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ABSTRACT
Educational systems use models of student skill to inform
decision-making processes. Defining such a model manually
is challenging due to the large number of relevant factors.
We introduce an alternative approach by learning multidi-
mensional representations (embeddings) from student activ-
ity data. Such embeddings are fixed-length real vectors with
three desirable characteristics: co-location of similar stu-
dents and items in a vector space; magnitude increases with
skill, and that absence of a skill can be represented. Based
on the Multicomponent Latent Trait Model, we use a neu-
ral network with complementary trainable weights to learn
these embeddings by backpropagation in an unsupervised
manner. We evaluate using synthetic student activity data
that provides a ground-truth of student skills in order to un-
derstand the impact of number of students, question items
and knowledge components in the domain. We find that
our data-mined parameter values can recreate the synthetic
datasets up to the accuracy of the model that generated
them, for domains containing up to 10 simultaneously active
knowledge components, which can be effectively mined using
relatively small quantities of data (1000 students, 100 items).
We describe a procedure to estimate the number of compo-
nents in a domain, and propose a component-masking logic
mechanism that improves performance on high-dimensional
datasets.
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1. INTRODUCTION
Intelligent tutoring systems (ITS) are required to make deci-
sions about which tasks to present to which students. To this
end they should be equipped with comprehensive and accu-
rate student ability models to inform the decision-making
process. Histories of student activity on ITS platforms are
a rich source of information for such models, which could be

constructed from hand-crafted feature extraction from the
activity logs or alternatively from unsupervised data mining
methods. We explore the latter approach, learning mul-
tidimensional representations from simulated student data.
We refer to these representations as skills embeddings, af-
ter word embeddings – fixed-width vector representations of
words and language constructs that have allowed dramatic
advances in the natural language processing field [10, 14].

With word embeddings, the notion of semantic similarity be-
tween words is captured by proximity within a latent vector
space. Thus ‘boat’ should be closer to ‘car’ than ‘politics’
in this latent space, based on natural language data. We
transfer the vector space idea to skills embeddings. As with
word embeddings, skills embeddings are fixed-width vectors
of real numbers, with some specific characteristics that our
representations should exhibit:

• Skills embeddings are co-proximal in the vector space
if they represent entities comprising similar skills.

• Embedding magnitude grows with skill – specifically,
a higher skill level should entail a larger value within
the embedding.

• It should be possible to represent the special case where
a skill is absent. We will refer to this characteristic as
skill masking.

Additionally, we would ideally like to be able to detect di-
mensionality: that is the number and dependency struc-
ture of skills within the domain being learned should not
need to be specified in advance.

In this work, we provide the design for an artificial neu-
ral network – based on the Multicomponent Latent Trait
Model [22] – whose weights take the values of our embed-
dings. We attempt to demonstrate our three desired charac-
teristics in embeddings built using this network, by training
it on synthetic student activity datasets. Synthetic data al-
lows us to systematically vary the number of students, items
(questions), and knowledge components in the domain. We
demonstrate that embeddings display the three characteris-
tics listed above – co-proximity, magnitude and skills mask-
ing – and present a procedure to cater to the fourth (dimen-
sionality detection).

Skills embeddings are designed to be multi-purpose ‘pro-
files’, to help provide richer information for decision-making



in educational ITS. Objective multi-dimensional representa-
tions of student abilities and the skills required for items,
can be used as the foundation for task-selection policy opti-
misation in technology-supported education scenarios.

2. BACKGROUND
Our work relies on some core principles about the nature of
knowledge domains, the way that student ability and item
difficulty interact, and the idea that knowledge acquisition
can be traced in student activity logs [9].

2.1 Knowledge components
For any given educational domain, such as physics, mathe-
matics or language learning, we can break domain-specific
knowledge down into atomistic units known as knowledge
components (KCs), as defined by Koedinger et al. [8]:

...an acquired unit of cognitive function or struc-
ture that can be inferred from performance on a
set of related tasks. [...] As a practical matter,
we use ‘knowledge component’ broadly to gen-
eralise across terms for describing pieces of cog-
nition or knowledge, including production rule,
schema, misconception, or facet, as well as ev-
eryday terms, such as concept, principle, fact, or
skill.

