
Lightning Talk: Supporting Software Sustainability
with Lightweight Specifications

Mistral Contrastin∗, Matthew Danish∗, Dominic Orchard∗†, Andrew Rice∗
∗Computer Laboratory, University of Cambridge, UK

firstname.lastname@cl.cam.ac.uk
†School of Computing, University of Kent, UK

D.A.Orchard@kent.ac.uk

Abstract—Lightweight specifications can aid software mainte-
nance by providing a way to verify that certain properties of
a program are preserved. We give two examples of lightweight
specifications for numerical code: units-of-measure types which
specify the physical units of numerical quantities in a program;
and stencil specifications which describe the pattern of data
access used in array computations. Not only can we automatically
verify that a program correctly implements these requirements
but specifications provide documentation for future developers.
Specifications can also be inferred and generated automatically
in some cases, further reducing programmer effort. We finish by
identifying future potential specification techniques to ease the
maintenance and comprehension of scientific code.

I. INTRODUCTION

Being able to comprehend and easily extend a code base
is central to software sustainability; inflexible and inscrutable
code is difficult to maintain, adapt, and debug in the future.
Frequently the intention of the original programmer is not
clear from the code alone. There may be an underlying
mathematical model from which the code is derived (e.g.,
in numerical computations in science), but the relationship
between the implementation and the model is rarely docu-
mented clearly. Programmers often attempt to communicate
their original intention by commenting their code, providing
informal specifications and descriptions of the program. This
approach is often less than perfect: comments must be kept
up-to-date with the code they describe and an appropriate level
of abstraction must be used to provide effective information
(rather than, say, describing each operation line by line).

This informal and manual commenting approach contrasts
with full program specification in which a formal and precise
mathematical description is provided for a program [5]. This
is the precursor to automatic verification, where a verification
tool checks that a program behaves correctly with respect to
its specification. Full specification of scientific programs is
however challenging: specification languages are very different
to programming languages (requiring an additional skill set)
and writing specifications often requires an understanding of
the verification process; full specification requires significant
effort. This approach is simply not feasible for the much of
the scientific community. Furthermore, it is currently unknown
how to effectively specify and verify many high-level numer-
ical properties of programs, such as convergence (some work
in this direction is by Boldo et al. [1]).

We believe lightweight specification and verification pro-
vides an intermediate solution. Lightweight specifications de-
scribe the behaviour of some aspects of a program, rather than
the whole. This reduces the burden on the programmer whilst
still aiding comprehension of the program by others. The
specification language can be designed to target a higher level
of abstraction than the code itself thereby producing useful
specifications which are both human- and machine-readable.
We advocate for including such lightweight specifications as
inline comments in the code so that the usual tool-chain
(compilers, IDEs, version control) is unaffected. The usual
verification benefits are provided: a program can be checked
for conformance to its lightweight specifications, and this also
ensures specifications are up-to-date with the code.

II. EXAMPLE

We give an example of two such lightweight specification
and verification techniques provided by our tool, CamFort,
for Fortran code base verification. Figure 1 shows an extract
of a Navier-Stokes fluid simulation (based on [4]). The code
snippet is constrained by two kinds of specification:

1) The unit specifications (lines 1, 4, 8, 11, 14) specify
the units-of-measure of numerical quantities in the pro-
gram. This ensures that the units of f, delx, dely,
del_t, and rhs are used consistently. This rules out a
common source of bugs from mismatched units.

2) The stencil specifications (lines 17, 18) describe the
shape of the array access in the approximation computed
on line 22. They describe that, at each index(i, j),
the arrays f and g are accessed “backwards” to a depth
of 1 in the first and second dimensions respectively.
This kind of specification is especially useful when more
complicated access patterns are used, and frequently
corresponds to choices made when deriving a discrete
approximation from a continuos mathematical model.

CamFort has four modes of interaction with specifications:
1) checking: CamFort checks that the code conforms to

all specifications. If the code does not conform, then
information is provided to help identify the source of
the program error.

2) inference: CamFort can infer specifications automati-
cally, providing useful information and reducing pro-
grammer effort. For units-of-measure, a programmer

1 != unit(m) :: xlength, ylength
2 real, parameter :: xlength = 22.0
3 real, parameter :: ylength = 4.1
4 != unit(m) :: delx, dely
5 real, parameter :: delx = xlength/imax
6 real, parameter :: dely = ylength/jmax
7

8 != unit(1/s**2) :: rhs
9 real rhs(0:imax+1, 0:jmax+1)

10

11 != unit(m/s) :: f, g
12 real f(0:imax+1,0:jmax+1), g(0:imax+1,0:jmax+1)
13

14 != unit(s) :: del_t
15 real, intent(in) :: del_t
16

17 != stencil readOnce, backward(depth=1, dim=1) *
reflexive(dim=2) :: f↪→

18 != stencil readOnce, backward(depth=1, dim=2) *
reflexive(dim=1) :: g↪→

19 do i = 1, imax
20 do j = 1, jmax
21 if (iand(flag(i,j), cf))
22 rhs(i,j) = ((f(i,j) - f(i-1,j)) / delx +

