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Abstract. We describe Device Analyzer, a robust data collection tool which is

able to reliably collect information on Android smartphone usage from an open

community of contributors. We collected the largest, most detailed dataset of An-

droid phone use publicly available to date. In this paper we systematically eval-

uate smartphones as a platform for mobile ubiquitous computing by quantifying

access to critical resources in the wild. Our analysis of the dataset demonstrates

considerable diversity in behaviour between users but also over time. We further

demonstrate the value of handset-centric data collection by presenting case-study

analyses of human mobility, interaction patterns, and energy management and

identify notable differences between our results and those found by other studies.

1 Introduction

Smartphones are highly capable computing platforms containing a wide range of sen-

sors and communications interfaces. They have been widely used in mobile and ubiq-

uitous computing, including location systems [27], measurement [18] and context-

sensing [28]. Additional efforts have focussed on understanding and optimising the plat-

form itself, considering the measurement of energy use [23], computation offload [7],

or resource sharing between devices [25]. However, understanding the importance or

effectiveness of these contributions is difficult due to the lack of generally available,

detailed data about how smartphones are actually used.

A large dataset of smartphone use can help direct research efforts, confirm whether

local observations hold in a large and diverse population, uncover human behaviour,

and show the prevalence of particular software or hardware in the wild.

Collecting usage information on smartphones is difficult: The collection mecha-

nism itself needs to be built and deployed to a diverse group of participants running a

multitude of devices in the wild; data must be collected for extended periods of time

to overcome novelty effects and find long-term trends. Consequently, researchers are

often forced to rely on their intuition or on the results from limited small-scale studies.

We have built and deployed Device Analyzer, which has collected 1,900 years of

phone-usage information from 1277 different types of devices used by over 16,000

contributors in 175 countries over the course of two years. Table 1 describes the dataset

in more detail. We observe extreme variation in usage not only between individuals but

also for particular individuals over time. In this paper:

– We describe and make publicly available the largest dataset of smartphone use in

terms of users, duration of study and granularity of collected data available to date.
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– We highlight considerable diversity in behaviour not only between users but also over

time, which was only possible due to the extended duration of our study. This em-

phasises the importance of participant selection and extended experiment durations.

It also means that summative statistics (such as averages) should be considered and

reported carefully to ensure that the true variation in behaviour has been captured.

– We evaluate smartphones as a platform for mobile ubiquitous computing in the wild,

presenting for the first time expected device uptime and access to critical resources

like power, network connectivity and location context from a large, diverse user base.

– We demonstrate the value of handset-centric data collection by presenting case-study

analyses of human mobility, interaction and communication patterns, and energy

management. We compare and contrast our results against previous studies.

– We show how limiting data collection to the phone’s interaction with the cellular

network (e.g. when using Call Data Records from network operators) can produce a

notable effect on results like extracted movement patterns.

– We present our mechanism to provide researchers with access our data archive, and

to run their own studies using Device Analyzer.

2 Related Work

Some studies reporting on mobile phone usage gather insights from mobile phone

providers’ Call Data Records (CDRs) that are generated when a phone interacts with

the mobile network. By their nature, CDR-based studies have the potential to gather

data from vast amounts of users, often 100,000 or more [15] or even capture data about

every mobile subscriber of a country [10]. At these scales, CDRs can be used to track

migration patterns between rural and urban areas, or build an entire country’s social

network graph. However, due to their proprietary nature, obtaining the data can be diffi-

cult. CDR-based studies lack fine-grained data, which on-device collection provides at

the expense of study size. In section 5 we demonstrate that a handset-centric view can

come to significantly different conclusions.

Installing software directly on participants’ devices allows researchers to access

sensor and application data, and record actions that occur offline. Examples of such

studies include the MIT Reality Mining dataset which collected data from 100 mobile

phones given to undergraduates [11], a study of application usage of 250 Windows Mo-

bile and Android smartphones [12] and a study of application usage of 4,000 Android

smartphones [4]. Studies have successfully collected data from up to 20,000 users by

providing useful functionality to the user [14] or by bundling the logging software as a

library with other applications [20].

A third type of study uses surveys or diary studies to capture usage behaviour. Ex-

amples include a 4-week diary study with 20 participants about mobile information

needs [6] and an online survey of 350 people, followed by 20 structured interviews,

about mobile phone power consumption [21].