For the purposes of this work, we think of ‘knowledge com-
ponent’ as being synonymous with ‘skill’ where the skill is
extrinsically irreducible – that is, if skill C comprises sub-
skills A and B, and these cannot be broken down further,
we do not represent C directly: we represent A and B and
treat their co-occurrence as the pattern for C.

We therefore think of a subject domain as a set K of KCs
to be acquired. In our datasets, we vary the number of
components from 1 to 100.

2.2 Rasch model
The Rasch item response model [19] is a well-known formula-
tion for the success probability of student s attempting item
(question) i, derived by transforming the difference between
student ability θs and item difficulty βi through a sigmoid
function. That is, the probability of success is given by:

Pr(Xsi = 1 | θs, βi) = σ(θs, βi) (1)

– where σ is the sigmoid (here a logistic curve, see Figure
1):

σ(θs, βi) =
1

1 + exp (−(θs − βi))
(2)

Note that in this model, an evenly-matched student-item
pair implies θ = β and so entails a pass-rate of 0.5. The
Rasch model assumes a single dimension of proficiency and
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Figure 1: Logistic sigmoid function

embodies invariant comparison – this means the student pa-
rameter θ can be eliminated algebraically during estimation
of the item parameters β, and vice versa [15, 24]. This prin-
ciple allows Rasch items (and by extension our embeddings)
to stand alone as objective representations, independent of
the conditions in which they were measured.

2.3 Multicomponent Latent Trait Model
The Rasch model can be extended to the multicomponent
latent trait model (MLTM) of Whitely [22]. Here, the
scalars θ and β are replaced by vectors, and the result is a
product of sigmoids. The formulation is as follows:

Pr(Xsi = 1 | θs,βi) =
∏

k∈skills(i)

σ(θsk, βik) (3)

Hence the act of student s successfully passing item i is
modelled as the conjunction of successes at each of the item’s
problem-solving steps (denoted k). The probability is given
by the product of the probabilities of completing the steps
and each step behaves as a Rasch model whose parameters
are the corresponding elements of θs and βi.



2.4 Item calibration
Traditionally, item calibration with Rasch-type models is
carried out using the Birnbaum iteration [3]. However, the
Birnbaum algorithm is one-dimensional and to the best of
our knowledge has not been extended to multiple dimen-
sions. Moreover, the Rasch approach does not readily allow
for the absence of skills: parameters would have to be set
to -∞, which is impractical for data mining, particularly
in cases where the skill is absent both from a question and
student’s representations1

2.5 Q-Matrix
To explicitly model the presence or absence of skills, we turn
to the idea of the q-matrix [18, 2], a binary- or probability-
valued matrix that describes which knowledge components
(for domain K) are relevant to particular tasks. This has
been used previously, for instance, in the Linear Logic Test
Model [23]. The matrix is formulated so that each column
of Q represents a task item i, and each row a component k.

The (binary) Q-matrix for a curriculum of items is as follows:

qik =

{
1 if k ∈ skills(i),
0 else;

(4)

The Q-matrix for students is represented similarly, with rows
indexed by student s and with the row’s values representing
the student’s abilities in the domain at the given time.

3. DATA
The configuration used in this work emulates a summative
assessment environment, such as a test. In this environ-
ment, the item bank represents the test and each student is
required to attempt each question in the bank. Each student
has one attempt per item, and the result is dichotomous: the
response is either right (X=1) or wrong (X=0).

Student activity data is synthesised using a statistical model
whose probability mass function (pmf) is just the MLTM
model given in equation (3).

Values for the outcome xsi (the attempt of student s on
item i) are determined by synthesised ground-truth values
of the MLTM parameters, indicated by asterisks: θ∗s and
β∗
i . These are the target parameters we hope to recover

from the dichotomous outcome data – that is, we want our
embeddings to converge on these values.

The elements of θ∗s and β∗
i themselves are generated uni-

formly randomly for each student and item – their minimum
and maximum values are chosen by an earlier randomised
search process, that looks for suitable bounds to generate a
balanced dataset given a specific dimensionality |K|.

We generated datasets with dimensionalities |K| ∈ {1, 2, 5,
10, 100}. We also created datasets where only a subset of

1Even assuming infinite arithmetic is allowable, if θ and β
are both -∞ then (θ− β) = 0 and the probability of success
is calculated as 0.5; in fact, for an unrequired skill, it should
always be 1, since an unrequired step is always ‘passed’.

