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Abstract We propose a new feature-
based registration method for rigid-
body alignment of overlapping point
clouds (PCs) efficiently under the
influence of noise and outliers. The
proposed registration method is
independent of the initial position
and orientation of PCs, and no
assumption is necessary about their
underlying geometry. In the process,
we define a simple and efficient
geometric descriptor, a novel k-NN
search algorithm that outperforms

most of the existing nearest neighbor
search algorithms used for the
same task, and a new algorithm to
find corresponding points between
PCs based on the invariance of
Euclidian distance under rigid-body
transformation.
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1 Introduction

Point-based representation of 3D objects is becoming
a new standard in computer graphics. An open problem
in this area is the rigid body registration or alignment of
two unstructured point clouds (PCs) containing noise and
outliers.

There are two different approaches to solve this prob-
lem: one is based on the minimization of distance between
M and P as in the case of the widely used iterative clos-
est point (ICP) algorithm [3], and the other is based on the
selection of distinct features common to both M and P [5].

For the latter kind of algorithms, a common approach
is to assign a geometric shape descriptor to each point in
both PCs and then match the compatible points using the
descriptor values. Hence, the feature-based approaches are
based on the idea that only a small number of correspon-
dences is sufficient to compute the optimal transformation.

The major advantages of using the feature-based
methods over the ICP-based methods are:

(1) It is not necessary to search for all points in PCs to
find the corresponding pairs. Thus, redundant or irrel-

evant points such as outliers, or points that do not have
correspondences have no direct effect on the registra-
tion.

(2) The registration process is independent of the initial
alignment of PCs.

The major disadvantages are:

(1) PCs must have distinct features.
(2) Even so, finding distinct features common to both PCs

can be quite challenging if they contain noise and out-
liers.

(3) In general, the feature-based methods are slower than
the ICP-based methods.

We propose a new feature-based registration method
that provides efficient and robust solutions to the problems
discussed above. Our method is not restricted to 3D and
can be used effectively for higher dimensional problems
as well. No assumptions are made about the underlying
geometric structure of PCs (i.e. PCs do not necessarily
represent surfaces).

The major contributions of this paper can be grouped
into three:
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1. We propose a new four-stage feature selection method.
Our method is able to extract compatible features of
PCs being registered even if a geometric descriptor
having a low discriminatory power is used. We show
that our simple geometric descriptor works well with
the proposed method.

2. We propose a new algorithm to determine the local
neighbors of all points in a PC efficiently. In our study,
we use this algorithm to find the neighbors of a point
in order to calculate its geometric descriptor, but it is
a general purpose algorithm that can easily be used in
other applications as well.

3. We propose a novel algorithm for finding the corres-
ponding points in PCs being registered. It is efficient
and robust to outliers. In fact, we show that this al-
gorithm can be used independently of the proposed
four-stage feature selection method if the noise level in
PCs is not significant.

2 Geometric descriptor

A good geometric descriptor must be:

(1) invariant to rigid body transformations,
(2) insensitive to noise,
(3) discriminative, and
(4) efficient to compute.

Descriptors based on local differential properties of a sur-
face such as curvature are sensitive to noise [7, 10, 17]
and thus are not widely used for the registration prob-
lem. Descriptors that partition the region around a point
into bins such as 3D harmonic shape contexts [7], or Spin
images [11] are commonly used in object recognition. Al-
though these multi-valued descriptors provide a richer de-
scription of the local region around a point, selecting fea-
ture points of a PC by computing and comparing the multi-
valued descriptors is a computationally intensive task. For
these reasons, low dimensional descriptors such as “sur-
face variation” [16], integral volume descriptor [10] are
often preferred over the high dimensional ones for the so-
lution of a registration problem.

We propose a new low-dimensional descriptor that is
much easier to compute than the existing ones, but it has
a poor discriminatory power. Our goal is to show that our
four-stage feature selection method can compensate for its
inferior discriminatory power.

2.1 Our descriptor

The proposed descriptor d is the distance between point q
and the center of mass of the neighboring points around q.

d = ‖q − c‖, c =
∑

pi

N
, pi ∈N(q) (1)

Fig. 1. The distribution of descriptor values for each model (the
green color indicates low descriptor values while the red color
indicates high values). The small box shown next to each model
represents the neighborhood size used in the calculation of the de-
scriptor value of each point. Note that the sizes of the models are
not to scale

where, N is the number of neighboring points in the neigh-
borhood N(q) of q. This neighborhood can be defined
using a hyper square, hyper sphere, etc. (Note that this
descriptor will not be invariant under rigid body trans-
formations if an axis-aligned hyper square is used.) The
proposed descriptor is very efficient to compute, but sen-
sitive to noise. The distribution of the descriptor values for
various 3D models is shown in Fig. 1.

