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ABSTRACT
Adaptive learning systems aim to learn the relationship be-
tween curriculum content and students in order to optimise
a student’s learning process. One form of such a system
is content recommendation in which the system attempts
to predict the most suitable content to next present to the
student. In order to develop such a system, we must learn
reliable representations of the curriculum content and the
student. We consider this in the context of foreign language
learning and present a novel neural network architecture to
learn such representations. We also show that by incor-
porating grammatical error distributions as a feature in our
neural architecture, we can substantially improve the quality
of our representations. Different types of grammatical error
are automatically detected in essays submitted by students
to an online learning platform. We evaluate our model and
representations by predicting student scores and grammat-
ical error distributions on unseen language tasks. We also
discuss further uses for our model beyond content recom-
mendation such as inferring student knowledge components
for a given domain and optimising spacing and repetition of
content for efficient long term retention.

Keywords
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tions, grammatical errors, deep learning, student modelling

1. INTRODUCTION
Adaptive learning is a computational procedure for the
automatic selection and presentation of teaching materials
which are deemed most suitable for the user of an educa-
tional platform. In this framework, the platform user – a
student – is guided through online courseware – a cur-
riculum – in an optimal and personalised fashion. In order

to select items (tasks) for students appropriately it is neces-
sary to relate accurate machine-readable representations of
each individual task to machine-readable representations of
each student1. Such representations can be used to predict
future performance on parts of the curriculum that a student
is yet to reach (as in [20, 13, 44]). These predictions can in
turn be used to select the set of appropriate next items for
this individual – those which are not too easy and not too
hard (as in [1, 11]).

In general the adaptive learning approach has been shown
to lead to improved learning outcomes for student users of
educational platforms [17, 25, 30]. However, there remains
a question of what is the best methodology to construct
representations for students and tasks. Previous approaches
manually engineer features to construct representations [22].
These features are usually tuples of a knowledge component
(e.g. differentiation, fractions in the case of maths) and stu-
dent outcome (i.e. whether or not the student demonstrated
understanding for that knowledge component through com-
pleting the task). A task may contain multiple knowledge
components. Whilst this approach is highly interpretable,
in the domain of language learning, it is difficult to clearly
divide the tasks into knowledge components. Furthermore,
in the recently popular paradigm of deep learning, we have
seen that training representations through neural networks
have yielded state-of-the-art results in the space of image
recognition, and various natural language tasks.

Motivated by this, we propose a methodology of automati-
cally developing high quality representations of students and
tasks in a language learning context. Having reliable student
and task representations in place facilitates work on down-
stream tasks such as curriculum learning and recommender
systems for language learning.

Representations are derived from a novel neural architecture
(described in Section 4.2) and real student data collected
through the Write & Improve2 (W&I) assessment and feed-
back platform for learners of the English language. [41]. Our
representations take the form of embeddings – numeric vec-

1Note the terms ‘student’ and ‘user’ are used synonymously;
as are ‘task’ and ‘item’.
2https://writeandimprove.com

https://writeandimprove.com


tors of a certain dimensionality, densely representing com-
plex datasets. Using such a methods enables us to avoid
explicitly defining the knowledge components that make up
students and tasks (a task that presents many challenges in
the language learning domain).

Additionally, such representations enable us to draw upon
established methods from representation learning3 includ-
ing concatenating embeddings from different sources of in-
formation, learning representations of different targets (in
our case, users and tasks) and passing the resultant vectors
to multi-layered neural networks to train prediction models
for unseen data.

To develop our student representations we incorporate infor-
mation about a student’s essay submissions to W&I, score
history, and the grammatical errors made on every task – all
together an approximation of the student’s knowledge state
for language learning at any given point. Our task repre-
sentations, on other hand, incorporate the aforementioned
information for all the students who have attempted a par-
ticular task. The reason for this design choice is motivated
by the view that the appropriateness or difficulty of a task
is defined by the way students interact with the task. We
further constrain our task embeddings by training it to pre-
dict it’s respective difficulty level (beginner, intermediate
and advanced).

