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a b s t r a c t

The complexity of modern mobile phones makes it difficult for developers to understand
the power consumption of their applications. Ourmeasurement framework produces fine-
grained, annotated traces of a phone’s power consumption which we are using to develop
an understanding of how particular aspects of an application drive energy use. We ran
a large number of automated tests using Google Android G1, Magic, Hero and Nexus
handsets and present results for the average energy consumption of connection and data
transmission over 802.11 wireless networks. Our results show that the optimal choice of
data transmission strategy is different between handsets, operating systems, and device
context.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The mobile phone is the world’s most popular computing platform. Over 2 billion people now own a mobile and in
established markets it is not uncommon for individuals to own more than one. In developing markets (such as Africa), the
mobile phone is commonly the only accessible technological device serving as a clock, a torch and a calculator as well. For
example, in 2007 there were 25 mobile phones per 100 people in Uganda compared with 1.6 computers or 15.6 radios [1].
Furthermore, modern smart phones are a rapidly growing segment of the market providing markedly more capability than
conventional handsets. These devices contain myriad communication interfaces, significant processing power and storage
and numerous sensors ranging from simple light sensors to GPS tracking.

These trends have made the mobile phone a particularly appealing platform for pervasive computing applications, but
as with all battery-powered devices, controlling and managing power consumption is an issue. These applications have a
number of notable characteristics with respect to power consumption. Firstly, many context-sensitive applications will
run continually in the background collecting sensor information or waiting for a trigger condition and so even a small
power requirement has the potential to impact the device more heavily than other power hungry but short-lived programs.
Secondly, many applications rely on the participation of a large group of users to be useful. Perhaps one of the most
compelling cases is the concept of participatory sensing [2], where a large number of volunteers can use their smart phones
to gather sensor data in the background. This can subsequently be used for all sorts of purposes, such as to build up a picture
of environmental factors [3] or generate collaborative maps [4]. For these applications to succeed, the cost of participation
must be small compared with the direct benefit gained [5] and so the power impact of running the application must be
minimised. Finally, these applications often operate in varying conditions but with flexibility about how a particular task
is performed—for example, sensor readings can be reported immediately or stored up for later transmission. Applications
should choose the best approach from the various options available and dynamically integrate with the overall usage of the
device.
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Fig. 1. Replacement battery and battery holder for the magic handset.

In this paper, we first present our measurement platform which allows us to make large numbers of measurements of
particular operations on the handset in an automated fashion. We go on to examine the power consumption of Android-
based handsets and show that changes to the DHCP process have reduced the energy consumed when connecting to a
wireless network from approximately 6 to 1.5 J. We also report the energy costs of sending data over the wireless link and
show that the choice ofmessage size has a significant impact on energy costs and that this relationship showsdifferent trends
on different handsets. Our results are just a few examples of the fact that the strategy for optimising energy consumption
change between handsets, operating systems, and the device context.

2. Power measurement and interpretation

Our power measurement system delivers a number of key features:

• Automated test execution. The tests proceed (as much as permitted by the device) without requiring the user interaction.
This removes amajor source of variability and allows the tester to increase confidence in a result by repeatedly executing
the same sequence of actions to eliminate random noise (but not systematic error).

• Batch operation. A whole sequence of tests can be run without intervention. Test scripts written in our purpose-designed
simple language are interpreted dynamically without requiring any changes to the software running on the phone.

• Untethered operation. No physical connections (except those to the battery itself) are required to any of the interfaces on
the phone and there are no networking requirements beyond the initial download of the test script and final upload of
the results. This means, for example, that tests can easily be run examining the costs of the changing network or using
an external device.

• No hardware modification. It is not necessary tomodify the test device at all other than to construct a replacement battery
and install a standard application. Neither permanent hardware changes nor ‘root’ software access are required, making
the technique accessible to normal developers.

The measurement system is centrally orchestrated by the Power Server. This is responsible for sending test scripts to the
phone and collecting and aligning the various traces and log files. A single client program is run on the phone itself which is
responsible for acquiring a test script and executing the required actions. The client program collects a timing log of these
events which is uploaded to the Power Server at the end of the test.