2.2 Computing the descriptor

In order to calculate the descriptor value of a point, we
have to determine its local neighbors. A common ap-
proach for this task is to use a k-nearest neighbor (k-NN)
search algorithm. Algorithms that partition the search
space into sub-spaces for efficient search such as k–d
trees are commonly used for k-NN queries. However, ex-
act k-NN queries become impractically slow when the
neighborhood sizes are large. In addition, the time com-
plexity of the algorithm grows exponentially with the di-
mension [14]. These algorithms and data structures are
typically designed to find the k-NN of an arbitrary point
in any dimensional space. But in many research problems
of computer graphics involving a PC, such as simplifi-
cation of surfaces [15], extraction of feature points [16],
computation of shape descriptors [7, 10, 11], and estima-
tion of surface normals [13], one needs to determine the
local neighbors of each point in the PC rather than finding
those of an arbitrary point in 3D space. Hence, this prob-
lem can be considered as a restricted version of the k-NN
search where the query points are the elements of a PC.
The algorithm that we propose in the next section exploits
this fact to find the local neighbors of each point in a PC
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efficiently. It is an extension of the algorithm originally
proposed by Nene et al. [14].

3 Calculating the local neighbors of a point

In the following section, we first introduce the algo-
rithm proposed by Nene et al. [14] (for details we refer
the reader to the paper). In Sect. 3.2, we show how this
algorithm can be extended to find the local neighbors of
each point in a PC rather than its nearest neighbor only.
We call this new algorithm fast incremental search (FINS).

3.1 Nearest neighbor search using Nene’s algorithm

The basic idea behind Nene’s algorithm is to restrict the
search space for finding the closest point to a query point
q to a small hyper square, centered at q, with a size of 2ε
(Fig. 2a). This is achieved by first sorting all points in the
data according to their coordinates in each dimension and

Fig. 2. a An inefficient way to find the neighboring points of pk: First, the points that are between the lines X0 and X1 (11 points without
counting pk) and the ones between the lines Y0 and Y1 (10 points without counting pk) are found and stored in two different sets. Then,
the intersection of these two sets is calculated, which requires a total of ten operations. b, c, d In contrast, the search can be restricted to
the thin rectangles only by using the points contained in the square around pi (the square with dashed lines). The green colored region
in b shows the intersection of the squares of pi and pk . In c, there are only three points between X0 and X1, hence only three operations
are necessary to find the points within the thin rectangle 1. Similarly, in d, there are only two points between Y0 and Y1 and thus two
operations are necessary. In total, five operations are necessary to find the points within the thin rectangles and two more operations are
necessary to find the points in the intersection region in b (since there are two points in the square around pi , not counting pi and pk)
instead of ten operations as in a

then performing binary searches on the sorted lists to de-
fine the boundaries of the square. Then, this small hyper
square is searched for the point closest to q.

A list of indices Pn is constructed for each dimension
n such that it contains the points pi that have the nth com-
ponents within the limits of the hyper square. Then lists
Pn are intersected to find the points within the square. The
complexity of all the intersections is at most O(|Pmin|ND),
where Pmin is the list with the smallest number of elements
and ND is the number of dimensions.

3.2 The proposed algorithm

In Nene’s algorithm, the choice of ε is critical since the
goal is to find the nearest point to a query point in an ef-
ficient manner. If it is chosen too small, then there will be
no points in the hyper square other than the query point
itself. If it is chosen too large, the search will be ineffi-
cient [14]. In our problem, we are interested in finding the
local neighbors of a point efficiently rather than the near-



682 A.C. Oztireli, C. Basdogan

est neighbor only. Hence, ε can be a large value depending
on the number of local neighbors to be found. Increasing
ε will also increase the number of points in lists Pn and
hence the number of operations necessary for calculating
the intersections. Since the number of operations to cal-
culate all intersections is O(|Pmin|ND) in the worst case
scenario, if |Pmin| is a small value, then all the intersec-
tion operations can be executed efficiently. For example, if
|Pmin| = 5, only five integer comparisons are necessary for
each intersection operation in the worst case.