We evaluate the quality of our student and task representa-
tions extrinsically: 1) we use a combination of student and
task representations to predict a student’s overall score on
a given task; 2) we use the student and task representations
to predict the grammatical errors a student will make on a
given task. The first task is a conventional one in educa-
tional data mining [16]; the second tests the generalisability
of the student representations by evaluating their aptitude
for transfer learning – the application of machine models
trained on one problem onto a different but related problem
[27].

Our best-performing neural network model incorporates gram-
matical error distributions detected by ERRANT [6] as a
feature and achieves mean squared error (MSE) of 1.195 on
score prediction, an absolute value of 1.093 on a scoring scale
of 0-13. On the second task of predicting grammatical er-
rors on an unseen task, we achieve a cosine proximity score
of -0.426 (-1 being perfect alignment). These results sup-
port the signal that grammatical error distributions provide
in determine student ability.

Our main contributions are as follows:

• The introduction of a novel neural framework that can
be used to automatically learn student and task rep-
resentations for language learning without explicitly
modelling knowledge components.

• The incorporation and evaluation of automatically de-
tected grammatical error representations as a key fea-
ture in our neural network classification model to learn

3An area of research that focuses on developing representa-
tions of data for machine learning tasks.

user and task representations. When tested on an un-
seen task, our set-up yields reliable prediction of both
user-task score as well as grammar errors made by stu-
dents on tasks.

2. RELATED WORK
Our general objective is modelling the acquisition of proce-
dural knowledge [8], and we can usefully envisage this as the
successful learning of ‘knowledge components’ (KCs) for any
given educational domain [15]. Models which take knowl-
edge components into account have been shown to trace
learning more successfully than otherwise [7, 12].

Personalisation in educational technology is of wide inter-
est, since learners are known to progress at different rates
and in different styles [33, 2, 5]. Without an ontology or
other knowledge base to guide personalisation [37], we can
only represent users through their interaction with learning
items (tasks). Whereas well-known recommendation sys-
tems may have access to user ratings, reviews, click-throughs
and sales figures, our measure of success is user performance
– the score assigned to a given essay submission on the pro-
posed item – and representation quality (predicting score
and grammar errors on a task using the same representa-
tions).

Tracking users as they acquire knowledge in a learning sys-
tem is a type of knowledge tracing, and previous approaches
to knowledge tracing have ranged from item-response the-
ory [40], to Bayesian knowledge tracing [8], to deep learn-
ing [22], factorisation [39] and dynamic time warping [35].
We adopt a deep learning approach but, whereas for Mon-
tero et al there were defined KCs in the mathematics do-
main (e.g. fractions, differentiation) which could each be
assigned binary values representing whether the student got
that KC right for a question, in language learning it is not so
clear how KCs should be defined and delimited. Therefore
we rely on learning representations through interaction and
back-propagating from the score assigned to each text, and
grammatical error distributions.

To improve our student and task representations we incor-
porate automatically detected grammatical errors made on
a task by a given student as a feature in our neural network
model. Grammatical error detection is a well-established
research field, with most focus having been placed so far
on learners of English. Error detection techniques range
from feature-based classification to neural machine transla-
tion [31, 43], and widely-used annotated corpora include the
First Certificate in English corpus [42], the National Uni-
versity of Singapore Corpus of Learner English [9], and the
JHU FLuency-Extended GUG corpus [26]. These corpora
all involve different error typologies and one advantage of
using ERRANT is that it defined a new error typology in-
dependent of but compatible with existing annotated data.

3. WRITE & IMPROVE
On W&I, students are prompted to input a short text of at
least 25 words in response to a given question. Once they
have completed the task, the system automatically provides



Figure 1: Write & Improve example screenshot

a grade on the CEFR scale4 along with feedback on gram-
matical errors detected in the text. The W&I automarker
assigns each text an integer score between 0 and 13. Table
1 outlines how essay scores are mapped to the CEFR scale.