3. Measurement hardware

The phone’s power consumption is measured by inserting a high-precision 0.02 � measurement resistor in series
between a battery terminal and its connector on the phone. We do this by replacing the battery of the handset with a
printed plastic replacement1 (Fig. 1). We produced replacement batteries and battery holders to fit the G1,2 Magic,3 Hero4

and Nexus 15 handsets. In all of the tests that follow the G1 and Magic handsets (running Android version 1.1) produced
indistinguishable results. The results for the Hero handset are for Android 1.5 and the Nexus are for Android 2.1.

We use a National Instruments PCI-MIO-16E-4 sampling board to measure the voltage across the phone battery and also
the voltage drop across our measurement resistor (which we first amplify with an instrumentation amplifier) at 250 kHz.
Inserting the measurement resistor increases the circuit resistance, and therefore its power consumption. This is not a
problem for our purposes as this is typically less than 1% of the total power. The measurement points are shown in Fig. 1
from which simple application of Ohm’s law yields Power ∝ V1.V2.

1 We produced our replacements using a Reprap 3D printer (http://reprap.org/).
2 http://www.t-mobileg1.com/.
3 http://www.htc.com/www/product/magic/overview.html.
4 http://www.htc.com/www/product/hero/overview.html.
5 http://www.google.com/phone.

http://reprap.org/
http://www.t-mobileg1.com/
http://www.htc.com/www/product/magic/overview.html
http://www.htc.com/www/product/hero/overview.html
http://www.google.com/phone
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Fig. 2. Calibration with known resistance.
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Fig. 3. Execution stages.

The presence of high-frequency components within the phone’s electronics does not cause exceptionally rapid changes
in the power consumption. This is most likely to be due to buffering within the phone caused by capacitance in the circuit
or voltage regulation. We inspected a number of traces using a high-speed (1 GHz) storage oscilloscope in order to satisfy
ourselves that our sampling rate was sufficient to capture all features of the trace.

The expected power consumption of a resistor is trivially calculated and so we use a selection of high-precision resistors
to calibrate our device. Fig. 2 shows on the y-axis our measured power draw and on the x-axis the power calculated using
Ohm’s law. The necessary scale factor was then computed using a linear regression through the resulting data points, with
an RMS of residuals of 0.0001 (4 dp).

Fig. 4 shows an example trace when switching on a G1 phone. The annotations of each boot phase and average power
measurements were made manually.

4. Test client

The test client running on the handset process proceeds as in Fig. 3. The phone handset first connects to the Power Server
and downloads a test script. It then enters the preparation phase and stabilises its power consumption. A predetermined
sequence of actions is performed to create a synchronisation pulse. This is used in the data analysis phase to correlate the
timing log from the phone with the recorded data. The phone next executes the test script recording the time at which each
action is performed. Once the script is complete, the power consumption is stabilised oncemore and a final synchronisation
pulse is emitted before uploading the timing log back to the Power Server.



4 A. Rice, S. Hay / Pervasive and Mobile Computing ( ) –

Po
w

er
 (

W
at

ts
)

2

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

Time (seconds)

0 20 40 60 80 100 120

Phone vibrates
Booting

Power button
pressed

Android logo
appears

Idle with
dim backlight

0.34W 0.01W

Standby Off

Fig. 4. Instantaneous power consumption when switching on a G1 phone.

Fig. 5. Energy consumption of the G1 when idle.

4.1. Stabilising the power trace

Our primary interest is in breaking down the overall power consumption of the phone into its constituent parts. Ideally
one would identify components which are causing variation in the trace, characterise their consumption and then switch
them off. For components such as the CPU this is not an option because the operating system is preemptively multitasking
and so other processes are intermittentlywaking up and consuming resources: Fig. 5 shows the variation in powerwhen the
phone is ostensibly idle. Instead,we run a low-priority backgroundprocess in a busy-loop. This consumes all spare CPU cycles
and contributes greatly to stabilising the power trace. A small uncertainty is introduced by this technique becausewe cannot
distinguish between CPU load created by the test and the background load. However, for the purposes of understanding the
peripheral hardware in the phone (such as the networking devices) this should have little effect.

