1. A second-order Horn sentence (SO-Horn sentence, for short) is one of the form

\[Q_1 R_1 \ldots Q_p R_p (\forall x \bigwedge \bigcup C_i) \]

where, each \(Q_i \) is either \(\exists \) or \(\forall \), each \(R_i \) is a relational variable and each \(C_i \) is a Horn clause, which is defined for our purposes as a disjunction of atomic and negated atomic formulae such that it contains at most one positive occurrence of a relational variable. A sentence is said to be ESO-Horn if it is as above, and all \(Q_i \) are \(\exists \).

(a) Show that any ESO-Horn sentence in a relational signature defines a class of structures decidable in polynomial time.

(b) Show that, if \(K \) is an isomorphism-closed class of structures in a relational signature including \(< \), such that each structure in \(K \) interprets \(< \) as a linear order and

\[\{ [A]_\prec \mid A \in K \} \]

is decidable in polynomial time, then there is a ESO-Horn sentence that defines \(K \).

(c) Show that any SO-Horn sentence is equivalent to a ESO-Horn sentence.

2. The directed graph reachability problem is the problem of deciding, given a structure \((V, E, s, t)\) where \(E \) is an arbitrary binary relation on \(V \), and \(s, t \in V \), whether \((s, t) \) is in the reflexive-transitive closure of \(E \). This problem is known to be decidable in NL.

Transitive closure logic is the extension of first-order logic with an operator \(\text{tc} \) which allows us to form formulae

\[\phi \equiv [\text{tc}_{x,y} \psi](t_1, t_2) \]

where \(x \) and \(y \) are \(k \)-tuples of variables and \(t_1 \) and \(t_2 \) are \(k \)-tuples of terms, for some \(k \); and all occurrences of variables \(x \) and \(y \) in \(\psi \) are bound in \(\phi \). The semantics is given by saying, if \(a \) is an interpretation for the free variables of \(\phi \), then \(A \models \phi[a] \) just in case \((t_1^a, t_2^a) \) is in the reflexive-transitive closure of the binary relation defined by \(\psi(x, y) \) on \(A^k \).

(a) Show that any class of structures definable by a sentence \(\phi \), as above, where \(\psi \) is first-order, is decidable in NL.
(b) Show that, if K is an isomorphism-closed class of structures in a relational signature including $<$, such that each structure in K interprets $<$ as a linear order and

$$\{[A]_< \mid A \in K\}$$

is decidable in NL, then there is a sentence of transitive-closure logic that defines K.

3. For a binary relation E on a set A, define its deterministic transitive closure to be the set of pairs (a, b) for which there are $c_1, \ldots, c_n \in A$ such that $a = c_1$, $b = c_n$ and for each $i < n$, c_{i+1} is the unique element of A with $(c_i, c_{i+1}) \in E$.

Let DTC denote the logic formed by extending first-order logic with an operator dtc with syntax analogous to tc above, where $[\text{dtc}_{x,y} \psi]$ defines the deterministic transitive closure of $\psi(x,y)$.

(a) Show that every sentence of DTC defines a class of structures decidable in L.

(b) Show that, if K is an isomorphism-closed class of structures in a relational signature including $<$, such that each structure in K interprets $<$ as a linear order and

$$\{[A]_< \mid A \in K\}$$

is decidable in L, then there is a sentence of DTC that defines K.

4. Show that every sentence of PFP defines a class of structures decidable in PSPACE, and that PFP captures PSPACE on ordered structures, in the same sense as above.

5. Suppose ϕ is formula of PFP, R is a relational variable, and O is the class of structures that interpret the symbol $<$ as a linear order. Show there is a formula of PFP that is equivalent to $\exists R \phi$ on all structures in O. Use this fact to conclude that a class K of structures is definable by a sentence of the form $\exists R \phi$ (where ϕ is in PFP) if, and only if, $\{[A]_< \mid A \in K \text{ and } < \text{ is any order on } A\}$ is in PSPACE.

6. For a signature σ, a canonical labelling function for σ-structures is a function l on strings such that, if A is a finite σ-structure and $<$ an order on its universe, then $l([A]_<) = [A]_{<'}$, for some order $<'$; and if $<_1$ and $<_2$ are any orders on the universe of A, $l([A]_{<_1}) = l([A]_{<_2})$.

Show that, if there is a polynomial-time computable canonical labelling function for σ-structures, then the polynomial-time properties of σ-structures are recursively enumerable.