Table 1: Student scores mapped to CEFR levels

CEFR Score

A1 1-2
A2 3-4
B1 5-6
B2 7-8
C1 9-10
C2 11-13

For instance, a student may submit a text such as that in
(1), for which they receive a score of 1.5, which equates to a
grade of A1 (beginner) and indications that tommorrow and
I like eat are ungrammatical. A screenshot of this example
is provided in Figure 1.

(1) Hi Rie,
I can come to dinner at your house tommorrow. Very
thank you.
I like eat dim sum, beef ho fun and green tea ice cream.
Can I bring anything?
Oh, and what is your address?
Bye, Lee

The student is encouraged to update and resubmit their text
for further scoring and error feedback, and there is, in prin-
ciple, no upper limit on the number of submissions they can
make for a given task. It is their choice when to deem the
task ‘complete’ and move on to a new question.

It is our long-term aim to develop an adaptive tutoring sys-
tem (ATS) for language learners. There are 122 unique ques-
tion items, or tasks, in the W&I curriculum. Currently all
users of W&I move through the curriculum in an unguided

4The Common European Framework of Reference for Lan-
guages

and independent fashion. An ATS would instead guide stu-
dents from task to task in order to personalise their learning
experience and improve their level of performance.

In order to provide this type of guidance, we need accu-
rate representations of task difficulty and student ability as
an essential prerequisite. W&I currently has tasks grouped
by three broad difficulty levels: beginner, intermediate, ad-
vanced. However, our task representations need to be more
fine-grained than this, so that we can guide students within
and across the broader levels, and identify parts of the broad
tripartite curriculum which have been separated a priori but
are in fact of overlapping difficulty levels. Therefore we at-
tempt to jointly train student and task representations based
on past performance of real W&I users to capture the rela-
tive difficultly of tasks such that they can be reliably used
to predict a particular student’s score on a given task.

4. LEARNING STUDENT AND TASK REP-
RESENTATIONS

Our primary goal was to predict student scores on a given
language learning task based on our representations of stu-
dents and tasks in Write & Improve . Secondary to that, we
check the quality of our student representations by predict-
ing the grammar error distribution of a given student-task
tuple. In what follows we describe the data, evaluation met-
rics and models used in this work.

4.1 Write & Improve data
Our training and test data come from the W&I language
learning platform. W&I users submit responses that are at
least 25 words in length for automated scoring and error
feedback, and may opt to answer any number of prompts
tagged with one of three difficulty levels – beginner, inter-
mediate, advanced. We obtained application logs of user
activity from the past two years – a total of 3+ million es-
say submissions by 300,000+ account holders.

We filtered the data for users who had submitted at least
10 submissions. This resulted in a dataset of 1.3 million
submissions by 100,140 users. We also had a record of the
questions (‘prompts’) users responded to and the scores as-
signed to their texts by W&I’s auto-marker.

In addition, we obtained counts of grammatical errors in



each submitted text using the ERRANT annotation toolkit
[6]. This gives us a distribution over 55 possible error types,
of which 47 were observed in the data we work with.

4.2 Model architecture
The architecture of our neural system can be seen in Figure
2. The neural network takes as an input a user id u and
task id t which are taken as indices in the user embedding
layer U and task embedding layer T respectively. u ∈ Nu
where Nu is the number of unique users in the W&I dataset.
t ∈ Nt where Nt is the number of unique tasks in the W&I
dataset.

U is an Nu × du matrix where du is the size of the user
representation. T is an Nt × dt where dt is the size of the
task representation.

The output of U and T are vectors of dimensions du and dt
respectively, and will be henceforth referenced as ~u and ~t.
The description of the score prediction model can be seen in
Equation 1:

c = (~u,~t)

h1 = D(σ(c ·W 1))

h2 = D(σ(h1 ·W 2))

s = h2 ·W s

(1)

– where c is the concatenated vector of features, h1 and
h2 are the first and second hidden layers, D is the dropout
function [36] and σ is the ReLU activation [24]. W 1,W 2,W s

are the weight parameters of the model. Finally, s is the
predicted score of user u on task t.

