DeepDelta: Learning to Repair Compilation Errors

Ali Mesbah®, Andrew Rice®,

Edward Aftandilian*, Emily Johnston*, and Nick Glorioso**
*“University of British Columbia, °University of Cambridge
, *Google
amesbah@ece.ubc.ca,acr31@cam.ac.uk
{eaftan,epmjohnston,glorioso}@google.com

ABSTRACT

Programmers spend a substantial amount of time manually repair-
ing code that does not compile. We observe that the repairs for
any particular error class typically follow a pattern and are highly
mechanical. We propose a novel approach that automatically learns
these patterns with a deep neural network and suggests program
repairs for the most costly classes of build-time compilation failures.
We describe how we collect all build errors and the human-authored,
in-progress code changes that cause those failing builds to transi-
tion to successful builds at Google. We generate an AST diff from
the textual code changes and transform it into a domain-specific
language called Delta that encodes the change that must be made
to make the code compile. We then feed the compiler diagnostic
information (as source) and the Delta changes that resolved the di-
agnostic (as target) into a Neural Machine Translation network for
training. For the two most prevalent and costly classes of Java com-
pilation errors, namely missing symbols and mismatched method
signatures, our system called DEEPDELTA, generates the correct
repair changes for 19,314 out of 38,788 (50%) of unseen compilation
errors. The correct changes are in the top three suggested fixes 86%
of the time on average.

ACM Reference Format:

Ali Mesbah®™, Andrew Rice®,, Edward Aftandilian*, Emily Johnston*, and
Nick Glorioso*. 2019. DeepDelta: Learning to Repair Compilation Errors.
In Proceedings of The 27th ACM Joint European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering (ESEC/FSE
2019). ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/nnnnnnn.
nnnnnnn

1 INTRODUCTION

One of the benefits of using a compiled programming language
is that programming mistakes can emerge at compilation time
rather than when the program is executed. A failed build will often
prompt an edit-compile cycle in which a developer iterates between
attempting to resolve diagnostic errors and rerunning the compiler.

A previous large-scale study reported that professional develop-
ers build their code 7-10 times per day on average [43]. The study
found that build-time compilation errors are prevalent and cost

*This work took place while Ali Mesbah was a Visiting Researcher at Google.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ESEC/FSE 2019, 26-30 August, 2019, Tallinn, Estonia

© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-x-xxxx-XxXX-X/YY/MM.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

developers substantial time and effort to resolve. Build-time compi-
lation errors' emerge when a developer compiles her code through
a build management system such as Bazel, Gradle, or Maven.

Our goal is to help developers to repair build errors automatically.
We propose a novel approach, called DEEPDELTA, for automated
repair of build-time compilation errors. Our insight is that there
exist common patterns in the way developers change their code in
response to compiler errors. Such patterns can be learned automat-
ically by extracting Abstract Syntax Tree (AST) changes between
the failed and resolved snapshots of the code and feeding these as
abstracted features to a deep neural network.

This paper makes the following contributions:

e We perform a large-scale study of compilation errors and
changes that resolve them to find the most prevalent and
costly error kinds in practice. Our dataset is collected from
10,000 Java projects containing 300 million LOC at Google.
Our study shows that 51% of all compiler diagnostics are
related to the compiler not being able to resolve a particular
symbol, which is also the most costly category of compiler
errors to fix.

e We formulate automated repair as a Neural Machine Trans-
lation (NMT) [47] problem in which the source contains
information about the failure and the target is the set of
AST changes, captured in a domain-specific language, called
Delta, which resolves the failure.

e We present the instantiation of our approach, called DEEP-
DELTA, which automatically generates source and target
features from previous developer data and learns repair pat-
terns for the two most prevalent and costly classes of Java
compilation errors in practice.

e We show that our technique is effective through a large-scale
empirical evaluation on 38,788 unseen compilation errors at
Google. Our results show that DEEPDELTA can generate the
exact correct repair between 47%-50% of the time. Of these
cases, the correct fixes are in the top three suggested fixes
85%-87% of the time.

Previous research in the area of automated program repair has
focused on finding patches when a test failure occurs through fixed
templates and search-based techniques [16, 25, 29, 30]. A recent
related work [18] deploys deep learning and achieves an accuracy
of 27% on fixing syntax errors in C. This accuracy is obtained on
examples of students completing 93 different programming tasks,
which means numerous implementations of the same program. In
comparison, we learn from much more diverse and real developer

!In this paper, we use build errors and compilation errors interchangeability to mean
build-time compilation errors.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

D1 D1

[No Diagnostics] D2 [No Diagnostics]
D3 D3
Build 1 Build 3
HEAD Build 2 Build 4

(a) Four builds with three build diagnostics D1-3.

D3 Resolved

v v v

Build 2 Build 4

= Resolution Session 3 =

(b) Resolution session for D3.

Figure 1: Build Resolution Sessions.

code changes and achieve a 85% improvement (or 23 percent point
improvement). Our work focuses on learning AST changes, rather
than whole program code, which we believe is novel and gives us
significantly better results as shown by our evaluation results.

2 COLLECTING COMPILATION ERRORS

The first step required for learning repair patterns is obtaining de-
veloper data on compilation errors. We collect this data as part of
the regular development cycle at Google. We also use this dataset
to characterize the prevalence and cost of different classes of com-
pilation errors in practice.

2.1 Data Collection

Every build initiated by a developer is automatically logged at
Google. The log contains detailed information about each build,
including any compiler diagnostics, i.e., detailed error messages,
along with a snapshot of the code that was built.

For this study, we collected textual build logs for a period of two
months, from January 23, 2018, to March 23, 2018. The collected
logs were subsequently parsed and analyzed to understand which
build errors happen most frequently in practice. Although our build-
diagnostics framework is language-agnostic, in this paper, we focus
on build errors pertaining to Java projects.

2.2 Diagnostic Kinds

We group compiler error messages by diagnostic kind. A diagnostic
kind represents a class of errors that all have the same cause. Com-
pilers have error message templates into which concrete names are
interpolated. For example, javac uses the template “{0} is abstract;
cannot be instantiated” for an attempt to instantiate an abstract
class and it refers to it by the key abstract.cant.be.instantiated.
We built a parser to map concrete error messages in the build log
back to the message templates that produced them (see Table 2).

2.3 From Diagnostics to Resolutions

A failed build can contain numerous diagnostics; each of these
diagnostics might be new or might be the same as one reported from
a previous build. We therefore first set out to convert sequences of
builds containing a particular diagnostic into resolution sessions.

DEFINITION 1 (RESOLUTION SESSION (RS)). A resolution session
(RS) for a build diagnostic D; is a sequence of two or more consecutive
builds, By, By, ..., By where D; is first introduced in By and first

resolved in By, and the time between build B, and By—1 is no more
than a given time window T.

The intention with a resolution session is to capture the period
of time that the developer is actively working on resolving the
diagnostic. Therefore, we define the time window T to be one hour.
This window represents a “task switch window,” i.e., if a developer
has not performed a build within T, it is likely they have switched
to some other activity; e.g., they could have gone to a meeting,
lunch, or left the office.