Figure 2: Neural network architecture

components are active – for these datasets, the active com-
ponents are chosen at random.

4. IMPLEMENTATION
In this section we describe the neural network implementa-
tion used, including its design features, software used, and
the training regimen applied.

4.1 Neural network architecture
The neural network used in this work is essentially a binary
classifier. In a normal supervised learning task, the classifier
would take as input some set of features Φ(x) and a class
label C and would learn the probability that a datapoint x
is in a given class: Pr(x ∈ C | Φ(x)).

However, in the embedding generation task there is no no-
tion of the feature mapping Φ. Instead we have datapoints
of the form (s, i, pass ∈ {T, F}), describing whether student
s passed item i. Inputs to the neural network then, are s
and i, and the class label is pass.

The ‘features’ themselves are learned internally, with two
distinct sets of trainable weights. One set of weights (Θ ∈
IR|S|×|K|) represents the students, the other (B ∈ IR|I|×|K|)
the items. Whenever s occurs in a datapoint, the weights
for s (synonymous with θs) are selected from the table, and
the same happens for βi when i occurs.

The weights are fed into a locally connected layer that repre-
sents the components of the MLTM. Each unit in the layer
performs a sigmoid (logistic) operation to generate a per-
component probability. The component probabilities are
then multiplied together to get the overall output proba-
bility. This is scored against the true pass value using a loss
function, and the error is backpropagated to the weights ta-
bles.

Since the weights are re-used whenever s or i appear in a
datapoint, they converge onto values which best fit the train-



ing data. These trained weights can then be used directly
as our embedding values.

The widths of the weights tables (and subsequent layers)
determines the fixed width of the embedding that will be
generated. Both tables must be the same width, as each
student component must have a corresponding item compo-
nent.

The architecture is illustrated in Figure 2. In this diagram
the connections are shown only for a single component, to
avoid clutter. Each component functions in parallel in the
same way. Note that the diamonds on the diagram represent
Q-gates. These are trainable logic components which we will
now describe.

4.1.1 Q-gates – logic for absent components
In high-dimensional domains, it is often the case that an
item will not possess every skill component. For instance,
in both assessment and instruction, questions are usually
designed to focus particularly on a subset of skills.

As already described, the Q-matrix is a table of values that
represents the presence or absence of components. In our im-
plementation, rather than iterating through skills(k), com-
ponents are switched on and off using their Q-matrix values
per student, qsk, and per item, qik:

Pr(Xsi = 1 | θs,βi) =
∏
k∈K

Gq(qsk, qik, σ(θsk, βik)) (5)

Where Gq is a Q-gate, a ternary logic gate – related to im-
plication – with the following truth table:

qik qsk Gq

1 1 σ(θsk, βik)
1 0 0
0 1 1
0 0 1

Q-gates are implemented as part of the neural network, so
that they modify the component-level sigmoid outputs:

Gq(qsk, qik, σ(θsk, βik)) = σ(θsk, βik)qikqsk + (1− qik) (6)

The values for qik and qsk are learned via backpropagation
during training. These q-values can either be stored in their
own set of network weights, or represented by special values
in the elements of θ and β. In this work, we use the latter
technique – we clip element values to [0,1] to get the q-
value. Elements at zero represent ‘skill absent’. Elements
with values ≥ 1 represent active skills.

4.2 Co-proximity and magnitude
We can force our embedding values into an all-positive vec-
tor space by allowing only positive component values: since
the Rasch model works on component differences, we simply
need to shift all component locations until they are greater

than zero. The property of monotonically growing magni-
tude follows according to the Pythagorean theorem.

We use weight clipping in the neural network to do this:
weights may only take positive values in [0,W ], for some
large W . Small weight values in [0, 1) are in the Q-gate
activation region and are treated as absent. Larger weights,
in [1,W ] behave as normal Rasch parameters.

4.3 Training
The network was trained with a categorical cross-entropy
loss function using the Adam optimiser [7]. Generally, train-
ing is fast and a learning rate α between 0.01 and 0.1 is
acceptable.