We optimise our system and learn a user embedding matrix
U and task embedding matrix T by minimising the mean
squared error (MSE) of our predicted score s and the target
score ŝ:

L =
1

K

∑
k

(s− ŝ)2 (2)

– where k is a given submission by the user for a particular
task.

We introduce an auxiliary objective to predict the difficulty
β of each task t, referenced as tβ . The ground-truth labels
for task difficulty (beginner, intermediate, advanced) are ob-
tained from the meta-data of each task in the dataset:

h3 = D(σ(~t ·W 3))

tβ = softmax(h3 ·W β)
(3)

– where h3 is the hidden layer between the task embedding
matrix T and the output and W 3 and W β are the weight

parameters. We optimise the prediction of task difficulty tβ
using a categorical cross-entropy loss function:

L = − 1

Nt

∑
i

∑
β

·1tβ∈β log p(tβ ∈ β) (4)

4.3 Feature set
In addition to the score s, the W&I dataset contains prompts
and answers in natural language as well as metrics on whether
submission k is the highest scoring submission by user u. We
incorporate these additional features into the architecture of
the model in order to evaluate their impact on the quality
of user and task embeddings.

4.3.1 Answer embedding
We obtain a vectorised form of each student response us-
ing 300-dimension word2vec embeddings5 pre-trained on the
Google News corpus [19]. This means that we have infor-
mation about the way words tend to be used by knowing
which other words they are found to co-occur with, learned
from a large dataset of news articles. In our case, the answer
embedding for a student’s essay is an additive compositional
model where the final embedding is a sum of every word in
the essay. Whilst this model is not state-of-the-art for dis-
tributional semantics, Mitchell & Lapata [21] show that the
additive model can yield results comparable to significantly
more sophisticated models.

4.3.2 Question embedding
Similar to the answer embeddings, we construct a vectorised
form of each prompt represented in natural language, again
summing word2vec representations of every word. We were
motivated to incorporate question embeddings because we
assume that the lexical distribution of words in the prompt
is directly correlated to the complexity of the question. We
propose that linguistically complex questions are indicative
of difficult tasks.

4.3.3 Metric embedding
The motivation behind using the metric embedding is to
provide a signal to the model regarding the relative score of
the submission in comparison to the user’s previous submis-
sions. This signal may facilitate the model to down-weight
submissions that are not task-best or user-best, as one could
argue that task-best and user-best are a more accurate re-
flection of the student’s holistic capabilities.

The metric embedding is a 2-dimensional vector that stores
benchmark information about submission k for user u in
comparison to the user’s previous W&I submissions. The
first dimension is a binary value for whether the score for
the submission was the highest score on task t for user u.
The second dimension is a binary value for whether the score
for the submission was the highest score across all W&I tasks
for user u. We have access to each user’s score history and

5A word2vec embedding is a 1×x dimensional dense vector
that represents a word semantically. Words that are similar
in meaning have vectors that are close together in vector
space.



Figure 2: Task score prediction system architecture. Dotted lines and boxes are optional features and network
connections.

infer metric embedding values by inspecting this history for
each task and across all tasks.

4.3.4 Grammar error embedding
A student’s grammatical proficiency plays a vital role in de-
termining how well they perform on a particular task. As
we do not know of any system that identifies appropriate use
of grammar, we focused on understanding what grammat-
ical structures the student struggles with. This was done
by running ERRANT [6], an automated error detection and
correction system, in order to identify grammatical errors in
the student’s essay. The text below illustrates an example
output from ERRANT.

S Everyhtings seem quite meaningless to me .
A 0 1||R:SPELL||Everything||REQUIRED||-NONE-||0
A 1 2||R:VERB:SVA||seems||REQUIRED||-NONE-||0

The words highlighted in red are candidates for grammatical
errors as detected by the system. The second and third lines
are correction suggestions where the first two numerical dig-
its (highlighted in blue) are the token spans for corrections
(i.e. where in the sentence the corrections should apply).
The strings highlighted in green are the error types (e.g.
R:SPELL, a spelling error; R:VERB:SVA, a subject-verb agree-
ment error on the verb). ERRANT provides error detection
and correction outputs on a sentence level.