Diary studies typically have few participants due to the large amount of work in-

volved. Device Analyzer has captured fine-grained data from several thousand partici-

pants in longitudinal collections over the course of months.
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3 The Data Collection Tool

Device Analyzer is a free application for Android version 2.1 or higher. This represents

more than 99% of the devices connecting to Google Play.1 The application collects data

continuously in the background after initial setup, even when the user is not actively us-

ing the device. Device Analyzer was built with a focus on low resource use in order to

impact the user experience as little as possible. We collect data asynchronously through

event-driven notifications where possible and poll data only where necessary. This al-

lows the device to spend more time in energy-saving sleep states. On most devices the

battery drain from Device Analyzer is reported as less than 2-3%. We measured the

additional power draw of Device Analyzer on a Samsung Galaxy S III and found the

amortized power draw over longer periods of time to be an additional 0.048 mA.

On average, the Device Analyzer mobile application collects of the order of 100,000

data points per day on a given device. Storage files are periodically compressed and later

uploaded over an encrypted connection while the device is charging. Local data on the

device is deleted after uploading finishes. The server uses a custom-built distributed

analysis framework to extract insights from the raw data stream [26].

In contrast to other data collection tools, Device Analyzer is a stand-alone applica-

tion that must be installed from the Google Play store. We have never embedded our

tool as a library into third-party applications. The purpose of the application is clearly

stated on the Google Play store, in the confirmation dialog when data collection is acti-

vated, and on the project website. We also remind users of on-going data collection once

a month. We take care to enumerate the data collected, how sensitive data is processed,

and what is transmitted to our servers. We provide a “quick feedback” feature inside the

application to allow participants to send feedback without revealing their email address.

One user commented on the Google Play store “I wouldn’t normally participate

in such a thing, but the attention to detail in disclosure and handling of data is quite

refreshing and deserves to be rewarded.”

3.1 Design decisions and trade-offs

Device Analyzer was designed from the ground up to be minimally invasive, both in

terms of privacy and user experience. Data collection was designed with a public release

of the dataset in mind. The following design decisions result from these paradigms.

No demographic information is collected. Instead, we provide a mechanism that

allows researchers to recruit, tag, and later re-identify participants (see Section 3.3).

The dataset is inhomogeneous in that we have so far encountered 1277 different

types of devices, whereas other studies use a single type of device that facilitates com-

parisons between people. We see this diversity of devices in the wild as a strength as

we avoid novelty effects from handing out handsets for the duration of the study.

Polling of not event-driven data occurs only every 5 minutes; this includes informa-

tion about the 10 most recently started applications and network traffic. However, for

10% of screen-on sessions application starts are collected with a frequency of 2 Hz, a

rate we adopted from a previous study of application usage on Android [4].

1
http://developer.android.com/about/dashboards/index.html

http://developer.android.com/about/dashboards/index.html
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Device Analyzer does not collect GPS location, but instead relies on network and

WiFi location. Apart from saving energy this means that the set of requested permis-

sions is somewhat less invasive. We also traded participant privacy for reduced utility

for researchers by hashing all personally identifying information like phone numbers,

network names, and SSIDs with a salted hash (see Section 3.2).

Lastly, we do not provide the application’s source code. We believe that a multi-

tude of slightly different, small-scale studies generating separate data silos is not in the

interest of the research community. We encourage other researchers to feed data back

to the community by deploying Device Analyzer for their own studies, taking advan-

tage of a working, maintained platform where functionality can be augmented and users

re-identified as described in Section 3.3.

3.2 Privacy

We strive to protect our participants’ privacy as best we can by transferring data only

over encrypted connections and removing direct personal identifiers and other sensitive

information before they reach our servers. Device Analyzer was reviewed and approved

by the University of Cambridge ethics committee. Our approach is compatible with an

earlier set of recommendations made to researchers in ubiquitous computing [17].

We use a salted hash function derived from a hardware identifier, which allows us to

correlate entries after Device Analyzer was re-installed, but prevents correlating these

data between devices. Phone call records for example can only be used to compare

whether two calls were made to the same number on the same device. It is not possible

to determine whether two separate devices called the same number.

Device Analyzer requires user consent before any data is uploaded to our servers.

Users can inspect the data before making that decision. We observe that roughly 40% of

our 26,800 installations were never activated. Data collection can be paused and users

can explicitly withdraw from further collection at any point in time (4% of users did so)

and optionally also request all of their historic data to be deleted (2.5%).

Participants can download all of their collected raw data from the project website.

