Mathematical Tripos Part III Finite Model Theory

Lent 2002

Exercise Sheet 1

Anuj Dawar

- 1. The first part is not an exercise in *finite* model theory, but a preservation theorem in the classical mould.
 - (a) Show that for any theory T, and sentence ϕ , ϕ is equivalent modulo T to a sentence of L^k if, and only if, for $\mathcal{A}, \mathcal{B} \models T$, with $\mathcal{A} \equiv^k \mathcal{B}, \mathcal{A} \models \phi$ if, and only if, $\mathcal{B} \models \phi$.
 - (b) Show that the collection of finite linear orders is closed under \equiv^2 , but not under \equiv^2_p for any finite p. Explain why this shows that the preservation property from part (a) fails when restricted to finite structures.
- 2. We know that the substructure preservation theorem fails on finite structures. While it is unknown whether there is a syntactic characterisation of substructure closure on finite structures, we can obtain a semantic characterisation of the universal sentences.

Say that a structure \mathcal{A} is *n*-generated if there are $a_1, \ldots, a_n \in A$ such that \mathcal{A} is the structure generated by a_1, \ldots, a_n . Show that the following are equivalent for any sentence ϕ :

- (a) ϕ is equivalent, on finite structures, to a \forall -sentence;
- (b) there is an *n* such that $\mathcal{A} \models \phi$ if, and only if, for every *n*-generated substructure \mathcal{B} of $\mathcal{A}, \mathcal{B} \models \phi$.
- 3. This exercise is aimed at illustrating the use of infinitary methods to establish some of the inexpressibility results that were proved in the lectures using Ehrenfeucht-Fraïssé games.
 - (a) Let I be the collection of axioms that states, for each n, that there are at least n distinct elements. Show that I is countably categorical. Deduce from this that there is no first-order sentence that is true in a finite structure if, and only if, it has an even number of elements.
 - (b) Let QFLO be the theory which includes *I* along with the axioms of linear order with endpoints where each element other than the minimal one has a unique predecessor and each element other that the maximal one has a unique successor. Show that this theory has a countably saturated model. Deduce that there is no first-order sentence that is true in a finite linear order if, and only if, it has an even number of elements.

- (c) Let Zs be the theory, in the language of graphs, with axioms stating that each element has exactly two neighbours and, for each n, there is no cycle of length n or less. Show that Zs has a countably saturated model. Deduce that there is no first-order sentence that is true in a finite graph if, and only if, it is connected.
- 4. Craig's Interpolation Theorem states that if ϕ is a sentence in the vocabulary σ , and ψ is a sentence in the vocabulary τ such that $\phi \to \psi$ is valid, then there is a sentence θ in the vocabulary $\sigma \cap \tau$ such that both $\phi \to \theta$ and $\theta \to \psi$ are valid.
 - (a) Deduce from Craig's interpolation theorem that if ϕ is a sentence in the vocabulary $\sigma \cup \{<\}$ which is <-invariant on linear orderings of all σ -structures, then there is a σ -sentence θ such that $\models \phi \leftrightarrow \theta$.

This fails on finite structures, as the next exercise show. Let σ be a vocabulary for Boolean algebras.

- (b) Show (using games) that there is no first-order sentence ϕ such that, for any finite Boolean algebra $\mathcal{A}, \mathcal{A} \models \phi$ if, and only if, \mathcal{A} has an even number of atoms.
- (c) Show that there is a first-order sentence ψ in the vocabulary $\sigma \cup \{<\}$, where < is new, such that, for any finite Boolean algebra \mathcal{A} and any linear order < on \mathcal{A} , $(\mathcal{A}, <) \models \psi$ if, and only if, \mathcal{A} has an even number of atoms.
- 5. The aim of this exercise is to show that there is no first-order sentence ϕ in the language $\{<, E\}$ of ordered graphs which expresses, in an order-invariant way that a graph is connected.
 - (a) Consider the graph $(\{0, \ldots, n-1\}, E)$ where E(i, j) if, and only if, $i \equiv j+2 \pmod{n}$ or $j \equiv i+2(\pmod{n})$. Show that this graph is connected if, and only if, n is odd.
 - (b) Deduce that, if there were an order-invariant ϕ defining the connected graphs, there would be a sentence in the language of order whose finite models are exactly the orders of even length.