For each submission k, we constructed a 47-dimensional vec-
tor, one dimension for each of the error types observed in the
W&I dataset. Each dimension stored the number of times
that error type appeared in the student’s essay submission.

< ek >=< f1
k , f

2
k , . . . , f

47
k > (5)

– where ek is the grammar error embedding e for submis-
sion k, and fnk is the frequency of errors for error type n in

submission k.

4.4 Mean score baseline
Our baseline system for predicting s for user u on task t is
to calculate the mean of observed scores by all users for that
task. We refer to this baseline as mean score.

stu =
1

N t
k

∑
k

ŝtk (6)

– where stu is the predicted score for user u on task t, N t
k

is the number of submissions for t, and ŝtk is the observed
score for submission k on t.

Settles & Meeder showed that predicting the average is a
strong baseline in modelling language learning [34] – only 2
out of 4 models outperformed the average. Whilst the au-
thors’ work focuses on predicting successful recall and un-
derstanding of words, we apply the same principal to the
predicting student scores on unseen tasks.

4.5 Evaluation
We identify two approaches to evaluating our system and
the quality of our learned user and task representations: 1)
score prediction; and 2) grammar error prediction.

4.5.1 Evaluation of score predictions
To evaluate the performance of score prediction we use mean
squared error (MSE) in common with other works in this
field, using global computation where all data points are
treated equally [28].

To form our test set, we remove the last score observed by
every student from our dataset. The last observed score,
instead of a random observed score, was used due to the fact
that as the student progresses through the learning material,



both the student’s knowledge representation and the task
representations evolve. Therefore, in order to ensure we are
modelling the score that is based on the student’s current
knowledge state, we predict the last observed score for a
student on a given task.

4.5.2 Evaluation of grammar embedding predictions
In order to further evaluate the quality of the learned user
and task representations, we also introduce an additional
evaluation task of predicting the distribution of grammar
errors for a user u on a task t.

This was done by building a network that takes as an input
the user ~u and task ~t from the pre-trained embedding U and
T and predicts the grammar embedding ~g. Our dataset for
grammar error prediction was created by extracting the last
submission k of every user u. This was to ensure that the
system is predicting the distribution of errors for the users
at their most recent knowledge state. The grammar error
embedding prediction model can be defined as follows:

c = (~u,~t)

h1 = D(σ(c ·W 1))

h2 = D(σ(h1 ·W 2))

~g = h2 ·W g

(7)

– where c is the concatenated vector of ~u and ~t, h1 and h2 are
the first and second hidden layers, D is the dropout function
and σ is the ReLU activation function. W 1,W 2,W g are the
weight parameters of the model. ~g is the predicted grammar
error embedding for user u on task t.

We optimise our system by minimising the cosine proximity
of the predicted grammar vector ~g and the target grammar

vector ~̂g, as in (8).

L = −
∑
k ~gk · ~̂gk√∑

k(~gk)2 ·
√∑

k(~̂gk)2
(8)

– where k is a given submission by the user for a particular
task. The more negative the cosine proximity the closer the
prediction and target vectors. A value of −1 is a perfect
match.

4.6 Implementation
We run our score prediction models for 30 epochs and use
an Adam optimiser [14] with a learning rate of 0.001. Both
user embedding matrix U and task embedding matrix T
were initialised with zero values. In order to identify the
right combination of features, we experiment with a variety
of feature combinations and identify the ones that provide
the greatest reduction in MSE. When evaluating our model
at test time, we pass in null vectors for the metric, answer,
and grammar error features as the student has, in theory,
never attempted the task. Instead, we rely exclusively on the
pre-trained user and task representations to make a reliable
prediction of the user’s score s on task t.

