

A Global Personal Energy Meter

Simon Hay, Andrew Rice and Andy Hopper

VISION

Every day each of us consumes a significant amount of energy either directly through transporta-

BENEFITS

PEM data will enable us to identify areas for reducing or optimising our consumption of resources. Projections of consumption will allow us to see the total cost or benefit of a decision to replace an appliance, install insulation or move house. The PEM will also help us identify alternatives to our current activities. For example, the trace of commuting to work might be exploited to highlight any available public transportation or to inform policy for providing future facility.

DEPLOYMENT AND **A**DOPTION

We imagine the future generations of mobile phones containing a PEM as an integral part. This will minimise the energy overhead of using a PEM and also provide widescale communication ability. Social networking sites provide an ideal forum for users to share consumption patterns and reduction strategies. The social effects of these communities may well also help provide support for changing lifestyles and impetus for change.

STRATEGY

It will probably be infeasible to measure all of many ways in which we consume energy. We are there-

tion, heating or use of appliances or indirectly from our needs for production of food, manufacture of goods or provision of services. We envisage a Personal Energy Meter (PEM) which can record and apportion an individual's energy usage in order to provide baseline information and incentives for reducing the environmental impact of our lives. fore beginning our investigation around the most significant areas of consumption as shown in the energy stack (below) for a 'typical moderately-affluent person' [MacKay08]. Our research into the PEM builds on existing efforts for environmental footprinting by considering the technology necessary to apportion these estimates to individuals.

CONTEXT AWARENESS

Context information will be crucial for apportioning the use and energy costs of resources. In order to obtain this it will be necessary to develop low cost, low infrastructure location systems that can be deployed on a truly global scale.

Ροιις

Apportionment policies may vary not just in different scenarios but even from institution to institution, building to build-

The locations of bus and railway stations can be combined with a GPS location trace of journey start and end points to estimate energy consumption due to transportation. However, distinguishing between travel by foot, bicycle or car is much more difficult in a congested urban environment. Additional data from inertial sensors (now common in many phone handsets) might help with the classification problem.

ing and object to object. We need a language for specifying these policies in terms of the contextual information that drives them.

References

Andy Hopper, Andrew Rice. Computing for the Future of the Planet. Phil. Trans. R. Soc. A, 366(1881):3685--3697, October 2008. David JC MacKay. Sustainable Energy – without the hot air. UIT, Cambridge, England.

{sjeh3,acr31,ah12}@cam.ac.uk

http://www.cl.cam.ac.uk/research/dtg/planet