So far, 2100 participants have chosen to do so. Finally, participants can choose the

extent to which they want to share data with other researchers. While some participants

chose not to share their recorded data with third parties, we have observed that a small

subset of participants elected to opt-in to share more sensitive information.

3.3 Access to the dataset and deployment for custom studies

Despite the care we have put into addressing privacy concerns, there remain ways in

which the privacy of our participants could be compromised. We invite the community

to request summary records from us; we will do our best to accommodate all reasonable

requests. Alternatively, researchers can sign a contract that grants them access to the

dataset itself as a basis for both further research and commercial work, but prohibits

re-identification of individuals.

When a specific group of people should be surveyed, or additional data is required,

accessing the existing dataset is not sufficient. We provide researchers with a way to

deploy the Device Analyzer platform and receive raw data from re-identifiable users.
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Interested parties can contact us to recruit their own users and are given unique

participation codes that users enter in the stock Device Analyzer application. This code

then allows re-identification of individuals as well as access to the collected raw data.

In summary, researchers can leverage the expertise and engineering effort that went into

building Device Analyzer without having to implement their own logging application.

4 Description of the Dataset

Device Analyzer captures a rich, highly detailed time-series log of approximately 300

different events. As much detail as possible is captured. For example, Device Analyzer

not only records when a device connects to a WiFi network; it records all the details cap-

tured whenever a WiFi scan occurs, including AP MAC address, SSID, signal strength,

frequency and capabilities. Table 1 shows the categories of data collected. Data is pre-

processed on the device to remove direct personal identifiers (see Section 3.2).

Number of data points 75 billion

Aggregate trace duration 1,900 years

Countries covered 175

Unique phone types 1277

Unique OS versions 884

Installed copies of DA 26,800

Consented to collection 16,000

Users requested deletion 426

Participation > 1 day 12,300

Participation > 1 month 4,700

Participation > 3 months 2250

Participation > 6 months 960

Participation > 1 year 321

Category Event types collected

Device settings 33

Installed Applications 17

System Properties 29

Bluetooth devices 21

WiFi networks 11

Disk storage 6

Energy & Charging 5

Telephony 20

Data usage 38

CPU & memory 11

Alarms 10

Media & Contacts 8

Sensors 15

Table 1: Overview of data collected. A complete list is available online.1

While previous work has examined some of the topics present in this paper, we want

to stress that we are not aware of any study that rivals this dataset in detail, duration of

data collection and size. We believe it is important to optimise all three dimensions

in order to derive sound insights into user behaviour. We present evidence that many

interesting, abrupt changes in behaviour are visible only in longitudinal datasets.

5 Analysis

To highlight the value of this dataset, we investigate some of the areas we believe are

of particular interest for mobile and ubiquitous applications: communication, context,

and the capacity to run long-lived applications. We also investigate interaction with the

devices as well as communication behaviour.

1 http://deviceanalyzer.cl.cam.ac.uk/keyValuePairs.htm

http://deviceanalyzer.cl.cam.ac.uk/keyValuePairs.htm
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5.1 Movement patterns

Human mobility patterns are a valuable resource in fields like urban planning and

when characterising environmental impact. Previous work looked mainly at Call Data

Records (CDRs) that are generated when a phone interacts with the mobile network.

Location accuracy of CDRs has been reported as 3 km2 on average [15].

CDR-based movement traces will be inaccurate if users do not use their phone ev-

erywhere they travel. We set out to quantify this error. Device Analyzer collects location

data every 5 minutes using the Google location API which fuses signal maps and WiFi

fingerprints to improve accuracy. We simulate CDR-based movement traces by select-

ing only locations where text messages were exchanged or calls started or ended.

A previous study, using data from AT&T, reported users’ daily range, which is the

maximum distance that a phone has travelled in one day [16]. We adopt this measure

for the purposes of comparison. Median/90th percentile daily ranges across our dataset

were 5.8/51 km but only 0.9/28 km for simulated CDR-based movement traces. We

note that a significant number of days record no movement at all for lack of calls and

text messages. While CDR-based studies can choose to measure the most active users

only, this inherent error is likely present in much previous work dealing with CDRs.

The AT&T data reports human mobility in Los Angeles and New York City. Their

dataset partially mitigated the above effect by including locations where data transfers

occurred. The authors state that they collected an average of 21 locations per day from

5% of AT&T subscribers in each region, while Device Analyzer collects on average

208 locations per day, but included only about 140 participants in these regions with a

total of 8500 phone-days of contributed data. Despite the large difference in scale both

datasets show the same trends, namely shorter weekend daily ranges and overall larger

numbers for LA residents: Median weekday/weekend daily ranges in our dataset are

7.0/3.3 km for NYC residents and 8.0/4.8 km for LA residents, compared with 7.2/5.6

km for NYC and 9.5/8.5 km for LA residents in the previous study.