Table 2: Feature dimension sizes. Nmin
h is the min-

imum size of the feature or only size where there is
no value for Nmax

h .

Features Nmin
h Nmax

h

Score prediction model

user U 100,140 × 3 100,140 × 32
task T 122 × 3 122 × 32
answer 1 × 300 -
question 1 × 300 -
metric 1 × 2 -
error 1 × 47 -
h1 1 × 8 -
h2 1 × 4 -
h3 1 × 3 -

Grammar error prediction model

h1 1 × 16 -
h2 1 × 16 -

For our grammar error prediction model we ran 50 epochs
with an Adagrad optimiser [10] and learning rate of 0.01.
We used a dropout rate of 0.2 for both score prediction and
grammar error prediction models.

Table 2 outlines the dimensions used for the various layers of
the model. The user and task embedding were tested across
a range of dimensions ranging from 3 to 32 dimensions. The
justification behind using n × 3 dimension embeddings was
to align the size of the embedding with the number of task
difficulty levels (beginner, intermediate and advanced). Fur-
thermore, we created a bottleneck6 in our system in order
to learn more meaningful student and task representations
[4]. Therefore, we ensured that the upper-bound for the size
of our user and task representations was less than 47 – that
is, the number of dimensions in the smallest feature vector,
the grammar error embedding7.

5. RESULTS
Table 3 summarises the results of our system. We compare
the effectiveness of various features in the prediction of a
user’s score s on a task t which is evaluated by MSE. We
include the top 8 MSE values on the score prediction system
and their corresponding cosine value from the grammar error
prediction model. Our baseline model mean score achieves
an MSE of 1.913.

We find that incorporating question and answer embeddings
do not provide any performance improvement in terms of
MSE beyond the baseline model. The metric embedding
provides marginally better results than the baseline with an
MSE of 1.907. The grammatical error embedding provides
substantial improvements beyond both the baseline and the
metric embedding with an error of 1.761. The best perform-

6A bottleneck is where the size of the representation layer
is less than the size of the input.
7We excluded the metric embedding size as we assumed that
an upper bound of 2 would not capture the inherent com-
plexity of language learning.



Table 3: Score prediction (MSE) and grammar em-
bedding prediction (cosine) results for the top 8 best
performing feature combinations (error: grammar
error embedding; ques: question embedding; ans:
answer embedding; metric: metric embedding).

Model MSE Cosine

mean score (baseline) 1.913 -
error+ques+ans+metric 2.254 -0.385

ques+metric 1.942 -0.402
ans+metric 1.951 -0.414

error+metric 1.350 -0.426
ques 2.028 -0.403
ans 2.014 -0.412

error 1.761 -0.410
metric 1.907 -0.393

Table 4: Performance across various student and
task representations sizes (Nh)

Model Nh MSE Cosine

error+metric 3 1.350 -0.426
error+metric 5 1.297 -0.431
error+metric 16 1.245 -0.415
error+metric 32 1.195 -0.433

ing system incorporates both grammatical error embedding
and metric embedding, reducing the MSE to 1.350.

The model that provides the lowest cosine proximity to the
target grammatical error vector (i.e. best system) was er-
ror+metric, which is consistent with the lowest MSE for the
score prediction system. We also observe that the system
trained on just the answer feature resulted in a cosine prox-
imity of −0.412, an improvement over the system trained on
just the grammar error embedding which achieves −0.410.
This outcome was unexpected: the system trained on the
grammar error embedding resulted in a lower MSE than the
system trained on the answer embedding, a representation
which by definition contains the grammatical errors but not
encoded in the same way. Intuitively the grammar error em-
bedding is a better representation of student knowledge at
a given point, which in turn gives us better predictions of
task scores.

An important aspect of learning well-formed representations
is identifying the correct number of dimensions [4]. Table 4
summarises the various student and task representation sizes
we used as part of our system. We set our upper bound at 32
in order to ensure a sufficient bottleneck. The results show
that larger representation size improves both score predic-
tion (MSE) and grammar error prediction (cosine).