In order to extend Nene’s algorithm to search for local
neighbors of a point, we observe that if the distance be-
tween two points pi and pk is sufficiently small, then most
of the neighboring points of pk will also be the neigh-
boring points of pi (Fig. 2b). As shown in Fig. 2c and d,
the points that are not in the overlapping region of hy-
per squares of pi and pk lie in the thin hyper rectangles.
Nene’s algorithm can be used to determine the points in
these thin rectangles efficiently by exploiting the fact that
if the number of elements in the list Pmin is small (see
X0–X1 region in Fig. 2c and Y0–Y1 region in Fig. 2d),
then the intersection operations discussed in Sect. 3.1 can
be executed efficiently. Hence, one can take advantage of
the incremental movement of the hyper square from pi to
pk to find the neighbors of pk efficiently once the neigh-
bors of pi are determined. Note that one can easily get
the points within the limits of the thin rectangles for nth

dimension by accessing the sorted lists of the nth compo-
nents starting from the neighbors of pi, without any binary
search. The complete algorithm is given in Algorithm 1.

Algorithm 1. FINS

V = ∅
i = index of an arbitrary point in P
while there is an unvisited point in P do

if V is empty or all points in SPi are visited then
i = index of an arbitrary unvisited point in P
V = set of points in the square centered at pi
SPi = list of points of V sorted in ascending order based
on their distances to pi
label pi as visited

else
k = index of the first unvisited point in SPi
move the square such that it is centered at pk
T = set of points within thin rectangles
V = set of points in V ∪ T that are enclosed by the square
centered at pk
SPk = list of points of V sorted in ascending order based
on their distances to pk
label pk as visited
i = k

end if
end while

Note that Nene’s algorithm is a general purpose algo-
rithm for finding the nearest neighbor of an arbitrary point
located anywhere in ND dimensional space whereas the
query point in our algorithm must be a member of a PC in
order to exploit the incremental movements of the hyper
square.

3.3 Time complexity of FINS

The execution time of the FINS algorithm depends on
the number of queries in which the thin hyper rectan-
gles are utilized to determine the neighboring points of
a query point. We call these queries “efficient” queries.
We have experimented with PC representation of various
3D models as well as with PCs with no geometric rep-
resentation in higher dimensional spaces (i.e. randomly
distributed points) and observed that the percentage of ef-
ficient queries to the total number of queries was always
higher than 90% for neighborhood sizes larger than 10σ
(see Fig. 3a), where σ is defined as the average of dis-
tances from each point in a PC to its closest neighbor.

In practice, there is no need to maintain a complete list
of all neighbors of each point. Only a few neighbors in
very close proximity of each point are sufficient to find the
close neighbors of all points efficiently (Fig. 3b).

We compared the performance of the FINS algorithm
implemented in Java with the state-of-the-art ANN li-
brary [2] implemented in C++. The results are shown in
Fig. 3c and d. The nearest neighbor queries were executed
for each point and the total execution times were reported
in the figure. In our experiments, the number of nearest
neighbors returned by the ANN library was adjusted such
that they were contained within a sphere of radius ε. Re-
call that FINS returns the neighboring points within a cube
of size 2ε. We made a simple modification in FINS (la-
beled as FINS+K in the plots to emphasize the difference)
so that it returns a sorted list of neighbors in a sphere of
radius ε. The results for both randomly distributed points
and the dragon model show that the performance of FINS
is superior to the ANN library. In particular, the perform-
ance difference gets larger as the sampling density is in-
creased. Since the PCs that are sampled from real world
objects are typically dense containing millions of points,
FINS can be very effective in processing these data sets.

3.4 Setting the size of the hyper square in FINS

For computational efficiency and robustness, the size of
the hyper square must be restricted to 2ε. In many prob-
lems, determining the suitable neighborhood size is often
difficult and heuristic approaches are typically used. We
have developed an algorithm that enables the user to set
the number of neighbors to NTARGET (with a deviation
of NDEV) rather than choosing ε directly. We propose the
following simple algorithm for this purpose:
1. Select a number of sample points, NSAMPLE, randomly

from PC and set ε0 to an initial value. k ← 0.
2. Calculate the set of closest neighbors SPi for pi , 1 ≤