We suspect the notably larger weekend movement distances in the AT&T dataset

are due to their much larger dataset which is bound to include more variation of use

than we were able to observe. At the same time, the reported median figures ignore

outliers. Indeed, our 25th and 75th percentiles are much wider than the AT&T figures.

In particular, the reported 98th percentile maximum daily ranges per user are just

below 4000 km, covering the continental US. However, the maximum daily ranges in

our dataset are over 11500 km from LA and 16000 km from NYC, as we do have data

from international travels that are missing from the AT&T dataset. González et al. note

that their data does not include movement larger than 1000km for the same reason [15].

The lack of extra-territorial data is a fundamental issue of network-centric datasets

which—by virtue of their sheer volume—suggest near-perfect coverage and accuracy.

User behaviour abroad can change abruptly due to unfamiliar surroundings and lack

of mobile data connectivity. Journeys that exit country boundaries are more common

in Europe than in the US, owing to the denser packing of countries and more frequent

travel between them. Modelling human mobility from data that ignores these interna-

tional journeys will result in incomplete and potentially misleading models.

Our dataset captures movement patterns in a global context (see Figure 1). Device

Analyzer contains data collected from 175 countries, rather than just a single country
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Fig. 1: Median daily ranges (km) of users living in different locations

as in most network-centric datasets. The AT&T 50th percentile maximum daily ranges

for LA and NYC residents of approximately 58/43km km are considerably larger than

results from a study by González et al. that reports almost 50% of their European par-

ticipants staying within a 10 km radius over the duration of the 6 month study [15]. We

observe the 50th percentile maximum daily ranges to be 89/65 km for LA/NYC resi-

dents, 188 km for the US overall, and 144 km for Europe. We also computed the radius

within which all recorded locations of a given participant fall and observe the 50th per-

centile to be 47/40 km for LA/NYC residents, 129 km for the US overall, and 90 km

for European participants. Indian participants travel less: The 50th percentile maximum

daily range and total travel radius are 57 km and 25 km, respectively.

These figures suggest that at least in the US many city dwellers stay within a smaller

area than their rural counterparts. The reported numbers also stand in direct contrast the

previous findings of movement radii by González et al. Indeed, we note that for large

parts of Europe the median daily range is of similar size as the previously reported gyra-

tion radius over multiple months. Device Analyzer was also able to replicate trends that

the large-scale study of human mobility using AT&T data found, uncovering between-

city effects in an untargeted, global dataset. We believe this showcases the suitability of

on-device data collection for large-scale human movements.

5.2 Connectivity

Network communication is a central aspect of many mobile applications. As Device

Analyzer collects data on the handset, we have the unique ability to measure connec-

tivity as experienced by the user. We observe that 10% of participants have no network

connection for at least 40% of the time, while half of our population spends less than

5% of their time without a connection. When connectivity is available, we observe that

10% of devices communicate over a 2G connection at least 54% of time. However,

faster connectivity is often available: 50% (or 80%) of our users are connected to 3G,

LTE or WIFI for at least 80% (or 45%) of the time. The top 10% of users spend as much

as 98% of their time on these fast connections.

Users experience large temporal changes: Figure 2 shows individual traces for users

with good, average and poor connectivity. Each column of an individual trace is a his-

togram of time spent using various technologies during one week. The second trace
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Fig. 2: Technology availability (left), GSM signal strength (right) for three devices

in Figure 2 (left) suffers from low WiFi availability in the last seven weeks. The bot-

tom trace with poor connectivity typically has 2G connectivity but in week 37 sees good

HSPA connectivity followed by a week of no connectivity. We find such abrupt changes

in many long traces across our dataset.

Energy costs per byte transmitted can be as much as six times higher for a weak

connection over a strong one [24]. This can have a noticeable effect on the battery per-

formance of a communication-heavy application [9]. The majority of devices in our

dataset saw signal levels of -85 dBm or lower most of the time, with occasional spikes

of good signal. Only 15% of devices spending the majority of their time at signal levels

of -75 dBm or higher. Figure 2 (right) highlights changes over time and between indi-

viduals: The top trace shows mostly signal levels around -65 dBm, which are very rare

in the other two traces. The bottom trace shows no signal levels above -85 dBm and

includes a period of several weeks with very poor signal.