4.2. Trace synchronisation

Manyof the features in the energy trace last only a fraction of a second. For example, a scan for availablewireless networks
lasts around 500 ms, while the transmission of a single packet takes only a few milliseconds. For this reason it is important
to align precisely the times recorded for different events on the phone with the samples recorded on the measurement PC.
This alignment allows us to annotate the power trace at each instant with the action taking place on the phone.

We achieve this by embedding a synchronisation pulse inside the phone’s energy trace by switching the backlight of the
phone on and off in a predetermined pattern. Switching the backlight of the phone from off to full brightness increases the
power consumption of the device by more than half a watt over a period of a fewmilliseconds (Fig. 5). We exploit this effect
to embed two easily recognisable 32-bit Gold codes [6] at either end of the trace, with on representing a 1 and off a 0. The
pulse sequence is shown in Fig. 6.

At the end of the test, the timing log recorded by the device contains the switching times for each edge in the
synchronisation pulses. We combine these times with estimated values for the power consumption in the two backlight
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Fig. 6. A synchronisation pulse (in red, approximately between seconds 12 and 42) and the result of the cross-correlation function with the hypothesised
signal (in green). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. A partial hypothesis trace (bottom) is necessary because a square hypothesis (middle) will misalign on the true trace (top).

states to generate a hypothesised sequence representing our expectation of the power trace for the pulse. It is valid to
assume in this case that the relative drift of the two clocks over the synchronisation time period will be negligible.

To find the sample which corresponds to the start of the synchronisation pulse, we compute a cross-correlation function
of the power trace and the hypothesised signal by incrementally increasing the offset of the latter and computing the sum
of the squares of the difference between the signals (also shown in Fig. 6). This function drops to zero at the point where
the two signals line up; the properties of the Gold codes ensure that it is very unlikely that they will match in the wrong
position. In all our tests, a visual inspection has shown this to be a robust way to determine the sample number of the start
of both pulses.

Recent versions of the Android operating system fade the backlight on and off, resulting in diagonal lines in the
synchronisation pulses on the power trace rather than sharp edges. If we attempt to match the square hypothesised signal
against this it lines up incorrectly, with the vertical edges half way along the sloping lines where we should have the rising
edge at the base of the upward sloping line and the falling edge at the top of the downward one (Fig. 7(middle)). To counteract
this, we remove the edges from the hypothesised signal and leave gaps where the slopes will be. Changing the backlight
setting is an inter-process call on the phone handset and so there is sometimes a slight delay between making the API call
and the change taking effect. We therefore also leave the start of each hypothesised pulse section blank (Fig. 7(bottom)).
These blank ‘‘don’t care’’ sections mean that multiple points along the trace are good matches, so we choose the latest
maximum.

This calibration procedure gives us four values: s1 and s2 correspond to the sample number for the start of the first and
second pulse, and t1 and t2 which correspond to the time that the first and second pulse were begun. From this, we compute

r =
s2 − s1
t2 − t1

and o = t1 − s1/r, (1)

where r is the sample rate between the two pulses and o is the time offset between the start of the power log and the start
of the timing log. The sample swhich corresponds to some time t is therefore calculated as

s = r(t − o). (2)

Once the alignment has been calculated in this way, new estimates are formed for the power consumption with the
backlight on and off and the calibration process is re-runwith a new hypothesised signal based on these estimates to ensure
as accurate a result as possible regardless of the physical device. One measure of the accuracy of our synchronisation is to
look at the variance in r across our test runs. In a perfect world this would have a value of 4000 and our results are never
out by more than 3 ns.
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Fig. 8. Parts of an example test script.