i ≤ NSAMPLE using εk.
3. Set nmin = the number of SPi satisfying |SPi | <

NTARGET − NDEV
4. Set nmax = the number of SPi satisfying |SPi | >

NTARGET + NDEV
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Fig. 3. a The ratio of “efficient” queries to the total number of all queries is plotted as a function of neighborhood size ε, which is shown
in units of σ in the plot. b Total running times of the ANN library and FINS are plotted as a function of the number of points. The points
used in the analysis are randomly distributed within a 3D cube and are used as both data and query sets. Thus, the number of queries is
equal to the number of data points. The neighborhood size is set to 10% of the size of the cube. c The relation between the kth neighbor
and the number of times that neighbor is used in efficient queries. Only few close neighbors (5) of each point are essentially used in the
efficient queries. d Multi-resolution representations of the dragon model are obtained using QSlim [9] and the total running times of the
ANN library and FINS are plotted as a function of the number of points in the simplified models. The neighborhood size is set to 10% of
the smallest dimension of the oriented bounding box of the model

5. Set εk+1 = εk +σ nmin−nmax
NSAMPLE

, where σ here is estimated
using the sample points. k ← k +1.

6. Iterate steps 2, 3, 4, 5 until |εk+1−εk|
εk

< 0.05 or the max-
imum number of iterations NMAX_ITER is reached.
This algorithm attempts to minimize the number of

neighborhoods that contain number of points fewer than
NTARGET − NDEV or more than NTARGET + NDEV by ad-
justing ε. The factor σ provides stability such that the
increments in ε are comparable to the distances between
the points.

4 Feature selection

After assigning a descriptor value to each point using
FINS, the next step is to identify the feature points based
on the descriptor values. The main idea at this step is to se-
lect the points with distinct descriptor values as the feature
points. This idea works well if the descriptor has a high
discriminatory power. If not, as in the case of our de-
scriptor, a one-step selection process may result in many

feature points with no distinct characteristics. In addition,
noise and outliers in data may adversely affect the selec-
tion process. For these reasons, we propose the follow-
ing four-stage feature detection method which works well
even with descriptors having low discriminatory powers.

4.1 A four-stage process for feature detection

1. Calculate a descriptor value for each point of a PC
using the proposed geometric descriptor. Note that the
local neighbors are determined by the FINS algorithm
(Sects. 2 and 3).

2. Construct a histogram of descriptor values as sug-
gested in [10] and then select the points in the bins that
contain number of points less than a threshold value.
The number of bins is set according to Scott’s rule and
the threshold is set to one percent of the number of
points of the PC as suggested in [10].

3. Group the points selected in stage 2 based on their
proximity to each other. Eliminate the groups contain-
ing a number of points less than the mean minus the
standard deviation of the total number of points in all
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Fig. 4. The distribution of the descriptor values for the Stanford
Bunny is shown in the first figure on the left (darker green indi-
cates higher descriptor values) while the other two figures show the
feature regions displayed in different colors

groups (see the feature regions for the Stanford Bunny
in Fig. 4).

4. Select the center of mass of each group as the feature
point of the PC.

The first two stages of this process are typical steps of
a feature selection process while the last two are newly in-
troduced to select feature points of a PC using a descriptor
with a low discriminatory power.

4.2 Grouping (clustering) of distinct points

To cluster the points selected in stage 2 into feature re-
gions, we have developed a simple recursive algorithm.
The algorithm starts from an arbitrary point and inserts it
into an initially empty list Groupi . Then, all the points that
are less than a threshold distance thC away from this ar-
bitrary point are visited recursively and added to the list
Groupi .

5 Finding correspondences

Once the feature points are identified on both data sets
P and M, we have to establish correspondences between
them. Euclidean distance between two points is invariant
under orthogonal transformation (i.e. rigidity constraint)
and can be used to find the corresponding feature points.

We propose a new algorithm based on the rigidity con-
straint, named matching difference vectors (MDV), to find
the corresponding points in PCs being registered.

5.1 Earlier work

The current methods for the correspondence finding prob-
lem aim to reduce the number of points used for find-
ing the correspondences either by taking samples from
the data [5], or using feature extraction methods [10, 17],
or restricting the search space using special targets at-
tached to the physical objects [1, 4]. The last strategy has
a limited application area while the accuracy of the former
methods heavily depends on the sampling strategy or the
feature extraction technique as well as the shape charac-
teristics of the objects to be registered. Moreover, the sam-

pling and feature-based techniques suggested in [6, 10, 17]
try to exploit the fact that the PCs being registered have
an underlying surface representation, which may further
constrain their usage in some applications.