CDMA and WiFi signal levels followed a similar pattern where less than 10% of de-

vices spend time predominantly in very good signal conditions whereas 80% of devices

spend the vast majority of time in medium to poor signal conditions.

Changes in mobile network connectivity present opportunities for applications to

improve performance and reduce resource consumption through adaptation. Changes in

connectivity manifest themselves either gradually over time or abruptly, which suggests

that forecasting and planning cannot be done using signal strength alone and will require

additional contextual information. Researchers should take these qualitative differences

into consideration when interpreting results or planning studies.

5.3 Location

Location is a primary source of context in ubiquitous computing [1]. We investigate

how well mobile ubiquitous systems can establish user location. Smartphones spend

88% of their time in close proximity to the user, making them a good proxy for the

user’s location [8]. WiFi fingerprinting uses readings of WiFi signal strengths to locate

a device indoors [3], producing more accurate results as the density of visible base

stations increases [5]. We investigate the number of base stations that participants in our
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study were able to see at any given time, thereby giving an indication for the accuracy

of positioning that can be expected from WiFi fingerprinting techniques.

Prevalence of WiFi: We observe that the majority of users keep WiFi off most of the

time. Only 2% of users enable WiFi over 80% of the time while 56% enable WiFi less

than 20% of the time. When WiFi is enabled, 50% (or 10%) of users spend up to half

(or 90%) of their time with WiFi enabled but not connected. This suggests that while

many people disable their WiFi connection when it is not needed, there is still much

potential for further energy savings. Half of our users see on average 17 unique base

stations on days when WiFi is enabled for at least 1 hour (top 10%: 82.6 base stations).

Number of visible APs: When WiFi is enabled, the majority of devices in our dataset

see 3 or fewer access points most of time, and 1 or 2 access points for 29% of time,

which limits the usefulness of WiFi fingerprinting systems. For 4% of the time, the

majority of participants see no networks. On the other end of the spectrum we observe

that roughly 1 in 10 devices spends most of its time in the presence of at least 8 base

stations, providing ample information for WiFi location systems. Individual traces were

omitted for reasons of brevity, but many users show significant deviations from their

usual WiFi environment for weeks at a time.

Researchers have also considered using Bluetooth for location estimation. We find

that over half of our participants activate Bluetooth at most 1 in 14 days. On those

days Bluetooth is active for 52 minutes for a typical user, which would make parasitic

location estimation highly unreliable.

5.4 Energy management

Battery lifetime depends highly on idiosyncratic usage behaviour and can severely limit

the utility of modern smartphones. Power draw varies drastically over time, with one

participant draining their battery by 298% one day (charging 3 times) and discharging

only 38% on another day. We observe that 17% of participants fully charge their phone

on at least 9 out of 10 days and 40% fully charge their phone on at least 7 out of 10

days. Overall, we observe that while 24% of all charges are over USB, the vast majority

of these are short charges that may result from transferring data to or from the device.

Emptying the battery can be interpreted as a failure of the user or phone to ade-

quately manage energy consumption. This happens at least every 11 days for 50% of

our participants. Some participants exhaust their device’s battery nearly every day, and

several participants have distinct periods where their device dies frequently. On aver-

age, depleted batteries are charged within one hour, which suggests that the device is

near a charger when it runs out of battery or that the user is on their way to a location

with a charger. 90% of down times due to low battery are resolved within 12 hours.

Ubiquitous applications on mobile devices can expect to see a median uptime of

92.4% (90% of devices have an uptime of at least 63%). Furthermore, while numbers

vary a lot across our dataset, 50 (or 80%) of devices can be expected to spend 10.3%

(or 3.1%) of their powered-on time plugged into a charger and fully charged. Across

devices, a long-running application can expect to see at least 1 hour of plugged-in, fully-

charged time on 50% of days (6 hours 35 minutes on 20% of days). Applications could

use this time to perform long-running and energy-intensive tasks.
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A previous study of charging behaviour that collected data from a battery monitor-

ing application over 4 weeks from 4,000 participants reported a large fraction of charges

that lasted 14 hours or longer [13]. We observe only a very small fraction of charges to

last 14 hours or longer. Instead, our dataset shows the majority of long charges to be

between 6 and 10 hours in duration, which correspond to overnight charges.