We quantify the developer cost in terms of time needed to resolve
a particular diagnostic. Consider a diagnostic D; with a resolution
session By, By, ..., B. Let |D;| be the number of diagnostics pro-
duced by build B;; we call this the active diagnostics at B;. Let Ts;
be the start time that build B; was initiated, and Te; be the end time
that build B; completed. Then we define active resolution cost as:

DEFINITION 2 (AcTIVE REsoLuTION CosT (ARC)). For a diag-
nostic D;, Active Resolution Cost (ARC) represents the active time
the developer spends resolving D;, excluding the cost of the builds
themselves, divided by the number of diagnostics present in the inter-
mediate builds of its resolution session:

kz_]l Tsi+1 — Te;
~ |Dil

Figure 1 depicts an example of how we construct resolution
sessions. As shown in fig. 1a, D1 and D2 are first introduced in
build 1, and D3 first appears in build 2. We consider a diagnostic
to be resolved when it disappears from the build (see Definition
1). For instance, D3 disappears in build 4, and thus its resolution
session includes builds 2-4, as shown in Figure 1b.

Table 1: Dataset

Builds 4.8 million
Failed Builds 1.0 million
Compiler Diagnostics 3.3 million
Resolution Sessions 1.9 million
Green & Singular Sessions 110,219

2.4 Dataset and Findings

Table 1 summarizes our dataset. We processed a total of 4.8 mil-
lion builds of which 1.0 million were failures, i.e., around 20% of all
builds fail.

Table 2: Top 10 diagnostic kinds by Active Resolution Cost (ARC).

Diagnostic Kind ARC (s) Builds in session | Resolved diagnostic | ARC | Description

compiler.err Avg. Min Max | Avg. Min Max | Instances % %

cant.resolve 301 0 14,828 2.6 2 143 949,325 51 47 | Use of undefined symbol

cant.apply.symbol 351 0 11,064 2.6 2 101 151,997 8 11 | No method declaration found
with matching signature ({0} {1}
in {4} {5} cannot be applied to
given types)

strict 218 0 11,776 2.2 2 72 109,156 6 9 | Incorrectly declared dependen-
cies

doesnt.exist 348 0 13,244 2.7 2 70 159,158 9 7 | Use of undefined package

cant.apply.symbols 320 0 8,859 2.5 2 41 60,287 3 5 | No method declaration found
with matching signature (No
suitable {0} found for {1}({2}))

expected 188 0 6,542 2.5 2 72 168,299 9 Syntax error

inconvertible. types 277 0 6,907 2.5 2 42 38,191 2 3 | Cast between inconvertible
types

unreported.exception 207 0 4,917 2.3 2 32 22,684 1 2 | Code may throw checked excep-
tion, which must be handled

already.defined 206 0 6,423 2.4 2 24 12,381 1 1 | Symbol already defined

does.not.override.abstract 458 0 10,015 2.8 2 43 8,089 0.4 1 | No implementation for inher-
ited abstract method

Recall that a build failure can contain multiple compilation er-
rors, i.e., diagnostics. These build failures contained a total of 3.3
million diagnostics from which we were able to find 1.9 million res-
olution sessions. The remaining 1.5 million diagnostics for which
we found no resolution session correspond to those changes aban-
doned by developers or with more than one hour between build
attempts.

As a final step we identified 110,219 resolution sessions which
contained only a single diagnostic (singular) and which ended in
a successful build (green). We use these singular, green resolution
sessions as training data since we can be sure that the change
made by the developer actually resolved the diagnostic in question.
Our dataset excludes automated batch builds since we are only
interested in interactive activity by developers.

Table 2 presents the top-ten most frequent and costly build errors
in our dataset. The table shows the diagnostic kind, active resolution
cost (average, min and max), the number of subsequent builds to
resolve the diagnostic (average, min and max), the number and
percentage of instances of each diagnostic kind, the relative active
resolution cost with respect to the total, and a textual description
of the diagnostic kind.

In total, there were 1,853,417 compiler diagnostics that were later
fixed within a resolution session. As the table shows, 51% (949,325)
of those diagnostics are related to the compiler not being able to
resolve a particular symbol, i.e., the cant.resolve diagnostic kind
with a “cannot find symbol” message. Our results also confirm a
previous study conducted in 2014, which showed 43% of build errors
are caused by issues related to cant.resolve [43]. Compared to the
findings in 2014, it seems the issues developers have with missing
symbols have only been exacerbated. The next diagnostic kind in
the table in terms of instances is cant.apply.symbol with 8% of
total diagnostics. cant.apply.symbol happens when the compiler
cannot find a method declaration with the given types.

We also calculated the relative cost of build errors by multi-
plying the number of build-diagnostic instances by the average
active resolution cost needed to resolve the diagnostic, for each
diagnostic kind. The total cost amounts to 57,215,441 seconds for
two months of data. This means within two months, developers
spent approximately 21 months fixing build errors. From this total,
cant.resolve is again the most costly diagnostic kind by far, with
47% (~ 10 months) of the total active resolution cost. cant.apply.-
symbol acounts for 11% (~ 2 months) of the total active resolution
cost. These top-two error classes alone account for 58% of the total
cost, which is approximately a year of developer cost in our dataset.

3 RUNNING EXAMPLE

Given the high prevalence and cost of cant.resolve and cant.apply. -

symbol in practice, we focus on these two categories of build errors
to generate repair suggestions in this work. Note, however, that our
approach is generic enough to be applied to any of these diagnostic
kinds with minor adaptations. We use the cant.resolve kind as a
running example in our paper. An identifier must be known to the
compiler before it can be used. An inconsistency between the defi-
nition of an identifier and its usage, including when the definition
cannot be found, is the root cause of this build error. This occurs
when there is, for instance, a missing dependency (e.g., on another
library), a missing import, or a mistyped symbol name.

As a motivating example, consider the following code snippet:
import java.util.List;
class Service {

List<String> names() {

return ImmutablelList.of ("pub", "sub");

}
}

When this code is built, the compiler produces the following error
message:

Service.java:4: error: cannot find symbol
symbol: variable Immutablelist

In this case, the developer has forgotten to import the package
for ImmutableList (from the Google Guava library) and so the com-
piler cannot resolve the symbol. To fix the problem, the developer
determines the correct package for the missing symbol and adds
an appropriate import statement:
import java.util.List;
+++ import com.google.common.collect.ImmutableList;
class Service {

List<String> names() {

return ImmutablelList.of ("pub", "sub");

3
}

Because ImmutableList is defined in a different project, one must
also declare the dependency to the build system. Using the Bazel
build system, the fix might be to delete the existing reference to
Guava’s base package and add its collect package instead:
java_library(

name = "Service",
srcs = [
"Service. java",

1,
deps = [

+++ "//java/com/google/common/collect"”,
1,

4 FINDING RESOLUTION CHANGES

Once build diagnostics are collected and resolution sessions are con-
structed, we pass the resolution sessions to the resolution change
detection step of our pipeline. The goal in this step is to systemati-
cally examine how developers change their source code to resolve
build errors.