MDV makes no assumptions about the underlying
structure of PCs and the sampling strategy. It is efficient
and robust to outliers, but sensitive to noise in the data.
MDV can be used directly without any preprocessing if
there is not much noise in PCs. If the noise level is sig-
nificant, we suggest using the proposed four-stage feature
selection method as a precursor to MDV. In Sect. 5.2, we
present several observations leading to MDV. These ob-
servations enable MDV to find the corresponding pairs in
PCs efficiently.

5.2 Observations

1. If three correspondences can be found correctly (i.e.
one pair of corresponding triangles), a unique trans-
formation between P and M can be calculated [5, 17].
More than three correspondences may be used for ro-
bustness [10].

2. One corresponding pair is actually enough to calcu-
late the optimum translation. One can then use the fact
that ‖Rx‖ = ‖x‖ to restrict the search space. Hence, for
a given point pi ∈ P, it is sufficient to search for its cor-
responding point mj ∈ M such that they have the same
magnitudes. If the points in M are sorted according to
their distances from the origin, then mj can be searched
in a spherical shell, centered at the origin and having
a radius of ‖pi‖, using a binary search.

3. Given a corresponding pair (p, m), the close neigh-
bors of p and m are very likely to make corresponding
pairs as well. Note that this observation may not hold
if the sampling densities of M and P are very differ-
ent. This third observation is similar to the “proximity
constraint” proposed by Liu et al. to improve the per-
formance of the original ICP algorithm [12].

5.3 Our approach: Matching difference vectors (MDV)

Given two points pi and mj , we seek to determine if they
are corresponding points. Let SPi and SMj be the lists of
points that are in the close neighborhood of pi and mj ,
respectively. The points in both lists are sorted accord-
ing to their distances to pi and mj , respectively. For each
point in SPi , we search for its distance from pi among the
distances between mj and each point in SMj . If (pk, mk)

represent the kth pair that satisfies the distance criterion
(|‖pi − pk‖−‖mj −mk‖| < thDI), then we check if the
following distance criterion is also satisfied

|‖pl − pk‖−‖ml −mk‖| < thDI (2)

for each l, where (pl, ml) is a matching pair that satisfies
both threshold criteria and is already stored in a list

Z = {(pl, ml)} 1 < l < k.
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If the number of pairs in Z, |Z|, is greater than a cer-
tain threshold, mj is accepted as one of the possible cor-
responding points of pi . If there is only one such point,
then (pi, mj) is accepted as the true corresponding pair
and added to the final list of corresponding pairs CP. If
|CP| ≥ 5, MDV is terminated (refer to Observation 1).
Moreover, the search space in M is restricted to a spheri-
cal shell (refer to Observation 2) after finding the first true
corresponding pair.

In general, a small value for the lower limit of |Z|
(i.e. a small number of matching pairs in the neighbor-
hoods of pi and mj) is sufficient to decide if (pi, mj) is
a corresponding pair (refer to Observation 3). In our im-
plementation, this limit is |Z| ≥ |SMj |/5. A higher limit
improves the robustness but reduces the efficiency of the
algorithm since there will be only a few pairs passing the
limit test.

The pseudocode of the algorithm is given in Algo-
rithm 2.

Algorithm 2. MDV

Input: P, M, SPi , SMj
Output: Set of corresponding points CP
Z = ∅, CP = ∅, found = false
for all pi ∈ P do

if |CP| > 0 then
MSEARCH = do binary range search on S for points mj∈M
that satisfy |‖pi‖−‖mj‖| < thDI

else
MSEARCH = M

end if
for all mj ∈ MSEARCH do

for all pk ∈ SPi do
do binary range search on SMj for points mk SMj that
satisfy |‖pi − pk‖−‖mj −mk‖| < thDI
if mk is unique and |‖pl − pk‖−‖ml −mk‖| < thDI
for each (pl, ml) ∈ Z then

add (pk, mk) to Z
end if

end for
if |Z| > |SMj |/5 then

if (found) then
found = false
break

end if
found = true
store mj as mc

end if
end for
if(found) then

add (pi, mc) to CP
if this is the first corresponding pair (pi, mc) found then

set p = p− pi and m = m−mc for all p∈P and m∈M
sort all the points in M according to their distances to
the origin and call this sorted list as S
(see Observation 2)