Furthermore, this previous study reports mean charging duration as 3.9 hours, based

on 1525 charge cycles. Our dataset shows a mean charging duration of 2 hours 21

minutes (median: 43 minutes) based on 1.7 million charge cycles. 95% of datasets with

1525 charge cycles would be expected to have a mean charge duration between 2 hours

9 minutes and 2 hours 33 minutes (two standard deviations). The results presented by

this previous study are 16 standard deviations away from the mean found in our dataset,

which indicates that a different population was sampled. We suspect that users installing

a battery monitoring app may be susceptible to unusual charging behaviour.

Overnight charges A recent study investigating of battery charges of 15 participants

over 3 weeks [2] reported that charges during the day and over night vary dramatically

in length, with charges between 10pm and 5am having a median duration of 7 hours

while other charges had a median duration of 30 minutes. Our dataset supports their

findings, with a median AC charge duration of 5 hours 10 minutes (4 hours for AC and

USB combined) for the above definition of overnight charges and a 33 minute median

for charges during the day, irrespective of charge type. We believe that the difference in

median charge duration stems mainly from the small sample size of 15 participants.

5.5 Interactions

The frequency and duration with which a user interacts with their device, as well as the

time that passes between interactions, provides a context within which ubiquitous ap-

plications need to perform their activities. Modulating energy consumption in reaction

to available resources is a key aspect of mobile ubiquitous applications.

We observe that some interactions are purely status checks where the device is never

unlocked, but the screen is turned on to check the time or whether any notifications are

present. The mobile platform can save energy by not waking up some core-components

of the device in such situations, thereby extending battery life. Half of our participants

perform these status checks on average 9 times or more per day, while 10% of partici-

pants check their device on average 52 times per day.

A 2010 study of 17,000 BlackBerry users by Oliver [19] looked at a number of

metrics of interaction length and frequency. We observe mean daily device use across

our dataset to be longer (2.05h vs 1.68h on BlackBerry), but median daily device use

to be shorter (1.22h vs 1.31h). The presence of days with very heavy use hints at the

diversity of the underlying population that we captured and highlights the variability

of environments and modes of interaction that mobile ubiquitous systems must cope

with. Interestingly, we find that while Android users interact less frequently with their

device than their BlackBerry counterparts (on average 57 vs 87 interactions per day),

the average duration of each interaction is much longer (115.8s vs 68.4s).
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5.6 Calls and texts

Users in our dataset place or receive on average 7.5 calls per day (median: 3) and send

or receive on average 11 text messages per day (median: 2). The average length of a

text message is 55 characters. Using text messages and phone calls, our participants

communicate with 4.9 unique numbers per day on average (median: 3). Per week, our

participants communicate on average with 21.3 unique numbers (median: 16).

Across our dataset, 36% of calls end up unanswered. We observe that callers wait

on average 21 seconds for the other side to pick up before cancelling the call. This is

the same amount of time it takes the callee to pick up 95% of calls.

An analysis of the Reality Mining dataset reported [22] that 71% of calls are shorter

than 1 minute, and 90% of calls are shorter than 5 minutes. Our dataset shows slightly

longer calls, with 50.4% of calls shorter than 1 minute and 88.5% of calls shorter than 5

minutes. This may be an artefact of participant selection, as participants in the Reality

Mining study were all undergraduate students at MIT.

6 Conclusions

We presented a novel collection platform that enabled us to collect the largest dataset of

mobile smartphone use to date. Specifically, the dataset improves on previous studies

in terms of duration of data collection, amount and diversity of devices covered, and

amount of detail collected. In total the dataset contains 75 billion data points covering

over 1,900 phone-years of active usage data from 16,000 participants.

To illustrate both the depth and versatility of the dataset, we extracted a multitude

of different aspects about human movement patterns, interaction and communication

patterns, connectivity and bandwidth, WiFi network availability in the wild, battery use,

and reliability of the smartphone platform itself form the broad range of data available.

We contrasted and compared our results with previous work and found important

differences in our new dataset. Crucially, we highlighted the importance of long-term

data collection: many users show abrupt changes in usage behaviour or resource avail-

ability over long time periods to which ubiquitous applications need to adapt. These

drastic changes are an important characteristic of real-world usage data and are typi-

cally not present in datasets collected over shorter time frames by previous studies.

We provide access to the dataset as well as a mechanism for other researchers to use

Device Analyzer as a proven, reliable platform to run their own experiments on. As our

dataset grows further we hope to create a sustainable, rich resource that will provide the

community with invaluable data for years to come.
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