4.1 Retrieving Code Snapshots

At Google, changes made to the source code in developers’ IDE
clients are automatically saved in the cloud as temporal snapshots.
This means a complete history of all saved changes made to the
code is preserved with retrievable snapshot identifiers. This feature
allows us to go backward in time and retrieve a snapshot of the
code in the state it was in at the time of a particular build.

For every build resolution session computed, our approach first
extracts the snapshot IDs in the first and the last builds. The first
ID corresponds with the code snapshot that caused the diagnostic.
The second ID points to the code snapshot in which the diagnostic
was resolved.

Using each snapshot ID, we then query the snapshot cloud server
to obtain the code exactly as it was at that particular point in time.

4.2 AST Differencing

At this point, we have at our disposal two snapshots of the code at
the broken and fixed states, for each resolution session. To under-
stand how developers change their code to resolve build errors, we
compute the differences going from the broken state to the fixed
one.

COMPILATION_UNIT

Figure 2: Java AST Changes.

The conventional method for detecting source code changes
is the Unix line diff [23], which computes changes at the textual
granularity of only line-level add and delete actions. This leads to a
diff which is largely dependent on how the source code is formatted.
While line diff is a popular method for human consumption, e.g.,
during code review, automatically inferring syntactic changes to
the code from textual line diffs is difficult.

To analyze code changes at the syntactic level, we take a tree
differencing approach [13, 15]. We parse the broken and fixed snap-
shots of each resolution session to generate the corresponding
abstract syntax trees (ASTs). We have created parsers for Java and
the Bazel BUILD language in this project, although support for
other languages can easily be added.

Then the ASTs of the broken and fixed snapshots are passed into
a tree differencing algorithm.

DEFINITION 3 (AST Di1rF). Given two ASTs, source asts and target
asty, an AST Diff is a set of vertex change actions that transforms
astg into asty.

The AST differencing algorithm first tries to map each vertex
on the source AST asts to a vertex on the target AST ast;, by
comparing the vertex labels. If any unmatched vertices are detected,
it computes a short sequence of edit actions capable of transforming
asts into ast;. Finding the shortest edit action is NP-hard; therefore,
heuristics are used to compute a short transformation from ast to
ast; deterministically [13]. The final output of the tree differencing
step is composed of a set of change actions that indicate moved,
updated, deleted, or inserted vertices on the source and target ASTs:

e Moved: an existing vertex (and its children) in asts is moved
to another location in ast;.

o Updated: the old value of a vertex in asts is updated to a new
value in ast;.

e Deleted: a vertex (and its children) in ast; is removed in ast;.

o Inserted: a vertex that is non-existent in ast; is added in ast;.

Figure 2 visualizes the AST of our motivating example (see Sec-
tion 3) in the initial broken state (a) and the fixed AST (b) after the
developer added the import in the Java code.

The changed vertices detected by the AST diff are indicated in
grey in Figure 2. The AST diff for the Java code in the running
example detects that there is an IMPORT vertex inserted into the
root vertex, COMPILATION_UNIT. The fully-qualified package name of
Immutablelist is also inserted as a child vertex into the new IMPORT

vertex. For the build file, the change action detected is an update
in the dependencies (deps), namely, the common base package is
updated to common collect.

4.3 Resolution Changes

Our insight is that there are recurrent patterns in the way devel-
opers resolve build errors in practice. Such patterns can be auto-
matically inferred from resolution changes and leveraged to assist
developers.

DEFINITION 4 (REsoLUTION CHANGE (RC)). A resolution change
(RC) is an AST Diff between the broken and resolved snapshots of the
code, in a build resolution session.

5 REPAIRING BUILD ERRORS

Recent studies [2, 21] suggest that models originally developed
for analyzing natural language, such as n-gram models, are also
effective for reasoning about source code. This has come to be
known as the software naturalness hypothesis [2], which states that
large code corpora are statistically similar to natural-language text,
since coding is also an act of human communication. Following this
naturalness hypothesis, we believe probabilistic machine learning
models that target natural language can be further exploited for
helping software developers. More specifically, the idea we pro-
pose here is to formulate the task of suggesting build repairs as a
Neural Machine Translation (NMT) problem. Instead of translat-
ing one natural language into another, in our case, a given source
build-diagnostic feature is “translated” to a target resolution change
feature that resolves the diagnostic.

5.1 Feature Extraction

We generate features from each resolution change: a build diag-
nostic and the edits that fix that diagnostic. We use the generated
features as input into a neural network to learn patterns of trans-
formations between build diagnostics and resolution changes.

For each resolution change in the resolution sessions, we gener-
ate a source feature and a target feature, separately. A pair of source
and target features capture information about the build failure and
AST changes made to resolve the failure, respectively.

Source Features. The source feature pertains to the build diag-
nostic kind and its textual description. These can be included in
the source features for any diagnostic kind without any diagnostic-
specific knowledge.

To provide more contextual information to the machine-learning
algorithm, we can optionally add more diagnostic-specific infor-
mation to the source feature. For instance, for cant.resolve, we
parse the snapshot of the broken code into an AST. We locate the
missing symbol on the AST using the information provided by the
compiler, such as its label and location. Once the symbol is located,
we traverse the tree to extract its AST path.

DEFINITION 5 (AST PaTH (AP)). The AST Path AP of a missing
symbol Sy, is defined as the sequence of AST vertices from the root to
the parent vertex of Sy, on the AST of the broken snapshot.

COMPILATION_UNIT

java.util.List IDENTIFIER ‘ METHODL
‘ IDENTIFIER ‘ ‘ PARAMETERIZED,TYPE‘ RETURN ‘
‘ IDENTIFIER ‘ ‘IDENT\F\EF{ ‘ ‘METHDD,INVOCATION ‘

‘STR\NG,UTERAL‘ ‘STRING,LITERAL‘
Missing symbol |ImmutableList

Figure 3: AST Path of ImmutableList.

AST path can increase the accuracy of the technique between 15-
20%. The AST path provides the deep neural network with contex-
tual information about the missing symbol, such as whether the
symbol is a local variable inside a method or a class variable.

In addition to the AST path of the symbol, its tree vertex type and
label, as well as its child vertices (e.g., type arguments for method
calls) are added to the source feature.

For our running example, the source feature would include:

e Diagnostic kind: compiler.err.cant.resolve

Diagnostic text: cannot find symbol

AST path: COMPILATION_UNIT CLASS METHOD RETURN METHOD-
_INVOCATION of

Symbol type: IDENTIFIER

e Symbol label: ImmutableList

For cant.apply.symbol, we augment the source feature with
three types of data, namely, expected, found, and reason. Expected
pertains to the expected types inferred by the compiler, found
shows the types found in the code, and reason represents a textual
description of why the compiler cannot apply the symbol.

Target Features. The target feature contains information about the
resolution changes, i.e., AST changes made to the failing snapshot
to resolve the build diagnostic.

To capture the resolution-change features, we define a domain-
specific language (DSL) called Delta. Delta’s grammar is formally
specified in the Extended Backus-Naur form (EBNF) for ANTLR [38]
and shown in Listing 1.

