Dependable Coding of Fiducial Tags

Andrew Rice Lab For Communication Engineering University of Cambridge

Introduction

- Many properties of a machine vision system are determined by the coding scheme for identifying objects
 - reliability, address space, performance
- Current schemes do not offer quantifiable error protection
- Propose and evaluate new coding schemes with analysable characteristics

Template Tags

- Print an image (template) on the tag
- When sighted
 - perform perspective correction
 - compare against all issued images
 - return a close match
- ✓ Users can easily distinguish between tags
- X Must guarantee a large separation between templates
- × What happens when there is noise in the image?

Symbolic Tags

- Store data on the tag by dividing payload area into data cells
- ✓ Quantifiable address space
- Image noise translates to bit errors
 - we can model this
- X No longer possible for people to "decode" the tag by eye

Examples

- Matrix Square tag with 5x5 payload containing a CRC
- X Rotated tag gives a permutation of the original code – breaks CRC

Synchronization sector

- TRIP Circular tag with 2 rings x 17 sectors.
- X 2 bit errors could confuse us into choosing the wrong synchronization sector

Asymmetric Tags

- QR-Code
- Uses 3 corner markers to orient the code
- ✓ Code remains robust when the tag is rotated
 - assuming that the features can be detected
- X How do we know that we have made the features the optimum size?
 - too big implies wasted payload space
 - too small implies less resistant to noise than coding scheme

- Structure data on the tag so that a rotation of the tag is a rotation of the codeword
- Symbol Size number of bits to store each symbol.
- Payload Size number of symbols per tag
- Every rotation of a codeword in a cyclic code is also a valid code word
- We can be (mathematically) sure that rotating the tag does not reduce the Hamming distance of our code

Simple Parity Code

- Store a sequence of bits with a parity bit appended
 - Hamming distance is only 2 bits
 - This is as good as the TRIP coding scheme!
- Rotating the code to the smallest value is a deterministic way to produce a unique reading
- X Address space is non-contiguous

Independent Chunk Code

- If the symbol size is large then we can consider each symbol to be a separate codeword
- We can store arbitrary data if we include orientation information
 - protected within codeword

Structured Cyclic Code

- A cyclic code with additional structure to record the rotation
 - simple example: 0123456789
 - whatever rotation of this codeword we have we can recover the original codeword if we rotate by the number of places given by the first digit
- We can do this and spread the rotation information over the entire code
 - it will be equally error resistant as the data itself
 - we can store arbitrary data

SCC Parameters

- Storing the rotational information reduces the data payload by one symbol
 - requires less "space" than TRIP's synchronization sector
- On a 31 sector, 5 ring tag we can use a Reed-Solomon based cyclic code
 - 11 symbols Hamming Distance
 - Detect an error even if 30% of symbols are wrong
 - Can store 99 bits out of 155

SCC Parameters(2)

- SCC stores 99 bits out of 155
 - 64% utilisation
- QR-Code with level 'M' error correction can correct approximately 15% of symbols
 - comparable protection to this instance of SCC code
 - only gets 59.5% utilization
- Cannot engineer a perfect tradeoff between asymmetric feature size and payload space

Results

- Error resistance
 - 1000 samples
 - Artificial noise added uniformly across the image

	Message	Hamming	Correct	Failed	False
	Size	Distance	Read (%)	Read (%)	Read (%)
TRIP	139	2 symbols	24	74	2
SPC	154	2 bits	31	46	23
ICC	93	2 bits per symbol	27	73	0.3
SCC-1	141	3 symbols	56	6	38
SCC-2	101	11 symbols	94	6	< 0.1
			1		

Invalid data

Comparison

- Computed F₁ value for each code
- $F_{1} = \frac{2 \times \text{recall} \times \text{precision}}{\text{recall} + \text{precision}}$ $= 2 \times \text{correct read} \times (100\% \text{-false read})$

correct read+100%-false read

F1 Values

Conclusion

- Situations exist where tags might appear in any orientation
- Current coding schemes on symmetric tags are not robust to this
- Presented a new coding scheme that is quantifiably robust under these conditions
- Aysmmetric features cannot offer optimal performance