4.3. Baseline calibration

Many of the tests involve switching on some component of the phone, waiting for it to initialise and then examining
the additional energy costs of using the device. We support this process by embedding baseline power calibration in our
test scripts. The test writer first annotates the script to indicate that a particular set of steps should be used as calibration
information. When processing the log files we compute the average power consumption of these steps and remove it from
subsequent steps. As an example, this allows us to dissociate the energy cost of transmitting data overWiFi from the ongoing
power requirement to keep the WiFi interface active.

The example script in Fig. 8measures the power consumption for switching on theWireless LAN, holding it on for baseline
calibration and sending 25 kB of data using a 1448 byte buffer. Each line of the script corresponds to a step in the test and
contains a number of fields separated by the ‘:’ character. The first field indicates the type of action to be taken by the
measurement framework. The most relevant of these are the BASELINE action which informs the measurement system to
calculate a baseline power consumption using the average power consumption for the duration of the step. The MEASURE
action causes the power consumption (minus the current baseline power measurement) of the step to be recorded. The
average power consumption (Watts) and the total energy consumed (Joules) are calculated. The number in the second
field indicates the number of units of activity present in the step which is used to produce a normalised, unit-cost, energy
consumption. In the example, there are 25 units in the SendTCP step sending 25 kB of data. This causes the system to
automatically calculate the cost of sending 1 kB of data and add it to the logs. The MEASURE_CONT action indicates to the
system that it should treat this step as a continuation of the previous one andmake ameasurement over the entire duration
of both.

5. Network traffic monitoring

It is useful to observe the network traffic alongside the power trace of the mobile device in order to analyse the costs of
different methods of sending and receiving data. We connected the PC recording the power trace to a wireless access point
and configured it to run a DHCP server to emulate a typical network the phone might join. We then called libpcap6 from
within the Power Server application to record all packets seen on that interface.

The framework combines the synchronisation information embedded in the power trace with the timing log from the
phone and the network traffic information in order to generate annotated graphs of power consumption. An example of this
output is shown in Fig. 9 (which we discuss in the following section).

6. Power consumption analysis

Pervasive computing is a vision of communicating devices and so understanding energy costs of this communication is
of great importance to application developers. We now present our study of the power consumed by sending data over

6 http://www.tcpdump.org/.

http://www.tcpdump.org/
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Fig. 9. Energy trace of connecting to Google G1 handset to a WiFi network.

a wireless network. The interaction between different layers in the hardware and software stack creates considerable
differences in energy consumption. We believe that this provides significant motivation for measurement frameworks such
as ours.

6.1. Connecting to the network

Fig. 9 shows part of the energy trace of connecting to a WiFi network. The top trace shows the cost of obtaining an IP
address using DHCP, annotated using the method described with each IP packet sent and received. The bottom trace shows
the same operation but using static addressing.Without the packet labels this tracewould be relatively hard to interpret, but
the aligned annotations show clearly the costs of each aspect of the connection process. Note that the repeated DNS requests
come from the operating system itself and are for a Google server; Android attempts to make contact at regular intervals,
and these communications also show up in other test runs, distorting the results. The ability to identify and account for
these occurrences is another advantage of the annotation system. The actions taken by the phone when connecting to the
network are prescribed by the various Internet RFCs. For example, the ARP Probe packets are designed to discover if there
is another host on the network already using the phone’s desired IP address [7]. The number of probe packets and the delay
between them forms a significant fraction of the connection time (and energy).

A considerable energy saving is available from the use of static addressing. The histogram in Fig. 10 shows a summary
of the energy consumed in 200 trials of each of these two techniques. The most common cost for a dynamic connection
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Fig. 10. Energy consumed by a G1 handset connecting to the wireless network.
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Fig. 11. Energy against time-taken to connect to a wireless network.

is around 6 J whereas a static connection commonly consumes only 1.5 J. It is also notable that the energy consumed by
dynamic addressing looks to be partitioned into a number of separate distributions. This is in fact due to discontinuities in
the time taken for a connection to complete as shown in Fig. 11. The cause of this phenomena is not yet clear. One possible
explanation is that of a timeout in a polling loop in the operating system or the power control hardware in the wireless
chip. The clusters we see in Fig. 11 are at approximately 1 s separation—one could imagine this as an appealing number to
a developer who needs to select a value for a timeout or sleep period.