From all instances in the training set, 10% were randomly
chosen for validation and to trigger early-stopping on lossval
with patience = 10 (i.e. we wait for a better value for ten
more epochs before quitting, keeping our best weights).

Weights initialisation matters, and a uniformly random ini-
tialisation in [θmin, θmax] for students and [βmin, βmax] for
items was found to be most effective.

The software used in this work was implemented in Python

3.6 using Keras [5] with a TensorFlow [1] back-end, and
scikit-learn [13] for the machine learning components.

5. EVALUATION
In this section we describe the steps taken to assess the per-
formance of our approach, in terms of our desired embedding
characteristics.

5.1 Prediction agreement
We attempt to recreate the original datasets by using our
embeddings θ̂ and β̂ to seed our statistical MLTM model.
We then score correlation and agreement between the out-
puts of the original process (seeded with targets θ∗ and β∗)
and the embedding-seeded process.

Since our dataset is synthetic, we can directly observe the
outcome probabilities before we stochastically determine the
outcome values. Hence we can measure correlation between
these and the predicted probabilities from the embedding-
seeded version of the dataset. We use Pearson’s correlation,
which is defined as:

ρX,Y =
cov(X,Y )

sd(X), sd(Y )
(7)

Where X and Y are continuous variables (in this case the real
and predicted probabilities of a pass), cov(·, ·) is covariance
and sd(·) is standard deviation.

In terms of the observed outcomes themselves, because the
generator process is stochastic, there will always be some
element of chance in the results. We use Cohen’s Kappa to
get a measure of the agreement beyond chance. Where N is
the number of datapoints, nagreed is the observed agreement
between both runs, and n(k;seed) is the number classed as



category k by the model seeded with seed, this gives the
following formulation:

κ =
po − pe
1− pe

where

po = nagreed/N

pe = 1
N2

∑
k={T,F}

n(k;θ∗β∗)n(k;θ̂β̂)

(8)

5.2 Co-proximity
To assess our co-proximity requirement, we measure Eu-
clidean distance from the aligned embedding θ̂ (or β̂) to
its target, θ∗ (or β∗). We compare this to the mean dis-
tance from other vectors in the corresponding space, and
test them for significance to show that co-proximity to tar-
get is not merely by chance.

5.3 Magnitude
To assess magnitude-growth-with-skill, we once again use
Pearson correlation (equation 7) at the component level be-

tween the elements of θ̂ (or β̂) and those of target θ∗ (or
β∗). A strong correlation shows that these values grow to-
gether as desired.

5.4 Aligning the components
Embeddings are identifiable only up to the ordering of the
components due to multiplicative commutivity. Concretely,
this means columns in the Θ-Table will align with columns
in the B-Table (since they are trained in unison), but these
columns may not align with our original target vectors (where
the elements may be in a different permutation).

If we wish to visualise the data, or calculate deviations from
the real parameters, we must first align the predicted compo-
nents. A hill-climbing algorithm can be used to do this, min-
imising the per-column root mean squared error between the
predictions and the true values. Although this is not guar-
anteed to find the optimal alignment of columns, in practice
it is a quick and effective means to do so.

The mean absolute parameter errors are given as θMAE and
βMAE in Table 5. Once the components are aligned, the
embeddings can be plotted, after a dimensionality reduc-
tion step such as PCA or t-SNE if there are more than two
dimensions in the domain.

6. RESULTS
6.1 All-active data fit
The main fit statistics for datasets with all-active compo-
nents are given in Table 1. All datasets were fitted with
1000 students and 100 items.

We give three separate measures of fit – raw accuracy and
Cohen’s κ to measure agreement between generated datasets,
and Pearson’s correlation ρ to measure agreement between
the underlying probabilities. The model-to-self measures (in
brackets) for Acc and κ show us how well the original statis-
tical model (i.e. seeded with the true values we are attempt-
ing to mine) is able to recreate its own data – this indicates
the level of stochastic noise in the target dataset.

Figure 3: t-SNE visualisation of embeddings in a
100-dimensional space, all active, with 100 students
and 1000 items (orange=embedding, blue=target).

We see that model-to-self accuracy drops from 0.844 to 0.651
as the domain dimensionality increases, but that this drop
is more pronounced (0.684 to 0.310) when we consider κ,
implying that much of the accuracy score is down to chance.
This makes sense since the datasets were generated to be
well-balanced.