Each Delta feature starts with a file type (i.e., JAVAFILE or BUILDF-
ILE) where the change was applied, followed by a series of change
actions. Each change action contains an AST-change type (e.g.,
INSERT, UPDATE) and the changed AST node’s type and value. For
change types INSERT, DELETE, and MOVE, the parent node of the
changed node is also included to provide more contextual informa-
tion about the relative proximity of the changed node on the AST.
For UPDATE, the before and after values of the changed nodes are
captured.

For our running example, the target resolution-change features

Figure 3 highlights the AST path for the missing symbol, ImmutableListfor Java and for the build file are shown in Listing 2 and Listing 3,

in our running example. Our evaluations show that including the

respectively.

Delta.grammar

resolution_change_feature
: file_type WS (change_action (WS)?)* EOF ;

change_action
: change_type WS (location WS)? single_token token_seq <>
location WS single_token

token_seq ;
file_type : 'BUILDFILE' | 'JAVAFILE' ;
change_type : 'INSERT' | 'DELETE' | 'UPDATE' | 'MOVE' ;
location : 'INTO' | 'FROM' | 'BEFORE' | 'AFTER' ;
single_token : TOKEN WS ;
token_seq : (TOKEN (WS)*)x* ;

WS (Ut N\t
TOKEN : (COLON | QUOTE | COMMA | LOWERCASE | UPPERCASE | DIGIT «
| UNDERSCORE) +;

fragment UNDERSCORE :
fragment COLON : '

fragment QUOTE :

fragment COMMA :)

fragment LOWERCASE : [a-z] ;
fragment UPPERCASE : [A-Z 1 ;
fragment DIGIT : [0-9] ;

Listing 1: Delta grammar

fileType JAVAFILE
change_action

change_type INSERT
single_token IMPORT
location INTO

single_token COMPILATION_UNIT

change_action

change_type INSERT

single_token com

token_seq google common collect ImmutablelList
location INTO

single_token IMPORT

Listing 2: Delta Java example

fileType BUILDFILE
change_action

change_type UPDATE

location BEFORE

single_token java

token_seq com google common base
location AFTER

single_token java

token_seq com google common collect

Listing 3: Delta build file example

Feature Generation. Once features are computed, all source and
target features are analyzed, separately, to generate two vocabulary
lists of |V| frequent tokens for source and target, respectively. For
instance, since the token ‘COMPILATION_UNIT’ is the root node of
the AST path, it occurs frequently in the source features. Therefore,
this token will be in the source vocabulary list. Similarly, the token
‘BUILDFILE’ exists in many target features and will be included
in the target vocabulary list. These frequent tokens are used for
embeddings during the training and inference, i.e., tokens from the
vocabulary are mapped to vectors of real numbers for training and
inferred vectorized representations are mapped back to the tokens
in vocabulary for inference.

Finally, the features dataset is randomly partitioned into three
chunks of 70%, 15%, and 15% for training, online evaluation of the

model during training, and offline evaluation of the model against
unseen features (see Section 6), respectively.

5.2 Learning Resolution Change Patterns

Recent deep NMT models have been quite successful at translat-
ing natural language text from a source language to a target lan-
guage [47]. NMT achieves this by modelling and learning the con-
ditional probability p(y|x) of translating a source feature x into
a target feature y through an encoder-decoder [6] setting, also
known as seq2seq [45]. The encoder is responsible for computing
a representation for each source feature x, without making any
predictions. The decoder’s task is to generate a translation y based
on that source representation, by predicting the next tokens in the
sequence.

Our deep neural network is built on top of TensorFlow [1]. It
is composed of deep Long Short-Term Memory (LSTM) [22] Re-
current Neural Networks (RNNs) of 1024 units with 4 encoder and
4 decoder layers. As encoder type we use the Google Neural Ma-
chine Translation (GNMT) encoder [47], which is composed of 1
bi-directional layer and 3 uni-directional layers.

As optimizer, we employ the Stochastic Gradient Descent (SGD)
algorithm [9] with a learning rate of 1.0. To mitigate over-fitting the
model, we set a dropout value of 0.2. The idea is to randomly ignore
units from the neural network during training, which prevents
co-adaptations on the training data [44].

LSTMs perform well for short to medium input sequences but
fail on large sequences. Attention mechanisms [3, 31] solve this
limitation to a large extent by extending the attention span of
the network. Since our resolution-change feature sequences could
potentially be long, in our network, we adopt the normed Bahdanau
attention [3].

5.3 Inferring Repair Suggestions

The whole process of generating resolution sessions, resolution
changes, and features, as well as training the model is pipelined
using sequential dependencies, which makes our whole learning
process automated and repeatable.

Once the model is trained, it is uploaded to a server where we
can query it for repair inference. The model can produce various
translations for any given input. In our NMT setting, the translation
is carried out using beam search [47], a heuristic search algorithm
that makes a trade-off between translation time and accuracy. The
input to the model is a source feature x representing a compila-
tion failure. The inferred suggestions are returned as n sequences
{y1,y2, - .., yn}. Each y; represents a distinct repair suggestion for
x and is composed of a series of resolution change tokens to be
applied to the failing program.

6 EVALUATION

We conducted an empirical evaluation to assess the efficacy of
DEEPDELTA for the two most prevalent and costly compilation
errors, namely cant.resolve and cant.apply. symbol.

Table 3: Generated features

Diagnostic Kind | Features | Train Val | Test | Vocab
cant.resolve 265,456 | 186,992 | 42,363 | 36,101 | 30,000
cant.apply.symbol 25,201 19,407 3,107 2,687 | 30,000

6.1 Data Generation

The dataset we use for training and evaluation is described in Sec-
tion 2.4, which is composed of developer build data collected over
a two months period at Google.

AST diffs between the failing and resolved snapshots were com-
puted for all green, singular resolution sessions in our dataset. We
constrain the number of AST changes to be larger than zero and
fewer than six, as higher numbers of changes often include refac-
torings, and in previous studies fixes have been shown to contain
fewer than six modifications [34]. We computed 110,219 green,
singular resolution sessions in total, over 37,867 distinct Java and
7,011 distinct build files.

Since we are dealing with a large industrial codebase, we set |V,
the maximum number of frequent tokens in the source and target
vocabulary lists, to 30,000. The output of the feature-generation step
is two vocabulary files for source and target, each containing a max-
imum of 30,000 unique tokens. In total, 265,456 and 25,201 source/-
target features were generated for cant.resolve and cant.apply.-
symbol, respectively. These feature sets are randomly shuffled and
partitioned in three separate categories, namely, Train (for training),
Val (for online evaluation during training) and Test (for offline eval-
uation of the trained model) as presented in Table 3. Each category
contains source and target feature pairs.

6.2 Training

We generate features and train two models separately for cant. -
resolve and cant.apply.symbol to compare the applicability of
DEEPDELTA on different diagnostic kinds. In addition to the deep
neural network setup described in Section 5.2, we configure the
network as follows. The maximum sequence length for both source
and target is set to 100. The batch size is 128, and the number of
training steps is 100,000. We configure the inference to generate 10
suggestions (See Section 5.3).

