ary, we say that it is interpreted as true if, and onlyhi& unique empty tuple is
in Ry, by the above rule.

To describe the translation gfto p, we consider an expansion of the signatareith constants for
the elementsy, ..., a (we do not distinguish between the elements and the cossthat name them).
Note that these constants appear neithes iror in @ but they are useful in the inductive definition of the
translation. So we proceed to define the translation by immluon the structure of a formula in the
expanded signature.

¢ If ¢ is the atomic formuldrt and the tuple of termsdoes not contain any of the constaais. . ., a,
theny := ¢.

o If ¢ is the atomic formuldt andt contains constants from, .. ., a, letmbe the partial function that
takesi to the constant appearing in positioof t. Also, lett’ be the tuple of variables obtained from
t by removing the constants. Then= Rt’.

o If pis—y, theng := —y and if g is Y1 A Yo theng = Y A Yo

o If pis Axy theng := Axy v VK, y[x/a].

It is clear from this translation that, while the signatufegodepends on the value &f its quantifier
rank is the same as the quantifier rankpofCombining this with the fact that in the proof of Lemida 7 for
the case&k = 0, we could bound the value ofby 2- 79 independently of the signature of gives us the
following strengthening of Lemnid 7.

Lemma 8. For any sentence of quantifier rank g that is preserved under homomorphisnasaany ke N,
there is an nme IN such that ifA is a minimal model op and BC A is a set of its elements witB| < k, then
G(A)[A\ B] does not contain & - 79-scattered set of size m.

Since, by the observation inl[4], this holds relativisedrg alass of structureS closed under substruc-
tures and disjoint unions, we obtain the following theorem.

Theorem 9. Any clas<C of structures that is quasi-wide and closed under subatrastand disjoint unions
has the homomorphism preservation property.



Proof. Let f : N — NN be such thaC is quasi-wide with margirf. Let ¢ be a sentence that is preserved
under homomorphisms @ By Lemmd_1 it stfices to prove that there is &hsuch that no minimal model
of ¢ in C has more thaiN elements.

Write g for the quantifier rank op, letr := 2-79and letk := f(r). Lemmd3B then gives us ansuch that
in any minimal model ofp the removal ok elements cannot create esscattered set of sizm. However,
Definition[8 ensures that there is &hsuch that any structure i@ with more thanN elements containk
elements whose removal creates just such a scattered sebnglede that no minimal model gfcontains
more tharN elements. m]

4 Bounded Expansion and Locally Excluded Minors

Our aim in this section is to show that classes of graphs twallly exclude minors or that have bounded
expansion are quasi-wide. The proof of this is an adaptatidhe proof from [4] that classes of structures
that exclude a minor are almost wide. To be precise, it is shinere that the following holds.

Theorem 10([4]). For any kr,m e N there is an Ne N such that ifG = (V, E) is a graph with more than
N vertices then

1. eitherKy < G; or
2. there is a set B V with|B| < k- 2 such thatG[V \ B] contains an r-scattered set of size m.

The proof of Theorern 10 is a Ramsey-theoretic argument tiogepds by starting with a set 8fC V
with N elements and constructing two sequences of &ts: So 2 S;1 2 --- 2 Sy and0 =: Bp € By C
.- C By such that for each,y € S; we haveNC!'\Bil(x) 0 NCIV\Bl(y) = 9. If K £ G then we can carry the
construction through far stages an¢b,| > mand|B;| < k — 2. If the construction fails at some stage r,
it is because we have found thHgt is a minor ofG and this can happen in one of three ways.

¢ We find that there are, ..., & € Sj such that for each ¥ j < | <k, there is an edge between some
vertex inNC!Y'Bl(s;) andNCLY\Bl(g). In this case, we can take the collection of 9¢f8"'\®](s;) for
1< j < kas branch sets.

e We find that there are, ..., sc € Sj such that there are distinct vertices for each 1< j < | <Kk,
where eachx; is a neighbour to some vertex M’ '®1(s;) and to some vertex iN°Y'®1(s). In this
case, we find tha is a minor ofG by taking as branch set®'®l(s)) U {x; | j <} for1 < j < k.

e Wefindsy,...,s-1 € Sj and vertices«, . .., X-1 such thatx; has edges connecting it to each of the
setsNCIV'\Bl(s)). Thus,K is found as a minor o6 by taking as branch setdl°¥\Bl(s;) u {x;} for
1< j <k~ 2 along withN°'®)(s_;) and{xc1).