One means to improve the energy efficiency of connection whilst maintaining the flexibility of dynamic addressing is to
eliminate theARPprobe stage from the process. This is permitted by the RFC in specific situations [7]. In fact this optimisation
has now been applied in later versions of the Android operating system. Fig. 12 shows the connection traces for a Google
Nexus handset connecting to a wireless network.

This saving is clearly evident in the histogram of connection cost for the Nexus handset (Fig. 13). We note also that the
use of static addressing on this handset continues to present an energy saving albeit highly reduced.

6.1.1. Energy saving in context
Owners of G1 handsets might consider switching to static addressing. The typical saving in this case would be around 5 J.

This is approximately equivalent to

• 5 s of talk time. The average power consumption when in a call seems to be around 1 W;
• 500 s (8 min) of standby time. The average power consumption with the phone in standby is around 0.01 W (Fig. 4);
• 200 s (3.5 min) of idle WiFi connection. An idle WiFi connection adds around 0.024 W to the phone’s consumption

(Section 6.2).

Alternatively, a device which makes a connection every 10 min (for example polling for new email) therefore makes
around 144 connections a day. If we use a nightly charging strategy with a typical battery of 1400 mAh at 3.7 V then the
saving corresponds to around 4% of the total battery life of the handset.

6.2. Idle power

Fig. 14 shows excerpts of the energy trace of a handset when connected to only the 3G, 2G or WiFi networks. The trace
shows only the consumption of the wireless networking hardware because the baseline power consumption of the phone
(CPU, backlight etc.) have been subtracted from the trace. Interestingly, in this case WiFi actually has the lowest idle power
cost, followed by 3G and then 2G. Although the spikes are more frequent (every 100 ms, corresponding to receiving base
station beacons), the base power is lower than maintaining a connection to the cellular network.
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Fig. 12. Energy trace of connecting a Google Nexus handset to a WiFi network.
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Fig. 13. Energy consumed by a Nexus handset connecting to the wireless network.

It is not possible to draw concrete conclusions from these measurements because of the many factors which we have yet
to investigate. The locations of the various base stations will have an effect on the power consumed by the radio and the
building itself will have different attenuation properties at the different radio frequencies involved.
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Fig. 14. Additional power consumption incurred when connected to 3G, 2G and WiFi networks.

Fig. 15. Variation in G1 energy cost per unit data with total message size.

However, these measurements do demonstrate that one cannot always assume that one particular networking
technology will have the lowest power consumption. For example, 2G networking is provided as an option in the phone’s
interface to reduce power consumption but in this particular case it is the highest power option.

6.3. Data transmission

One might intuitively expect that the energy cost of sending a byte of data reduces, or at worst remains constant, as the
total amount of data sent increases. However, this is not the case. Fig. 15 shows the number of Joules required to transmit
each kilobyte of data for increasing total message size using the G1 handset. The baseline calculation functionality in our
framework was used to remove the residual costs of running the phone and so these numbers are the actual amount of
additional energy required to send the data. The graph shows the result of 10 test repetitions run at each 1 kB interval.

Part of the reason for the noise in this data is due to the fact that other processes on the phone are also using the network.
In this test case, they are attempting DNS look ups of particular Google servers. The evidence of this activity is visible in the
packet trace collected by the Power Server. In future versions, we hope to add filtering to discard results compromised by
other activity taking place on the phone.

There is a clear jump in the cost per byte for 7 kB of data compared with 8 kB. Fig. 16 shows these two instances in more
detail. When sending 8 kB or more of data (Fig. 16(right)), there is a considerable period of high energy consumption after
the last packet has been sent which is not present when sending a 7 kB message (Fig. 16(left)).