To train a model, we feed the source and target features of the
train dataset as well as the vocabulary lists to the network. The
model starts by creating the source and target embeddings for
all token representations. To that end, a vocabulary is provided
for the source and target for tokens that are meant to be treated
uniquely. We also feed the Val dataset to the network for online
evaluation during training. Our models are trained on Google’s
Tensor Processing Units (TPUs) [24].

6.3 Evaluation Method

We use the Test datasets, containing the source and target features,
for our evaluation. These are datasets that our trained models have
not seen before. We evaluate each diagnostic kind separately. For
each item in the test dataset, we retrieve the source feature and
send it to the inference server to obtain repair suggestions. The
target feature of the item in the test dataset, which is the fix the

developer performed to repair the build error, is used as a baseline
to assess the 10 suggestions generated by DEEPDELTA.

We employ different metrics for evaluating the repair sugges-
tions.

Perplexity. Perplexity [4] measures how well a model predicts
samples. Low (e.g., single digit) perplexity values indicate the model
is good at predicting a given sequence.

BLEU. The next metric we use to assess the generated output
of the model is BLEU [37]. BLEU is a well-known and popu-
lar metric for automatically evaluating the quality of machine-
translated sentences. It has been shown to correlate well with hu-
man judgments [7, 17]. BLEU calculates how well a given sequence
is matched with an expected sequence in terms of the actual to-
kens and their ordering using an n-gram model. The output of the
BLEU metric is a number between 1-100. For natural language
translations, BLEU scores of 25-40 are considered high scores [47].

Syntactic Validation. For validating the suggestions for syntacti-
cal correctness, we generate a lexer and parser from our Delta gram-
mar through ANTLR4. We pass each inferred suggestion through
the Delta lexer/parser. This way, we assess whether the model gen-
erates suggestions that conform to the grammar of the expected
resolution changes. The output is binary, i.e., either the suggestion
is valid or invalid.

Correctness of Suggestions. A source build diagnostic is consid-
ered correctly repaired if at least one of the 10 suggested repairs is
valid and exactly matches the fix the developer performed, i.e., the
target feature (baseline) in the test dataset. We use textual string
equality for comparing each suggestion with the baseline.

Ranking of Correct Repairs. The ranking of the correct sugges-
tion in the list of the suggestions is an indication of how well the
model can generate the correct repair. The higher its ranking, the
sooner the repair can be applied. For each failure that DEEPDELTA
generates a correct suggestion, we note its position on the list of
10 suggestions.

6.4 Results

Table 4 presents our results for the two diagnostic kinds we evalu-
ated. For each diagnostic kind, the table shows the achieved per-
plexity and BLEU scores, the number of compilation failures in the
Test dataset evaluated against the trained models, the number of
suggestions generated (i.e., 10 suggestions per failure), the average
percentage of valid suggestions per failure, the percentage of cor-
rect suggestions overall, and the percentage of correct repairs that
are ranked in the top 3 suggestions.

Perplexity and BLEU Scores. Recall that low perplexity (i.e., sin-
gle digits) and high BLEU scores (i.e., 25-40) are desired for the
models. As Table 4 shows, our models reached low perplexity values
of 1.8 and 8.5 for cant.resolve and cant.apply.symbol, respec-
tively. Also, the BLEU scores achieved were high, namely 42 for
cant.resolve and 43 for cant.apply. symbol.

Validation. Figure 4 shows the distribution of valid suggestions
over the 10 generated suggestions per failure as histograms. Our
validation against the Delta grammar reported that on average

Table 4: Results
Diagnostic Kind Perplexity | BLEU | Failures | Suggestions | Valid Suggestions | Correct Failure Repair | Ranked top 3
cant.resolve 1.8 42 36,101 361,010 71% (18,051) 50% 85%
cant.apply.symbol 8.5 43 2,687 26,870 98% (1,263) 47% 87%
g _ 14710 S
8 m— g 2385
8
&
8
g -
= o
> > ‘8—7
g g
e £ g
o 5265 e
3 4490 4302
o
g -
o2 1071 1007 1152 145" 204
° J 0 4 5 1 1 16 24 47

110 2/10 3/10 4/10 5110 6/10 710 810 9/10 10/10

Valid Suggestions

(a) cant.resolve

[T T T T T T T T T 1
110 210 310 4/10 5/10 6/10 7/10 810 9/10 10/10

Valid Suggestions
(b) cant.apply.symbol

Figure 4: Distribution of valid suggestions over the 10 generated suggestions per failure.

71% of the generated suggestions are valid per failure for cant.-
resolve. For cant.apply. symbol, the percentage of valid sugges-
tions is higher at 98% since the code changes are syntactically
simpler in nature (e.g., method argument changes). As it can be
seen, the majority of the generated sequences are valid. We discuss
the main reasons for invalid suggestions in Section 7.

Correctness. Table 4 shows that 18,051 out of the 36,101 (50%) fail-
ures in our Test dataset received a correct repair suggestion, i.e.,
one of the 10 suggestions for that failure was an exact match with
the actual developer fix, for cant. resolve. For cant.apply. symbol,
DEeEPDELTA achieves a similar rate of correct suggestions, namely,
1,263 out of 2,687 (47%).

Ranking. For the failures with correct suggestions, we evaluate
the position of the correct suggestion within the list of suggested
resolutions. Figure 5 depicts the distribution of the position of the
correct fixes in the 10 generated suggestions. Our data shows that
the majority of the correct suggestions are on the first position. For
cant.resolve, 85% of the correct fixes are in the top three positions.
Similarly, for cant.apply.symbol, 87% of the correct fixes are in
the top three positions.

7 DISCUSSION AND THREATS TO VALIDITY

Invalid Sequences. We investigated the main reasons behind the
invalid suggestions, which can be attributed to:

(1) Unknown tokens: the occurrence of the <unk> token in the
inferred target sequences. The model predicts a vectorized
embedding that the decoder then tries to translate into a
token; sometimes that embedding falls far away from the
valid tokens in the given vocabulary and cannot be matched
to one of the frequent tokens. This can happen for failures
that do not have a fix change pattern the model has learnt
or when our vocabulary does not contain the token because
it is not a frequent token.

(2) Incomplete sequences: the sequence generated misses parts
of the expected Delta grammar sequence. This happens es-
pecially for longer sequences (i.e., more than 90 tokens) and
missing tokens at the end part of sequences.

Correctness. DEEPDELTA is able to suggest an exact correct sug-
gestion for around half of the build failures in our evaluation. Note
that a correct suggestion is not a simple binary output. It is com-
posed of a complex sequence of AST changes to be applied to the
failing code. Compared to the state-of-the-art repair rate of 27% for
syntax errors [18], we believe our 50% correctness rate is substantial
in practice. Our relatively high accuracy rate can potentially be
attributed to the following properties of our dataset and approach:
o There are indeed recurrent and common patterns in how
developers resolve build failures, which DEEPDELTA is able
to extract from the resolution changes,
e Our target language, Delta, is highly structured, allowing
the model to learn the patterns in a systematic manner.