Kappa then, is the more useful score of agreement. We
are able to see that at low to moderate dimensions (1a to
10a), κ values closely match, but for the high dimension
model (100a) the embeddings do not even achieve half of
the model’s own agreement, although it is still better than
chance (κ = 0).

Pearson’s correlation (on the underlying probabilities, and
therefore unaffected by stochastic noise) is very good (>0.9)
for the lower dimensionality models (1a to 10a), but drops
to 0.44 at high dimensionality (100a). Again this shows a
weaker, but present, correlation at high dimensions.

As an illustration, the mined values for a 10-dimension knowl-
edge domain with 100 students and 1000 items (|K|=10,
|S|=100, |I|=1000) are shown in Figure 3 using t-SNE vi-
sualisation [20]. The correlation between predicted (orange)
and target (blue) points is readily visible.

6.2 Q-gated data fit
The main fit statistics for the Q-gated datsets are given in
Table 2. The columns and dataset sizes are the same as
above, but these datasets are Q-gated, so that components
can be switched on and off. The number of active dimensions
is given in brackets, so ‘10 (1-5)’ means a domain size |K|=10
but with one to five active components per item.

In the lowest dimensional dataset (2q2), accuracy is lower



Table 1: Accuracy, Cohen’s κ agreement and Pearson’s correlation (ρ) for all-active datasets. Model-to-self
scores show how well the original dataset generator agrees with itself between runs, giving an upper limit to
the score.

Model |K|-dims (active) Acc (model-to-self) κ (model-to-self) Pearson’s ρ
1a 1 0.844 (0.844) 0.680 (0.684) 0.994 (p<0.01)
2a 2 0.776 (0.777) 0.550 (0.556) 0.986 (p<0.01)
5a 5 0.732 (0.742) 0.429 (0.439) 0.961 (p<0.01)
10a 10 0.721 (0.733) 0.425 (0.463) 0.930 (p<0.01)
100a 100 0.572 (0.651) 0.151 (0.310) 0.442 (p<0.01)

Table 2: Accuracy, Cohen’s κ agreement and Pearson’s correlation (ρ) for Q-gated datasets. Model-to-self
scores show how well the original dataset generator agrees with itself between runs, giving an upper limit to
the score.

Model |K|-dims (active) Acc (model-to-self) κ (model-to-self) Pearson’s ρ
2q2 2 (1-2) 0.801 (0.806) 0.576 (0.587) 0.987 (p<0.01)
10q3 10 (1-3) 0.771 (0.802) 0.561 (0.588) 0.943 (p<0.01)
10q5 10 (1-5) 0.822 (0.832) 0.503 (0.522) 0.942 (p<0.01)
100q5 100 (1-5) 0.732 (0.821) 0.509 (0.555) 0.754 (p<0.01)

Figure 4: Visualisation of embeddings in a 2-
dimensional space, 1000 students and 100 mixed
items (50 with two components, 50 with one com-
ponent). The dotted lines are the Q-gate thresholds
below which a respective skill behaves as if inactive.

than the non-Q-gated counterpart (2a) for both model-to-
self (0.806< 0.844) and embeddings-to-model (0.801< 0.844)
and this is also reflected in the corresponding κ values. The
higher dimensions (10q3, 10q5, 100q5) show the opposite
relationship, with higher accuracy and κ throughout.

Pearson’s correlation is comparable to the non-Q-gated data,
except for high dimensions (100q5) where the Q-gated dataset
achieves a 70% greater correlation score.

Figure 5: t-SNE visualisation showing 100 items,
calibrated from 1000 students. Here, only 1-3 di-
mensions (from a total 10) are active for any item.
The other dimensions are switched off using Q-gate
neural logic.

Figure 4 shows the mined values for a 2 KC domain, with
1 or 2 active components per item (|K|=2, active=[1,2],
|S|=1000, |I|=100). In this case we use Q-gate switching
logic, allowing components to be switched on/off. In the
plot we add horizontal and vertical dotted lines to indicate
the thresholds below which the Q-gate treats skills as inac-
tive.