In order to interpret the relevance of cosine proximity we
conducted a Pearson’s correlation test between the MSE val-
ues from the score prediction system and the cosine proxim-
ity scores from the grammar error prediction system. Table

Figure 3: t-SNE of 300 randomly sampled student
representations classified by different levels of profi-
ciency

Table 5: Correlation between score prediction MSE
and grammar embedding prediction cosine.

Pearson’s coefficient p-value

0.7883 0.0201

5 shows the correlation between the score predictions (MSE)
and the grammar error prediction (cosine). The results show
a 0.7883 Pearson’s correlation with a p-value of 0.0201 which
is statistically significant at α < 0.05.

Figure 3 shows a t-SNE [38] of 300 randomly sampled stu-
dent representations learned by our best performing score
prediction system. The students are classified by their pro-
ficiency which has been determined by observing the most
frequent task level attempted in their five most recent sub-
missions. Qualitatively, the results from the plot are promis-
ing as the advanced and intermediate users, whilst present
throughout the plot, are more concentrated towards the top
right (higher level of language proficiency). Beginner stu-
dents, on the other hand, are more concentrated in the bot-
tom left. This suggests that the embeddings constructed
from our model provide context on the language abilities of
the student.

6. DISCUSSION
The results in Table 3 show that incorporating grammar
error embeddings provides a reliable signal to learn well-
formed student and task representations. Furthermore, Ta-
ble 4 identifies the optimal size for student and task repre-
sentations by training the system using various configura-
tions and evaluating both the MSE and cosine. Larger em-
bedding size performed better than the smaller embedding
sizes up to our experimental maximum of 32 dimensions.
However, making the embedding size too large would result
in what is known as ‘overcomplete’8 which in turn causes

8When Nh > Nx (input).



the model to simply memorise the correct response instead
of learning discriminative features [4].

In real terms, an MSE of 1.195 represents a root mean
squared error of 1.093 on a scale of 0 to 13. This means
that on average we stay within the bounds of a CEFR level
when predicting student proficiency (since the 0-13 values
are mapped to the 6-point CEFR scale), which seems suf-
ficiently robust for real world application. The MSE might
mask some more severe errors at the edges, and therefore
any downstream use of our user and task representations
for ATS would have to be implemented conservatively with
reference to model confidence scores.

Grammar errors highlight the weaknesses of the student as
opposed to their strengths. Therefore, instead of learning
the upper-bound of a student’s ability, we are learning the
features for the lower-bound. The results of the model also
suggest that there is a correlation between the types of er-
rors students make on task t and the score they achieve on
said task. This enables the model to learn latent features
within the student and task representations which in turn
can be used to reliably predict the student’s score on a future
unseen task.

The importance and value of the signal provided by gram-
mar errors in determining student ability and thus creating
quality representations can be further highlighted by Fig-
ure 4. The bar-chart shows a comparison between beginner
and intermediate students, where the values in x-axis are
the various error types in ERRANT and the values for the
y-axis are the normalised difference of the frequency for each
error type between the two groups of students (positive bars
indicate greater frequency of that error type for interme-
diate students). We can observe that certain errors such
as M:VERB:TENSE (highlighted in orange) are more frequent
with intermediate students. This is not surprising as begin-
ner students tend not to experiment with verb tenses but
rather focus on using verb tenses that they are comfortable
with. Intermediate students are more likely to learn verb
conjugation rules and over-regularise to introduce variation
in sentence structure. However, over-regularisation usually
results in increased number of verb tense errors [32, 3]. This
is then corrected once students reach an advanced level of
proficiency where they can account for the irregular verb
tenses. We can observe this correction in Figure 5 where
advanced students make less verb tense errors than interme-
diate students.