12000
|

11192

6000 8000 10000
1 1

Frequency

4000
1

2697

2000
1

0
L

Position

(a) cant.resolve

705

600
1

Frequency
400
1

Position

(b) cant.apply.symbol

Figure 5: Position of the correct suggestion.

Generalizibility. It is possible that our results and techniques
would not generalize to other development environments. For ex-
ample, environments where IDE use is more prevalent may have a
different dominant diagnostic kind. However, although our dataset
is from one company, nearly all projects are included in a single
large source-code repository at Google. Thus, our dataset

o Includes more than 10,000 Java projects containing 300 mil-
lion LOC. Of these projects, many are open-source, though
we only have data on those developed primarily at Google.

e Represents changes made by tens of thousands of profes-
sional developers worldwide, from various backgrounds, us-
ing around five different editors/IDEs.

o Contains 110,219 singular build-time compilation errors and
fixes, over 37,867 distinct Java and 7,011 distinct build files,
collected over a two-month period.

Thus we believe it seems reasonable that our program repair
technique would generalize to any other coherent development
environment, where there are patterns in how developers address
a particular diagnostic kind. While the particular fixes our system
learns and suggests would not work in other repositories and build
systems, the technique itself is general and should apply to any
other source code repository and build system. For example, con-
sider the case of adding a dependency on another project to a Bazel
build file. This concept exists in other widely used build systems.
As long as a parser were provided to parse other types of build con-
figuration files (e.g., POM files for Maven, build.gradle for Gradle),
our system should be able to learn how to add dependencies in the
appropriate way.

Reproducibility. Our dataset contains AST of proprietary code,
which unfortunately cannot be published. Our dataset is unique

because it contains snapshots of in-progress code, not just code
committed to source control. This granularity is key to making our
approach work. We are not aware of any open-source datasets that
provide this level of error/fix detail. Our findings can be reproduced
in other contexts by collecting fine-grained developer histories, and
using our specification of the Delta language and the open-source
TensorFlow NMT library.

Diagnostic kinds. Our work addresses diagnostics only for Java
projects. However, our technique is general and relies only on AST
differencing; the only language-specific portion is the parsers used
to build the ASTs. We should be able to support other languages
simply by implementing parsers for them.

We focused on two error types (cant.resolve and cant.apply. -
symbol) in this work for two reasons: First, these cover the majority
of Java compilation errors developers make at Google: 59% of all
instances, 58% by cost (Table-II). Our data show that, whether or
not they are easy to fix (R1), in practice developers spend a huge
amount of time manually fixing them. Automating these repairs
would free developers to focus on other issues. Second, adding
a new error type requires collecting relevant developer data and
re-training the model, which is time-consuming.

Our results show that DEEPDELTA works well for two distinct
error types with different fix patterns. We expect to perform as well
on other build-error types and plan to extend support to other types.
We are not aware of any tools that repair Java compilation errors to
compare directly against in our evaluation. The most related work
we found [18] repairs syntax errors (a single error type only) in C,
with a far lower success rate.

Parsable AST. For our AST-diff-based approach to work, the bro-
ken code must be parsable into an AST. With the missing symbol
errors we examined, the code is always parseable resulting in a

unique AST, but this will not be true for other diagnostic kinds.
Parsers can be designed to recover from syntax errors instead of
failing fast [5]. We may need to switch to such a parser to handle
incomplete ASTs.

8 FUTURE WORK

Putting the Program Repair Tool Into Production. We intend
to integrate DEEPDELTA into the development environment of de-
velopers at our company. To that end, we will need to verify sug-
gestions before applying them to user code. We intend to build a
system to speculatively apply suggested fixes to a code snapshot
and attempt to build them. We can then discard suggested fixes
that do not compile, and only present the ones that do to the user.
There is also interesting user interface work to do here to ensure
that the tool is actually useful to developers.

Repairing Programs that Fail Tests. At Google we also capture
output from failing and successful test executions and the code
changes that caused them to begin passing. We plan to experiment
with applying our technique to repair programs that fail test cases.
We targeted build failures first because the repairs seemed more
regular and thus more likely that a machine learning algorithm
would be able to find patterns in the data. We intend to explore
whether there are enough patterns in fixes for failing tests for our
technique to work well.

9 RELATED WORK

We survey four lines of related work: extracting code changes,
synthesizing transformations from examples, automated program
repair, and machine learning for program repair.

Extracting Change Patterns. Extracting change patterns from
code has received some attention in the literature. Most existing
techniques, however, require pre-defined rules or human inter-
vention to extract patterns. Fluri and Gall [14] define 41 basic
change types for Java, which they use to discover more complex
changes [15] through hierarchical clustering. Pan [36] use the Unix
diff to create a database of basic changes and use Datalog to man-
ually specify rules for more complex change types. Liveshits and
Zimmerman [27] propose a technique for discovering API usage
patterns through association rule mining of code histories of two
Java projects. They use the patterns to detect violations. Kim et
al. [26] manually inspect human-written patches and extract six
common fix patterns in Java. They subsequently use these patterns
for automated program repair. Hanam et al. [19] provide a semi-
automatic approach for bug fix pattern detection. They extract
feature vectors of language construct AST changes that resolve
runtime bugs and use clustering to group them into ranked clusters
of bug patterns. The clusters are then manually inspected to extract
bug fix patterns. Our approach requires no manual intervention
and learns unknown resolution change patterns.

Synthesizing Transformations by Example. Another related
area of work is code transformation techniques, such as LASE [33],
Genesis [28], NoFAQ [8], and REFAZER [40], which can extract and
synthesize syntactic transformations from given examples. These
techniques could potentially be used for program repair. Unlike
our work, they operate either on a single example or a small set of

examples; it is unclear how well they would perform on extracting
patterns from hundreds of thousands of examples, and how to apply
the synthesized transformations in the setting of program repairs.

Automated Program Repair. Our work falls in the realm of au-
tomated program repair, which pertains to the act of fixing bugs
through automated techniques. Program repair has been applied
to different domains such as data structures [11, 12], user inter-
faces [48], and source code of different programming languages
such as C [16, 25, 30], Java [10, 26], JavaScript [35], and PHP [41].

Patch search techniques have a number of shortcomings in prac-
tice. First, they often require pre-defined templates of bug patterns
and cannot learn new patterns. Second, the patch generation pro-
cess needs to search the vast program space, which can be costly as
thousands of patches need to be generated to find one that resolves
the failure. Finally, they have been shown [29] to produce many
false positives, i.e., they often fix the test failure, but not the actual
fault.

Machine Learning for Program Repair. Allamanis et al. [2] pro-
vide a comprehensive survey of recent advancements in techniques
that adopt machine learning for source-code analysis. Wang et
al. [46] propose a technique for fault prediction. They feed abstract
semantic features of the code to a neural network for classification.
Raychev et al. [39] use neural networks for code completion of
missing API calls. Seidel et al. [42] target type error localization
through a supervised classification approach.