Figure 5 shows the mined values for a 10 KC domain, with
1 to 3 active components per item (|K|=10, active=[1,3],
|S|=100, |I|=1000) and Q-gate switching logic. Here the



Table 3: Mean Euclidean distances from embedding
v̂ to target v vs other embeddings *(Welch’s t-test,
df=98, p<0.01)

Dims D(v̂, v) (σ) D(v̂, others) (σ) t∗

1 0.11 (0.09) 3.66 (0.65) -36,9,
2 0.79 (0.38) 3.74 (0.80) -33.1

2 (1-2) 0.24 (0.17) 4.76 (0.71) -61.2
5 2.51 (1.36) 8.63 (1.24) -33.0
10 13.56 (3.32) 16.47 (1.06) -8.26

10 (1-3) 0.85 (0.63) 9.18 (1.49) -51.2
10 (1-5) 1.12 (0.84) 10.53 (1.48) -54.9

100 79.31 (5.40) 88.30 (2.18) -15.0
100 (1-5) 1.13 (0.84) 10.53 (1.48) -54.0

clustering of target points (blue) are more pronounced than
in the all-active data (Figure 3) and we can observe how
the embeddings form clusters (orange) close to their targets.
This clustering is enabled by the Q-gate mechanism.

6.3 Co-proximity and Magnitude
Pertaining to co-proximity of embeddings to target, Table
3 gives for all models the mean Euclidean distance of em-
bedding to target, alongside the equivalent mean distance to
other points in the dataset. Mean and standard deviations
are given along with Welch’s t-test results. For all-active
component models, in absolute terms, |K|=100 displays the
largest different (8.99, a proportion of 88.30/79.31=1.11),
but K=|1| has the largest proportional difference (3.55, a
proportion of 3.66/0.11 = 33.3). The Q-gated versions of
these models fare better than their un-Q-gated counterparts,
with improvements in absolute difference of 1.57 for |K|=2,
0.60 for |K|=10 active=[1,3], 5.42 for |K|=10, active=[1,5]
and 6.50 for |K|=100. These correspond to proportional im-
provements of 4.18, 8.38, 8.89 and 7.74 respectively. All
results are significant at p<0.01.

Pertaining to magnitude-growth with skill, Table 4 gives
Pearson’s correlation for true and mined parameter values
across different dimensionalities. High correlation between
true and mined parameters indicates that the embedding
magnitude grows with skill level. Correlation is high (>0.90)
for low to moderate dimensionality (1-10) but low (0.21) al-
though still positive for high dimensionality (100).

Table 4: Component-level Pearson’s correlation ρ
between true and mined parameters

Dims Component-level ρ
1 >0.99 (p<0.01)
2 >0.98 (p<0.01)
5 0.93 (p<0.01)
10 0.90 (p<0.01)
100 0.21 (p<0.01)

6.4 Aligned parameter fit
Table 5 gives mean absolute error (MAE) between true and
aligned embedding parameter values for all model dimen-
sionalities. The MAE worsens as dimensionality and thus
the number of model parameters (Par) increases (from 0.29

Table 5: Mean absolute error in parameter compo-
nent values (from target) at growing dimensionality

Dims Par. θMAE βMAE

1 1100 0.29 0.11
2 2200 0.55 0.46

2 (1-2) 2200 0.58 0.41
5 5500 0.94 0.79
10 11000 4.61 3.42

10 (1-3) 11000 1.30 0.13
10 (1-5) 11000 1.33 0.19

100 110000 7.25 6.36
100 (1-5) 110000 3.09 0.27

and 0.11 for |K|=1, to 7.25 and 6.36 for |K|=100). At higher
dimensionality, models with Q-gated components (10 (1-3),
10 (1-5) and 100 (1-5)) show a drop in MAE for both pa-
rameters compared to their non-Q-gated counterparts.

7. DISCUSSION
Here we discuss the results of these experiments on the unsu-
pervised learning of skills embeddings, addressing in order
the characteristics of co-proximity, magnitude, skill mask-
ing, and dimensionality detection.

7.1 Co-proximity
The idea of co-proximity can be derived from the definition
of a vector. Vectors with equal elements are deemed to be
equal: that is, exactly co-proximal in their vector space.
More importantly for the embeddings is to show that the
mined vectors are closely co-proximal to their targets (i.e.
the vectors they are supposed to represent), more so than
to other vectors. Table 3 shows that in all cases the mined
vectors have significantly smaller mean distances to their
targets than to other vectors in the space. This holds even at
higher dimensions. Thus, at least within the scope of these
datasets, we can assert that co-proximity (i.e. similarity
between mined and real vectors) holds.