The point of this brief recapitulation of the proof is to nakat whenKy is found as a minor ofs in
case (1) of the theorem, the branch sets have radius atrmakt Thus, we actually obtains the following
stronger theorem.

Theorem 11. For any kr,m € N there is an Ne N such that ifG = (V, E) is a graph with more than N
vertices then

1. eitherKy <41 G; or



2. there is a set B V with|B| < k- 2 such thatG[V \ B] contains an r-scattered set of size m.

We write N(k, r, m) for the value ofN obtained from Theorein 11 for givéqr andm.
The following result now follows immediately.

Theorem 12. Any class of graphs of bounded expansion is quasi-wide.

Proof. Suppose that is a class of graphs of bounded expansion and le¢ a function such that for any
graphG in C, V,(G) < f(r). Letk(r) := 2f(r + 1) + 2. Note that

[EXk] k() -1
VKo 2

> f(r +1)

and therefore, by the definition of bounded expansiéR;) #r+1 G for any graphG in C. Thus, by
Theoreni 11, iiG has more thamN(k(r), r, m) vertices, it contains a s&with at mostk(r) — 2 vertices such
thatG[VC® \ B] contains arr-scattered set of size. Thus,C is quasi-wide with margifk(r) — 2. m|

We now consider the case of classes with locally excludedrsirt is useful to first derive a straight-
forward corollary to Theorem 11.

Corollary 13. If G = (V, E) is a graph with more than (¥, r, m) vertices then

G

1. either there is a ¢ V such thaKy < N3,

(v); or
2. there is a set B V with|B| < k — 2 such thatG[V \ B] contains an r-scattered set of size m.

Proof. Suppose condition (2) fails. Then, by TheorEm 11, we Haye<,,1 G. LetHg,..., Hy be the
branch sets that witness this andvegt. . ., vk be vertices such that; C Nﬁl(vi). Then, for anyj and any
vertexu in Hj there is a path of length at mogt 8 4 fromy; to u. This is because there is an edge between
some vertexvin H;j and a vertexv' in H;. Moreover, there is a path of length at mpst1 fromy; towand

sinceu,w’ € Nﬁl(vj), there is a path of length at mogt 2 2 fromw’ to u. Thus,U‘j<:1 Hj C N§r+4(vi) and

henceKy < N§_ ,(v). O
Theorem 14. Any class of graphs that locally excludes minors is quasiewi

Proof. SupposeC is a class of graphs that locally excludes minors. In pdeiclet f be a function such
that for anyr, K¢ £ NC(v) for any graphG in C and any vertex of G.

Now, for anyr, let k(r) := f(3r + 4). By definition, for any graplG in C and any vertex of G,
Kkry £ N§r+4(v). Thus, by Corollary 113, if5 has more thaiN(k(r), r, m) vertices, it contains a s& with at
mostk(r) — 2 vertices such thaB[V® \ B] contains arr-scattered set of siz®. Thus,C is quasi-wide with
margink(r) — 2. ]

We can now state the main results of the paper.

Theorem 15. Any classC of finite structures that has bounded expansion and is claselér taking sub-
structures and disjoint unions has the homomorphism pvagien property.

Proof. Immediate from Theorei 9 and Theoren 12. O

Theorem 16. Any classC of finite structures that locally excludes minors and is etbsinder taking sub-
structures and disjoint unions has the homomorphism pvasien property.

Proof. Immediate from Theorein 14 and Theorem 12. O
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5 Failure of Preservation

In this section we give an example of a class of struct®eshich is closed under substructures and disjoint
unions but does not have the homomorphism preservatioregyop

The classS is over a signature with two binary relation€O andS and one unary relatioR. For any
n € N, letL, be ther-structure over the universg, ..., n} in whichO s interpreted as the usual linear order,
i.e. O(i, j) just in casda < j; S is the successor relatiorB(i, j) just in casej = i + 1; andP is interpreted
by the sef{1, n} containing the two endpoints. L&t be the class of structures isomorphidipfor somen.
ThenS is the closure off under substructures and disjoint unions. Note that eveugtsire A in S is the
disjoint union of a collectiord,, . .., A of structures, each of which is a substructure of stme

We begin with some observations about structuresS.in

Lemma 17. If A is a structure such thah C L, for some m and there is a homomorphismlk, — A for
some > 2, then L, = A.