Gupta et al. [18] propose a seq2seq machine learning approach
for repairing syntax errors in C. One main difference with our
work is that they feed the whole source code of the buggy and
fixed versions to the network and achieve a repair rate of 27%. We,
however, focus only on learning the features of the failure and
the accompanying AST changes that resolve it, which allows us
to achieve a much higher accuracy rate (50%). They target syntax
errors in C, while we target build-time compilation errors in Java.
In addition, they evaluate their work on small student assignments,
while our evaluation is on a large corpus of real developer data.

Our paper is the first to learn AST change patterns for fixing
compilation errors. Related work that targets build errors [20, 32] is
different from ours. They focus only on build-files while we target
both Java and build files; they use pre-defined repair-templates,
while we learn repair patterns. And, we do it at orders of magnitude
larger scale; [32] and [20] use 37 and 175 failures, respectively, while
we evaluate DeepDelta on 38,788 failures.

10 CONCLUSION

In this paper, we studied build diagnostics and how developers
change the source code to resolve them in practice. We showed
that patterns exist in such code changes. We proposed a generic
technique to learn patterns of code changes, extracted from AST
diffs between failure and resolution pairs. We formulated automated
program repair as a machine translation problem. Using a deep
neural network, our technique, DEEPDELTA, is capable of suggesting
AST changes when given a build diagnostic as input. Our evaluation
on a large corpus of real developer data at Google shows that
DEEPDELTA generates correct fixes between 47%-50% of the time
for two compiler diagnostic kinds, with the correct fix ranked in
the top three 85%-87% of the time.

Our current system suggests fixes for the two most costly di-
agnostic kinds, cant.resolve and cant.apply.symbol. We believe
repairing other compilation errors can be supported through DEgp-
DErTA and we intend to expand support to other diagnostic kinds.

REFERENCES

(1]

[10]

[11]

[12

[13]

[14]

(15

[16

[17]

[18

[20]

[21

[22

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
2016. TensorFlow: A System for Large-Scale Machine Learning.. In OSDI, Vol. 16.
265-283.

Miltiadis Allamanis, Earl T. Barr, Premkumar Devanbu, and Charles Sutton. 2017.
A Survey of Machine Learning for Big Code and Naturalness. arXiv preprint
arXiv:1709.06182 (2017).

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural machine
translation by jointly learning to align and translate. In International Conference
on Learning Representations.

Peter F Brown, Vincent J Della Pietra, Robert L Mercer, Stephen A Della Pietra,
and Jennifer C Lai. 1992. An estimate of an upper bound for the entropy of
English. Computational Linguistics 18, 1 (1992), 31-40.

Michael G. Burke and Gerald A. Fisher. 1987. A Practical Method for LR and LL
Syntactic Error Diagnosis and Recovery. ACM Trans. Program. Lang. Syst. 9, 2
(March 1987), 164-197. https://doi.org/10.1145/22719.22720

Kyunghyun Cho, Bart Van Merriénboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase
representations using RNN encoder-decoder for statistical machine translation.
arXiv preprint arXiv:1406.1078 (2014).

Deborah Coughlin. 2003. Correlating automated and human assessments of
machine translation quality. In Proceedings of MT summit IX. 63-70.

Loris D’Antoni, Rishabh Singh, and Michael Vaughn. 2017. NoFAQ: Synthesizing
Command Repairs from Examples. In Proceedings of the 11th Joint Meeting on
Foundations of Software Engineering (ESEC/FSE 2017). ACM, 582-592. https:
//doi.org/10.1145/3106237.3106241

Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark
Mao, Andrew Senior, Paul Tucker, Ke Yang, Quoc V Le, et al. 2012. Large scale
distributed deep networks. In Advances in neural information processing systems.
1223-1231.

Favio DeMarco, Jifeng Xuan, Daniel Le Berre, and Martin Monperrus. 2014.
Automatic repair of buggy if conditions and missing preconditions with SMT. In
Proceedings of the 6th International Workshop on Constraints in Software Testing,
Verification, and Analysis. ACM, 30-39.

Brian Demsky and Martin Rinard. 2005. Data structure repair using goal-directed
reasoning. In Proceedings of the 27th international conference on Software engi-
neering. ACM, 176-185.

Bassem Elkarablieh, Ivan Garcia, Yuk Lai Suen, and Sarfraz Khurshid. 2007.
Assertion-based repair of complex data structures. In Proceedings of the twenty-
second IEEE/ACM international conference on Automated software engineering.
ACM, 64-73.

Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Mar-
tin Monperrus. 2014. Fine-grained and accurate source code differencing. In
International Conference on Automated Software Engineering (ASE). 313-324.
https://doi.org/10.1145/2642937.2642982

Beat Fluri and Harald C Gall. 2006. Classifying change types for qualifying change
couplings. In Program Comprehension, 2006. ICPC 2006. 14th IEEE International
Conference on. IEEE, 35-45.

Beat Fluri, Michael Wuersch, Martin Pinzger, and Harald Gall. 2007. Change
distilling: Tree differencing for fine-grained source code change extraction. IEEE
Transactions on software engineering 33, 11 (2007).

C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer. 2012. GenProg: A Generic
Method for Automatic Software Repair. IEEE Transactions on Software Engineering
38, 1 (Jan 2012), 54-72. https://doi.org/10.1109/TSE.2011.104

Yvette Graham and Timothy Baldwin. 2014. Testing for significance of increased
correlation with human judgment. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing (EMNLP). 172-176.

Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish Shevade. 2017. DeepFix:
Fixing Common C Language Errors by Deep Learning.. In Proceedings of the
Conference on Artificial Intelligence (AAAI). 1345-1351.

Quinn Hanam, Fernando S de M Brito, and Ali Mesbah. 2016. Discovering bug
patterns in JavaScript. In Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering (FSE). ACM, 144-156.
Foyzul Hassan and Xiaoyin Wang. 2018. HireBuild: An automatic approach
to history-driven repair of build scripts. In 2018 IEEE/ACM 40th International
Conference on Software Engineering (ICSE). IEEE, 1078-1089.

Abram Hindle, Earl T Barr, Zhendong Su, Mark Gabel, and Premkumar Devanbu.
2012. On the naturalness of software. In Proceedings of the International Conference

on Software Engineering (ICSE). IEEE, 837-847.
Sepp Hochreiter and Jirgen Schmidhuber. 1997. Long short-term memory. Neural

computation 9, 8 (1997), 1735-1780.

(23]

[24]

[25]

&
&

[27

[28

[29

[30

[31

[32

[33

[34

&
2

[36

[37

[38

[39

[41

[42

[43]

=
o

[45

James Wayne Hunt and M Douglas Mcllroy. 1976. An algorithm for differential
file comparison. Bell Laboratories Murray Hill.

Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. 2017.
In-datacenter performance analysis of a tensor processing unit. In Proceedings of
the Annual International Symposium on Computer Architecture. ACM, 1-12.