7.2 Magnitude
Recall the Rasch probability model, which takes as input
the difference between student ability and item difficulty
(θ − β). We have specified earlier that components in our
embeddings are non-negative. Wright and Linacre prove
that Rasch models display specific objectivity [24], and so we
can consider the θ and β parameters separately and see that
they must both increase commensurately with skill. This is
borne out in practice by the results in Table 4, which show
a high correlation between the true skill levels and those of
the parameters (for |K| ≤ 10). Thus we can be satisfied
that the second of our characteristics has been met.

7.3 Skill masking
It is apparent that our embeddings achieve a high correla-
tion with target outcome probabilities for all but the 100-
dimension model. Similar patterns can be seen with other
scores. Higher error in the vector space translates to
markedly reduced model fit.

There are at least two factors at play here: firstly, for large
|K|, the ‘curse of dimensionality’ means that all points within



the space appear metrically equidistant from one another.
That is, it becomes difficult to determine the distance (and
thus similarity) between them.

The second factor – and perhaps the more important, given
that we are still apparently able to identify our target – is in-
formational: for an item with 100 active components, a stu-
dent must achieve a pass-rate of 99.3% on each component
to get a 50% pass-rate on the item. Components that are ex-
tremely easy carry little information, since our expectation
that a student would pass them is almost always met. The
sigmoid gradient is very shallow in this region (x = 4.95)
and this makes the parameter values unstable, being very
sensitive to stochastic noise in training data. Furthermore,
because dichotomous results give us a paucity of detail, we
have no way of knowing which component was responsible
for a failed attempt. This combination of factors makes for
a very difficulty machine learning task.

Fortunately, for the Q-gated datasets (where our neural logic
can learn to mask off components) there is a different pat-
tern. These datasets behave more like low-dimensionality
data: for instance, take the case of 100 (1-5 active) dimen-
sions, compared to 100 (all active). Not only is the proba-
bility correlation better (0.75 > 0.44), but component level
error is lower (3.09 < 7.52 for θ and 0.27 < 6.36 for β). A
similar pattern is seen in the 10-dimensional data.

In practice, the ability to mask off certain components is
very useful. Although 100 KCs might be a reasonable esti-
mate for domain size |K|, one might expect most questions
to feature far fewer active skills. For instance, Pardos et al.
[11] used a question-set with domain size of 105 skills for
high-school mathematics and a maximum of three skills per
question. Some kind of masking is vital to represent such a
curriculum as fixed-width embeddings.

The advantage of Q-gate masking is that the exact num-
ber and composition of skills per question, does not need to
be known, because it can be learned during the embedding
process. For instance, the dimensionality of the embeddings
we use, need not exactly match the domain – if we make
the embeddings too wide, the Q-gates will switch off excess
components. We give a procedure to estimate domain di-
mensionality next.

7.4 Dimensionality estimation
Although it is not possible to directly detect the dimension-
ality |K| of a dataset, there is a simple procedure to estimate
|K|. Embedding models can be trained across a span of can-
didate values |K|cand within which the true |K| is believed
to lie. The accuracy of fit to the dataset should be observed
during training. Typically for |K|cand > K accuracy grows
faster but reaches a lower maximum before overfit and de-
cline. For |K|cand < K the growth is considerably slower.
Often the true value of |K| can be found by inspection within
a few epochs. Alternatively, the training process can be al-
lowed to continue and halted by early-stopping.

Figure 6 shows the result of this process for a dataset with
|K| = 5, |S| = 1000, |I| = 100. We plot candidate dimen-
sionality values |K|cand ∈ {1, 3, 5, 7, 10} against the maxi-
mum accuracy attained on each attempt to fit a model to

Figure 6: Dimensionality detection: candidate di-
mensionality values on the x-axis, maximum accu-
racy for each model fit on the y-axis; ten runs for
each dimensionality, with mean maximum accuracy
plotted as a line.

the dataset. We applied a neural network 10 times for each
value of |K|cand, and plot the mean maximum accuracy as
a line in Figure 6. A peak in the line at the appropriate
value of |K|cand = |K| = 5 is clearly visible and therefore
we propose this procedure for dimensionality detection.