(g(i,j) - g(i,j-1)) / dely)
/ del_t

↪→

↪→

23 end do
24 end do

Fig. 1. Fragment of a Navier-Stokes fluid simulation with lightweight
specifications added.

need not specify the units for each variable. For example,
the unit specification for rhs on line 8 need not be
given. In infer mode, CamFort infers and reports the
units of all variables (whether they have been given an
explicit specification in the code of not). For stencil
specifications, CamFort can infer specifications of the
shape of a large class of regular array access patterns.

3) synthesis: based on the above inference, CamFort can
further reduce programmer effort by inserting auto-
matically inferred specifications into the code where
relevant. For example, the specifications on lines 17,
18 can be inferred and synthesised by CamFort entirely
automatically without any programmer effort.

4) suggestion: (just for units-of-measure), CamFort can
suggest a subset of program variables which if given
a specification manually by the programmer provides
enough information to CamFort to infer the units-of-
measure for all other variables.

The inference, synthesis, and suggestion features of Cam-
Fort described above further supports the lightweight nature of
the specifications. In a previous study, we sought to measure
how much CamFort reduces programmer effort via the in-
ference of units-of-measure specifications [7]. We calculated
the proportion of variable declarations in a program which
required a user-given specification in order to infer the units-
of-measure specification of the rest, as reported by the suggest
mode. On a corpus of forty small programs taken from a
computational physics textbook, we found a median of only
18% of variables needed a user-given specification [7, Figure
6], thus an 82% saving in effort.

For the full Navier-Stokes code of which Figure 1 above

gave an excerpt, CamFort suggests that only 79 of the 262
variable declarations actually require a user-given specification
to infer and synthesise units-of-measure for the rest of the
variables: a 70% saving in effort compared with manually
specifying the units of every variable.

III. FUTURE DIRECTIONS

There are a variety of directions to explore for future
specifications. We give three examples that we are exploring.
1) Software contracts such as pre- and post-conditions,
assertions, and loop invariants can be added to check expected
ranges of values and program behaviour. Techniques for infer-
ring contracts are available [6] which would ease the burden
on the programmer. 2) Test generation, e.g. QuickCheck [2],
provides a way to generate program tests from user-supplied
properties of functions and methods. Test inputs are auto-
matically generated and applied, exposing counter examples.
3) Dependency specification track how a piece of data
is used within a program. Long-lived (e.g., global) data is
common and specifications which restrict how the data is used
throughout the program would allow programmers to make
changes and be confident of their scope and influence.

IV. SUMMARY

Lightweight specifications aid software maintainability and
reuse by providing high-level information to other developers
about the intention of the code. Automatically verifying their
correctness ensures that the code remains up-to-date with the
specification and can provide confidence in changes made
by new developers. Our open-source tool CamFort1 provides
implementations of stencil and units-of-measure specifications
(see [3] for more). The synthesis and inference techniques it
provides show how tool support can further reduce the burden
of using specifications and verification systems.

ACKNOWLEDGEMENTS

This work was supported by the Engineering and Physical
Sciences Research Council (EP/M026124/1).

REFERENCES

[1] Sylvie Boldo, François Clément, Jean-Christophe Filliâtre, Micaela
Mayero, Guillaume Melquiond, and Pierre Weis. Wave equation nu-
merical resolution: a comprehensive mechanized proof of a C program.
Journal of Automated Reasoning, 50(4):423–456, 2013.

[2] Koen Claessen and John Hughes. QuickCheck: a lightweight tool for
random testing of Haskell programs. ACM SIGPLAN Notices, 46(4):53–
64, 2011.

[3] Mistral Contrastin, Andrew Rice, Matthew Danish, and Dominic Orchard.
Units-of-Measure Correctness in Fortran Programs. Computing in Science
& Engineering, 18(1):102–107, 2016.

[4] M. Griebel, T. Dornsheifer, and T. Neunhoeffer. Numerical simulation in
fluid dynamics: a practical introduction, volume 3. Society for Industrial
Mathematics, 1997.

[5] Konrad Hinsen. Writing software specifications. Computing in Science
& Engineering, 17(3):54–61, 2015.

[6] Francesco Logozzo. Technology for Inferring Contracts from Code.
In Proceedings of SigADA High Integrity Language Technology (HILT
2013). ACM, November 2013.

[7] Dominic Orchard, Andrew Rice, and Oleg Oshmyan. Evolving Fortran
types with inferred units-of-measure. Journal of Computational Science,
9:156–162, 2015.

1https://github.com/camfort/camfort