Y. Ke, K. T. Stolee, C. L. Goues, and Y. Brun. 2015. Repairing Programs with
Semantic Code Search. In Proceedings of the International Conference on Automated
Software Engineering (ASE). IEEE Computer Society, 295-306. https://doi.org/10.
1109/ASE.2015.60

Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. 2013. Automatic
patch generation learned from human-written patches. In Proceedings of the 2013
International Conference on Software Engineering. IEEE Press, 802-811.
Benjamin Livshits and Thomas Zimmermann. 2005. DynaMine: finding common
error patterns by mining software revision histories. In ACM SIGSOFT Software
Engineering Notes, Vol. 30. ACM, 296-305.

Fan Long, Peter Amidon, and Martin Rinard. 2017. Automatic inference of code
transforms for patch generation. In Proceedings of the 11th Joint Meeting on
Foundations of Software Engineering. ACM, 727-739.

Fan Long and Martin Rinard. 2015. Staged Program Repair with Condition
Synthesis. In Proceedings Joint Meeting on Foundations of Software Engineering
(ESEC/FSE 2015). ACM, New York, NY, USA, 166-178. https://doi.org/10.1145/
2786805.2786811

Fan Long and Martin Rinard. 2016. An Analysis of the Search Spaces for Gener-
ate and Validate Patch Generation Systems. In Proceedings of the International
Conference on Software Engineering (ICSE). ACM, New York, NY, USA, 702-713.
https://doi.org/10.1145/2884781.2884872

Thang Luong, Hieu Pham, and Christopher D Manning. 2015. Effective Ap-
proaches to Attention-based Neural Machine Translation. In Proceedings of the
Conference on Empirical Methods in Natural Language Processing. 1412-1421.
Christian Macho, Shane McIntosh, and Martin Pinzger. 2018. Automatically
repairing dependency-related build breakage. In 2018 IEEE 25th International
Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE,
106-117.

Na Meng, Miryung Kim, and Kathryn S McKinley. 2013. LASE: locating and
applying systematic edits by learning from examples. IEEE Press.

Hoan Anh Nguyen, Anh Tuan Nguyen, Tung Thanh Nguyen, Tien N Nguyen, and
Hridesh Rajan. 2013. A study of repetitiveness of code changes in software evolu-
tion. In Proceedings of the 28th IEEE/ACM International Conference on Automated
Software Engineering. IEEE Press, 180-190.

Frolin Ocariza, Karthik Pattabiraman, and Ali Mesbah. 2014. Vejovis: Suggesting
Fixes for JavaScript Faults. In Proceedings of the International Conference on
Software Engineering (ICSE). ACM, 837-847.

Kai Pan, Sunghun Kim, and E James Whitehead. 2009. Toward an understanding
of bug fix patterns. Empirical Software Engineering 14, 3 (2009), 286-315.
Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. BLEU:
A Method for Automatic Evaluation of Machine Translation. In Proceedings of
the Annual Meeting on Association for Computational Linguistics. Association for
Computational Linguistics, 311-318. https://doi.org/10.3115/1073083.1073135
Terence J. Parr and Russell W. Quong. 1995. ANTLR: A predicated-LL (k) parser
generator. Software: Practice and Experience 25, 7 (1995), 789-810.

Veselin Raychev, Martin Vechev, and Eran Yahav. 2014. Code completion with
statistical language models. In Acm Sigplan Notices, Vol. 49. ACM, 419-428.
Reudismam Rolim, Gustavo Soares, Loris D’Antoni, Oleksandr Polozov, Sumit
Gulwani, Rohit Gheyi, Ryo Suzuki, and Bjérn Hartmann. 2017. Learning syntactic
program transformations from examples. In Proceedings of the 39th International
Conference on Software Engineering. IEEE Press, 404-415.

Hesam Samimi, Max Schifer, Shay Artzi, Todd Millstein, Frank Tip, and Laurie
Hendren. 2012. Automated repair of HTML generation errors in PHP applications
using string constraint solving. In Proceedings of the International Conference on
Software Engineering (ICSE). IEEE, 277-287.

Eric L. Seidel, Huma Sibghat, Kamalika Chaudhuri, Westley Weimer, and Ranjit
Jhala. 2017. Learning to Blame: Localizing Novice Type Errors with Data-driven
Diagnosis. Proc. ACM Program. Lang. 1, OOPSLA, Article 60 (Oct. 2017), 27 pages.
https://doi.org/10.1145/3138818

Hyunmin Seo, Caitlin Sadowski, Sebastian Elbaum, Edward Aftandilian, and
Robert Bowdidge. 2014. Programmers’ Build Errors: A Case Study (at Google). In
Proceedings of the International Conference on Software Engineering (ICSE) (ICSE
2014). ACM, New York, NY, USA, 724-734. https://doi.org/10.1145/2568225.
2568255

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: A Simple Way to Prevent Neural Networks from
Overfitting. Journal of Machine Learning Research 15 (2014), 1929-1958. http:
//jmlr.org/papers/v15/srivastaval4a.html

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning
with neural networks. In Advances in neural information processing systems. 3104
3112.

https://doi.org/10.1145/22719.22720
https://doi.org/10.1145/3106237.3106241
https://doi.org/10.1145/3106237.3106241
https://doi.org/10.1145/2642937.2642982
https://doi.org/10.1109/TSE.2011.104
https://doi.org/10.1109/ASE.2015.60
https://doi.org/10.1109/ASE.2015.60
https://doi.org/10.1145/2786805.2786811
https://doi.org/10.1145/2786805.2786811
https://doi.org/10.1145/2884781.2884872
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.1145/3138818
https://doi.org/10.1145/2568225.2568255
https://doi.org/10.1145/2568225.2568255
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html

[46] Song Wang, Taiyue Liu, and Lin Tan. 2016. Automatically learning semantic

[47

]

features for defect prediction. In Proceedings of the International Conference on
Software Engineering (ICSE). ACM, 297-308.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff
Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, ?ukasz Kaiser, Stephan
Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens, George Kurian,
Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa, Alex Rudnick,

(48

Oriol Vinyals, Greg Corrado, Macduff Hughes, and Jeffrey Dean. 2016. Google’s
Neural Machine Translation System: Bridging the Gap between Human and
Machine Translation. CoRR abs/1609.08144 (2016). http://arxiv.org/abs/1609.
08144

Sai Zhang, Hao Lii, and Michael D Ernst. 2013. Automatically repairing broken
workflows for evolving GUI applications. In Proceedings of the International
Symposium on Software Testing and Analysis. ACM, 45-55.

http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144

	Abstract
	1 Introduction
	2 Collecting Compilation Errors
	2.1 Data Collection
	2.2 Diagnostic Kinds
	2.3 From Diagnostics to Resolutions
	2.4 Dataset and Findings

	3 Running Example
	4 Finding Resolution Changes
	4.1 Retrieving Code Snapshots
	4.2 AST Differencing
	4.3 Resolution Changes

	5 Repairing Build Errors
	5.1 Feature Extraction
	5.2 Learning Resolution Change Patterns
	5.3 Inferring Repair Suggestions

	6 Evaluation
	6.1 Data Generation
	6.2 Training
	6.3 Evaluation Method
	6.4 Results

	7 Discussion and Threats to Validity
	8 Future Work
	9 Related Work
	10 Conclusion
	References