end if
end if
Z = ∅, found = false
if |CP| ≥ 5 (see Observation 1) then

break
end if

end for

5.4 The effect of noise on MDV

One can directly use MDV on P and M to find the corres-
pondences even without detecting their feature points
if the noise magnitude in the data is low. However,
once the noise magnitude is comparable to the aver-
age of distances from each point in a PC to its clos-
est neighbor (σ ), MDV may fail to find the true cor-
respondences. To account for the high magnitudes of
noise, the threshold value for distance (thDI) must to
be increased, which in turn increases the number of
points that satisfy the threshold criteria. As a result, for
a given query point in P, finding a unique correspond-
ing point in M becomes more difficult or even impos-
sible. If the noise magnitude is high, the proposed four-
stage feature detection process must be used prior to
MDV.

6 Results

6.1 Data, noise and outliers, parameters

We used the 3D models from the Princeton Shape Bench-
mark project [8] and the Large Geometric Models Archive
of Georgia Institute of Technology [18] in our registra-
tion experiments. We added independent, uniform, and
random noise with zero mean. The magnitude of the
noise is varied as integer multiples of σ (see Fig. 5a).
Outliers are also randomly distributed within the bound-
ing box of the models. Moreover, after adding noise
and outliers, the order of the points in each model is
changed randomly for each trial of the registration experi-
ments.

In all experiments with the proposed feature-based
method, the following values for the parameters are used
(see the conclusion section for a detailed discussion on
how to set these parameters): thDI is set to the magnitude
of noise. For Algorithm 1 (Sect. 4), thC is set to 4σ . The
parameter ε is calculated as explained in Sect. 3.4 while
NSAMPLE, NTARGET, NDEV, and NMAX_ITER are set to (the
number of points in the model/500), 200, 10, and 100,
respectively.

6.2 Results

We are able to register all models that contain noise up to
5σ successfully (Fig. 5b). To evaluate the quality of our
registration method, we apply arbitrary rotation matrix R
and translation vector t to the points in P and then com-
pare this transformation with the corresponding one ob-
tained through the registration process (Rp, tp). We define
the following error metrics to measure the quality of the
registration: eROT = ‖Rp R− I‖ and eTRANS = ‖tp + t‖,
where I is the 3×3 identity matrix and ‖.‖ represents the
Euclidean norm.
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We conducted our experiments with a Pentium (R)
1.86 GHz CPU system having 1GB RAM and running
under Windows OS. The software code was written in
Java. The computation times for all the models are tabu-
lated in Table 1.

Fig. 5. a The dragon model with different magnitudes of noise (0σ ,
1σ , 3σ , 5σ). As the magnitude of noise is increased, the distinct
features of the model start to disappear. As a result, desired and
also some undesired points may be selected as distinct points in
stage 2 (refer to Sect. 4.1). Since most of these undesired points are
randomly scattered around the different regions of the model, they
make small groups and are eliminated in stage 3. b Registration of
the original dragon model to its transformed noisy copy using the
proposed feature-based registration method. The noise level is 3σ
and the number of outliers is 1% of the total number of points in
the model (109k)

Table 1. The performance of the proposed feature-based registration method. All reported times (FINS, Feature, MDV) are in seconds and
include the computations performed on both PCs (P and M). P is a transformed copy of the M. Noise (3σ) and outliers (1%) are added
to both PCs independently

Shape #Points #Outliers FINS Feature MDV eROT eTRANS(σ)

Dragon 109 411 1094 39.248 7.939 0.250 0.0395 2.9000
Horse 48 485 484 11.096 3.781 0.047 0.0011 0.1220
Bunny 35 947 359 6.790 2.960 0.047 0.0321 0.5143
Fish 18 143 181 2.716 1.848 0.125 0.0130 0.5251
Hand 7929 79 0.998 0.630 0.047 0.1023 1.8160

Table 2. The performance of MDV as a standalone algorithm under the first and second conditions discussed in Sect. 6.3. All reported
times are in seconds and include the computations performed on both PCs (P and M). P is a transformed copy of the M. Noise (0.1σ)
and outliers (10%) are added to both PCs independently

Shape #Points #Outliers Pre time Exec time eROT eTRANS(σ)