It is not clear why this is occurring and we can find no explanation in any of the relevant networking standards. Use of
a separate wireless card and the Wireshark7 packet sniffer demonstrated that there is no activity on the wireless network
for this period. However, regardless of whether this is due to crossing some power management threshold or simply a bug
in the wireless firmware, it has a significant impact on the energy requirements of sending a message. A pervasive sensing
application on one of these devices would minimise power by batching a data update into chunks of around 7 kB but incur
a significantly larger cost by batching to 8 kB. These results are also almost identical when using the HTCMagic handset and
the HTC Hero handsets.

The network proximity of our test server process to the phone means that our results are for a TCP connection with very
low round trip time (RTT). This fact combinedwith the high packet processing speed of our test servermeans that the phone

7 http://www.wireshark.org/.

http://www.wireshark.org/
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Fig. 16. Extracts from the G1 energy traces of sending 7 kB (left) and 8 kB (right) of data over WiFi.

Fig. 17. Variation in N1 energy cost per unit data with total message size.

rarely manages to send a second packet before the acknowledgement of the first packet arrives. We validated this assertion
by running a set of automated tests with varying connection latency. High latency connections (of the order of 100 ms RTT)
show conventional TCP slow start behaviour.

Fig. 17 shows the variation in energy cost for the Nexus handset. The trend shown in this graph conforms much more
to our expectations in which longer messages are more efficient than shorter ones. When compared with the G1 results
(Fig. 15), we see that the best case cost for both handsets is around 0.005 J/kB of data, whereas the worst case for the G1 is
approximately 0.13 J/kB and the worst case for the N1 is approximately 0.04 J/kB. These extrema occur in different places
on the graph for the two handsets. In fact a message size of 8 K is close to the best efficiency on the N1 and the worst on
the G1.

6.4. Send buffer size

As a final example, we consider the impact of the size of the send buffer used by the application developer. Android
applications are written in the Java programming language and network data are sent by getting the OutputStream object
associatedwith a Socket instance. Data are then sent over the network by calling thewritemethod on the socket and passing
an array of bytes to send.

Nagle’s algorithm8 is used in TCP to aggregate small data chunks into a single larger packet. However, this occurs only
when there is unacknowledged data in transit. Given the small RTT of our test setup, this is rarely the case and so the
byte array is sent immediately to the client socket without waiting for further data. The size of this array therefore causes
significant changes in energy costs. Fig. 18 shows how the energy cost per kB varies with changes in the size of the byte
array passed from the application for a message of 1 kB and a message of 32 kB. Note that the buffer size (on the horizontal
axis) is shown on a log scale. For both of thesemessages, the choice of buffer size can cause a 10-fold difference in the energy
cost!

8 Described in RFC896.
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Fig. 18. Variation in energy cost per unit data with buffer size.

We expect the energy cost per kB for the 32 kB message to be lower since the fixed costs are amortised over more data.
However, the 1 kB line collapses from its flat trend to the same level as the 32 kB line beyond a certain buffer size. This is
because of the 7 K/8 K barrier we saw in the previous section: the change in cost is due to the number of frames sent over
the Ethernet regardless of howmuch data are in them, andwith a large enough send buffer there are sufficiently few frames
that the 1 kB message does not cross this barrier.

A send buffer of 1448 bytes maximally fills the payload of a TCP packet when sent over Ethernet. We find our best (and
most consistent) performance resultswhenusing a sendbuffer of this size. If the buffer is smaller than this, then transmission
efficiency is lower because packets are sent only partially filled. If the buffer is larger than this, then the operating system
must fragment data over multiple packets—this operation also incurs an overhead and reduces transmit performance.

6.5. Summary

Developers will often view choosing the amount of data to collect into a single message as a smooth trade-off between
latency and energy consumption. Our data show that for our handsets this is not the case. Similarly, the choice of send
buffer size is often a secondary performance consideration whereas we have shown that it can cause an order of magnitude
increase in the energy cost of a message. The annotations produced by our Power Server have been vital in drawing these
conclusions: they make it clear when in the trace particular events are occurring and they have allowed us to run a large
number of detailed tests by permitting automatedmeasurement of elements in the power trace. The technique of calculating
a baseline power consumption after loading the CPU to stabilise the power consumption of the device means that our
framework is unable tomeasure the power implications of variations in CPU load during a test. It is best suited tomeasuring
the consumption of peripheral devices in the phone such as networking hardware, sensors, camera and audio devices.