We also show that a score prediction objective function with
a task difficulty prediction auxiliary objective are effective
in training well-formed student representations, as evidenced
by Table 3, Table 4 and Figure 3. Whilst the plot in Fig-
ure 3 generally behaves as expected, we observe some stu-
dents that are classified as advanced but reside towards the
bottom-left. We believe this is due to students having be-
ginner profiles but attempting advanced tasks.

Whilst grammar error features improved the performance of
our system, answer embeddings seemed to reduce the accu-
racy, counter-intuitive to our understanding of the response
as the fundamental indicator of student proficiency. We be-
lieve this reflects the fact that the answer text requires sev-

Figure 4: A bar-chart showing a comparison of er-
rors between beginner and intermediate students,
where the bars are the normalised difference be-
tween the two groups of students. Positive bars in-
dicate that intermediate students made more errors
than beginner students for that error type.

Figure 5: A bar-chart showing a comparison of er-
rors between intermediate and advanced students,
where the bars are the normalised difference be-
tween the two groups of students. Positive bars in-
dicate that advanced students made more errors for
that error type than beginner students.

eral levels of abstraction before it can be transformed into
interpretable evidence of language proficiency. We there-
fore view grammar error embeddings as answer embeddings
which have been passed through various levels of processing
(in our case, by ERRANT [6]). Without processing, answer
embeddings provide only a noisy signal of student ability
and negatively impact performance of predictive systems.
The answers are relatively small samples of text, perhaps
insufficiently so to properly trace language knowledge for
the given student. Grammatical errors, on the other hand,
appear to be sufficiently robust to short text lengths to pro-
vide representative signals of student knowledge.

Question embeddings are faced with a similar limitation.
We expressed the hypothesis that the wording of questions
would directly indicate task difficulty. However, instead they
proved to be the weakest standalone feature (Table 3). We
interpret these findings together to mean either that it is
how student’s perceive and respond to the question that de-
termines the difficulty of the task, or that W&I scores are
determined more by grammar errors than answer and ques-
tion content. Additionally, the content of the question itself
does not yield any signal that is discriminative of student
ability or task difficulty.

In isolation, the metric embedding also failed to provide a



strong signal for student proficiency. However, combined
with the grammar error embedding, we noticed significant
improvements in performance.

The grammatical error distribution prediction system was
introduced to further evaluate the quality of our student and
task representations. The purpose of creating that system
was to measure the generalisability of the student embed-
dings and demonstrate their ability to do transfer learning.

Although we do not know of an established gold standard for
cosine proximity in our grammar error prediction task, we
are able to interpret it in order to compare the performance
between the different configurations of our user and task
representation learning system. The positive correlation be-
tween the score prediction loss and the grammatical error
prediction loss further supports our claim that our model
architecture and the use of grammatical errors as features
are reliable for training student and task representations of
language learning. That is, the performance of the model is
strong on two tasks, such that we view our representations
of students and tasks as sufficiently accurate for further use
in downstream educational applications.

7. CONCLUSION
We introduced a novel neural network model to automat-
ically learn student and task representations for language
learning by incorporating various features extracted from
the W&I dataset and evaluating on score and grammar er-
ror prediction. We demonstrated through the results on the
score prediction task that the use of grammar error embed-
dings and metric embeddings in our framework provide a
reliable signal for user proficiency in language. These find-
ings were further supported by the cosine proximity score
achieved when evaluating the grammar error prediction task.

Learning user and task representations is a central compo-
nent to enable a truly adaptive learning system. Future
work in incorporating aspects such as memory decay and
attention can play an important role in further improving
the quality of user and task representations. Additionally,
this framework may also enable downstream tasks such as
curriculum learning in the language learning domain, item
similarity [29], and task scheduling through spaced repeti-
tion learning [23, 18] .

Alongside the in-principle evaluation metrics we present here,
we would then be able to obtain real world evaluation of
learning gains for trial groups presented with adaptively se-
lected tasks, compared with control groups who continue to
select tasks independently. We propose that the dense repre-
sentations of users and tasks presented here could underpin
an ATS which selects tasks at an appropriate difficulty level
for each user with a known submission history on the plat-
form.
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