8. FUTURE WORK
This work is the beginning of a wider investigation into neu-
ral techniques for educational data mining. In this section
we outline upcoming work.

8.1 Variant models
We have focussed on the MLTM in this work, but there
are several other models for which similar tests can be run.
These include the Learning Factors Analysis (LFA) [4] and
related Performance Factors Analysis model (PFA) [12] which
are multivariate Rasch-type models in which parameters are
additive instead of multiplicative.

8.2 Formative assessment
We have worked with static item and student parameters
in this work (a summative assessment scenario). To max-
imise the utility of embeddings, we need to apply them in
areas where students are learning, and their embeddings are
changing over time. This is a more challenging scenario: it
entails modelling learning rates, forgetting, and accounting
for interference from outside the system.

The variant models mentioned above support practice-based
components, and MLTM can be extended to do so. However,
it may be necessary to loosen restrictions on data gathering



– for instance by using polychotomous item responses – al-
lowing us to collect more detailed component-level data in
order to mine more complex models.

8.3 Working in higher dimensions
We have seen that masking components (here using Q-gate
logic) helps us to deal with high-dimensional vector spaces,
that otherwise become problematic. We believe a more thor-
ough analysis of the challenges of training high dimensional
models is warranted, since robustness in such models would
be useful. Additionally we may be able to use active learn-
ing – a means of selecting higher-information datapoints [16]
– and attention mechanisms, in which the neural network has
trainable weights that increase the contributions of the most
informative datapoints [21]. These two techniques, perhaps
combined, could help to increase our information uptake,
improving the efficiency of training at higher dimensions.

8.4 Use in reward-based teaching algorithms
One of the key motivations for the embedding approach is
its potential for use in reward-based policy generation. In
such a setting, a system applies a policy to solve a task,
and is rewarded based on some evaluation metric. It then
modifies the policy to seek higher reward, a process called
reinforcement learning [17, 6]. For education, policies might
dictate the ordering or pace of delivery of school work. Em-
beddings have a two-fold use in this setting: because they
allow us to objectively compare items and students, we can
make policy based on them. We can also link reward from
them – for instance by basing reward on magnitude growth,
or by rewarding improvements in certain components. This
is a rich area for further research.

8.5 Application to real student data
The authors are currently in the process of mining real stu-
dent activity data, from a major online physics-teaching
platform. We believe the embeddings discovered during that
process will shed more information on realistic dimensional-
ity, the structure of skills within questions, and help us to
study realistic student changes over time. We also intend
to report on the interpretability of embeddings by human
experts.

9. CONCLUSION
This work introduces a new technique for data mining of
multidimensional student and task representations – skills
embeddings – using a neural network with complementary
sets of weights to perform unsupervised learning of Rasch-
type parameters, via a Multidimensional Latent Trait Model
formulation.

We applied our data mining model to synthesised student
activity datasets in order to learn the appropriate network
weights with which to seed the embeddings. This approach
is able to extract the underlying parameters in moderately
high-dimension data (|K|=10) even for small datasets (100
items, 1000 students).

We explained four key desired characteristics for these em-
beddings: co-proximity of similar objects in vector space,
growth of magnitude with skill, applicability in domains of
unknown dimension, and ability to model missing skills. Of

our desired characteristics, we showed that the embedding
technique can directly provide all but the third. We give
a procedure to address dimensionality detection, and note
that skill masking with Q-gate neural logic provides further
mitigation.

We showed that performance, in terms of model agreement
with the data, suffers for large numbers of active dimensions
(i.e. |K|=100). We found that skill masking with Q-gates
improves this situation, bringing better performance for re-
alistic datasets where only a small subset of skills are active
at once. Lastly, we discussed extensions to this idea and
outlined our programme of future work.

10. ACKNOWLEDGMENTS
This paper reports on research supported by Cambridge As-
sessment, University of Cambridge. We thank members of
the Isaac Physics team, our colleagues in the ALTA Insti-
tute, and the three anonymous reviewers for their valuable
feedback.

11. REFERENCES
[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo,

Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean,
M. Devin, S. Ghemawat, I. Goodfellow, A. Harp,
G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga,
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