Proof. Note that, by definition of the structurés,, if O(a, b) for two elements, b of A thena # b. Since
L, contains two elements f in the setP with O(1, n) we conclude thak contains both endpoints &f, and
they are both in the s&®”. Furthermorel, contains arS-path from 1 ton. The image of this path under
h must be ar5-path between the end points lgf, and we conclude thah = n andh is the identity map.
Finally, suppose that for somej in Ly, with i < j, the pair {, j) is not inO*. But then, sincei(j) € O
andh is the identity,h is not a homomorphism. We conclude that: Lp,. O

Say that a structuré& € S contains a complete ordefthere is somen > 2 such that., C A.

Lemma 18. If A andB in S are such thatA contains a complete order and there is a homomorphism
h: A — B, thenB contains a complete order.

Proof. Suppose., € A andB = B; & --- & Bs where for each, B; C Ly, for somem. Since theB; are
pairwise disjoint and.,, is connected there is somsuch thah(L,,) € B;. But then, by LemmB1B; = L,
and saB contains a complete order. m]

Our aim now is to construct a first-order sentence that defhreese structures i that contain a com-
plete order.

We write X < y as an abbreviation for the formu@(x,y) v x = y. Let 3(x,V, 2) denote the formula
X < zA z < yand letA(x y) denote the formula that asserts tl{k, y) and that< linearly orders the set of
elementqz| x < zandz < y}. That is,A(x, y) is the formula:

O(X,Y) AVUV(B(X.Y, 1) AB(X.Y, 22)) = (Z1 < 2V 2o < 7).

Letv(z, ) denote the formul®(z1, ) A YW—(O(z1, W) A O(w, 22)). In words,v(z1, o) defines the pairs of
elements in the relatio® with nothing in between them. We are now ready to define theeseay:

AXAY(P()AP(Y) A A(X Y)A
NI B(B(X Y, z1) A B(X Y, 22) A (21, Z2)) = S(z, 22)).

That is,¢ asserts that there exist two elemextndy in the relationP such that the sdz| x < zandz < y}
is linearly ordered byD and any two successive elements in that linear order aneddyS.

Lemma 19. For any A in S, A E ¢ if, and only if, A contains a complete order.
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Proof. Itis clear that ifL, C A, thenA k ¢ with the endpoints ok, being witnesses to the outer existential
guantifiers. For the converse, suppose that ¢ anda andb are elements witnessing the outer existential
quantifiers. By the fact®(a), P(b) andO(a, b) we know that there is aA; € A and am such thatA; € Ly
with a, b being the endpoints df,,. The sentence then guarantees th&{ contains all elements df, and
all tuples in the relations. Thus = L, and sQA contains a complete order. O

Lemma 20. The formulay is preserved under homomorphisms on the class
Proof. Immediate from Lemmds 18 ahd]|19. i
Lemma 21. There is no existential positive formula equivalenipton S.

Proof. By Lemmad[l, it sffices to show thap has infinitely many minimal models i§. But this is imme-
diate as for every > 2, L, is a model ofp but no substructure df, is a model ofp. m|

It is worth remarking that the collection of Gaifman graplistuctures inS is the class of all graphs
and hence is certainly not quasi-wide.

6 Conclusions

When( is a class of finite structures, there are essentially twdatst known for showing that it has the
homomorphism preservation property. One is the method hgdflossman to establish the property for
the class of all finite structures, based on constructinjcgently saturated structures. This method works
on any class closed under co-retracts. The other, quitindishethod, developed by Atserias et al., is
based on the density of minimal models and works for claskggarse structures, i.e. classes in which any
suficiently large structure is guaranteed not to be dense. lpithgent paper, we have pushed the latter
method further and established the homomorphism presamvatoperty for a richer collection of classes.
None of these classes, it appears, is closed under the kisatwfation construction used by Rossman and
therefore those methods would not apply.
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