The implications of the results we have presented in this work are as follows.

• Owners of G1, Magic and Hero handsets would be well served to switch to static addressing if they make frequent use of
wireless networks which they administer.

• Owners of Nexus handsets will see only a minimal benefit from the use of static addressing.
• Developers on Nexus handsets may assume that efficiency increases with message size but developers on G1, Magic and

Hero handsets should limit data transmission over the WiFi to 7 K at a time if possible.
• It should not be assumed that the relative power consumption of different networking technologies remains constant

over time. In fact this relative consumption changes between hardware generations too: in 2007, it was reasonable to
assume that theWiFi network was an order of magnitudemore expensive in idle mode than the cellular network [8]. For
modern handsets, this is no longer the case.

• Developers should be aware of the implications of layering in the architecture of networks. Selecting a send buffer size
which matches the maximum transfer unit of the network can produce a significant energy improvement over small
buffers which under-fill packets and over large buffers which incur fragmentation and reconstruction overheads in the
operating system.

7. Related work

Dutta et al. present an ingeniously simple design for energymetering in situ by augmenting switching regulators [9], and
Fonseca et al. build on top of this hardware platform to apportion energy costs of components in embedded network devices
to individual activities [10]. This allows developers to quantify the effects of different approaches, but requires significant
hardware and operating system modification.

Flinn et al. have also contributed a significant body ofwork in the area ofmeasuring and reducing the power consumption
of larger mobile devices, including quantifying the energy consumption of a pocket computer [11] and the PowerScope
tool for profiling energy usage [12]. The measurements from these tools summarise the behaviour of a general application
whereas our measurements concern the behaviour of an action taken within an application.
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Significant efforts have been made to reduce the energy consumption of wireless communication; while some system
for measuring the power draw is required to evaluate these mechanisms, these have generally operated at a fairly coarse
level. Pering et al. measured the voltage and current at the network interface cards in a similar manner to our proposal, but
sampled only every 10 ms and did not attempt to align the trace with specific actions [13]; similarly, Mohan et al. looked at
the overall power required by the sensors for their pervasive application but did not investigate any further [14].

There has been less work on in-depth energy monitoring on mobile phones. Platform manufacturers have offered some
tools and guidance, but users have traditionally only cared to know the total energy remaining. As a result, most systems,
such as Nokia’s useful Energy Profiler,9 tend to have low resolution with slow response times. Google also presented useful
advice on reducing energy usage on Android phones supported by basic power measurements.10

8. Conclusions and future work

Power consumption is often quoted on a coarse scale. This provides typical values and is useful information for users
of the devices. However, application developers can benefit from knowing the detail behind these measurements and
we have shown that seemingly small decisions can have a significant impact on power consumption. We have described
our measurement framework and how it can be used to create a fine-grained understanding of energy consumption.
A particular advantage of our system is the ability to annotate the power measurements with phone and network
activity. We have shown how the synchronisation information required can be embedded in the measurement trace
itself.

We have investigated the cost of connecting to an 802.11wireless network and sendingmessages over this network. This
is a particularly common feature of pervasive computing applications. Our results have shown interesting phenomena but
the search space for potential savings remains huge. We are currently constructing a mobile version of our measurement
platform in order to investigate networking further, particularly on the move, and to study location providers and sample
rates but we welcome suggestions of other interesting aspects.

Finally, our results show that the optimisation criteria for minimising power consumption change between devices,
operating systems and operating scenarios. For example, we found that in our testing location, the idle power consumption
of the 2G network is higher than that of the 3G and wireless networks. Therefore, it is informative to consider how device
or platform developers might extend their hardware and APIs in future to integrate fine-grained power measurement and
make ‘third party’ solutions like ours unnecessary.
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