(a)
Dragon 109 411 10 941 15.578 3.172 0.0002 0.0009
Horse 48 485 4848 5.828 1.922 0.0001 0.0084
Bunny 35 947 3594 3.281 1.157 0.0005 0.0170
Fish 18 143 1814 1.797 0.969 0.0003 0.0012
Hand 7929 792 0.860 0.468 0.0005 0.0082

(b)
Dragon 109 411 10 941 16.359 3.123 0.0002 0.0004
Horse 48 485 4848 5.367 2.015 0.0001 0.0005
Bunny 35 947 3594 3.164 1.188 0.0001 0.0003
Fish 18 143 1814 1.847 1.057 0.0001 0.0011
Hand 7929 792 0.930 0.792 0.0005 0.0082

6.3 Performance of MDV as a standalone algorithm

As mentioned earlier, MDV can be used as a standalone
algorithm to register PCs even without detecting their fea-
ture points if the magnitude of noise in the data is lower
than 0.1σ .

To investigate the performance of MDV as a stand-
alone algorithm without extracting features, we conducted
registration experiments with PCs having low noise and a
high number of outliers. Since the magnitude of noise was
low, the parameter NTARGET in FINS was set to a lower
value of 50 to improve the efficiency. We tested the per-
formance of MDV under three different conditions:

(1) M and P are PCs of the whole model.
(2) M is the PC of a whole model and P is a randomly

selected subset of M containing 1
4 of points in M.

(3) M and P have overlapping regions of varying ratio,
but P is not a subset of M.

Each experiment was repeated five times and the order
of points in the PCs was randomized in each trial. The
average of the running times of those five trials is reported
in all tables and graphs. The number of outliers added arti-
ficially to each PC was always 10% of its number of points
and they were distributed randomly within the bounding
box of the PC. This excessive number of outliers was
used to illustrate the robustness of MDV (see Fig. 6a). The
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Fig. 6. a The points randomly selected from the Horse model (shown in red) are registered to the whole model shown in green color
(Condition 2 in Sect. 6.3) using MDV standalone (i.e. without finding feature points). Random noise of 0.1σ is added to both PCs. Note
the significant number of outliers in both PCs (10%). b The relation between the ratio of overlapping regions (Condition 3 in Sect. 6.3)
and the total execution time for the dragon model when MDV is used as a standalone algorithm. The number of points in the PCs is held
constant around 10k for each overlapping ratio

results of the experiments conducted under the first and
second conditions are presented in Tables 2a and b, re-
spectively. In both tables, we call the amount of time it
takes to find the neighbors of each point in P and M (using
the FINS algorithm) the “Pre Time” and the execution
time of MDV the “Exec Time”. As the ratio of overlapping
regions is decreased (the third condition), the probability
that a given query point in P will have a correspondence
in M also decreases, which results in an increase in the
execution times (Fig. 6b).

7 Discussion and conclusion

We developed a new feature-based registration method
for aligning PCs containing noise and outliers. As a part
of this development, we introduced a simple geometric
descriptor and a new k-NN search algorithm (i.e. FINS)
to find the neighbors of each point in a PC efficiently.
Although the proposed descriptor does not have a high
discriminatory power, distinct features of a PC can be
identified successfully when it is used with the proposed
four-stage feature selection method. For this purpose, first
the close neighbors of each point are determined using the
FINS algorithm and its descriptor value is calculated using
simply the coordinates of its neighbors. Second, the points
with distinct descriptor values are selected using a his-
togram. Third, the selected points are clustered into groups
and the ones containing an insignificant number of points
are eliminated using simple statistics. Fourth, the center
of mass of points in each remaining group is defined as
the feature point of the PC. Following the detection of all
feature points in both PCs using the proposed four-stage
method, a novel algorithm, called MDV, is executed to find
the correspondences between the feature points.

We should emphasize that the proposed geometric de-
scriptor is sensitive to noise, but this does not prevent the
selection of compatible feature points in our approach.
As the magnitude of noise is increased, more points are
selected from the different regions of PCs that do not con-
tain distinct features (see Fig. 5a). Since these points are
randomly scattered, they form small groups only. These
groups are mostly eliminated at the third stage of the pro-
posed method using simple statistics.

Although we show the application of our method to
the registration of PCs in 3D space only, FINS, MDV
and the whole process can be used in higher dimensional
problems without making any assumptions about the un-
derlying geometry of the PCs.

There are three important parameters set by the user in
our registration method. The parameter NTARGET used in
the FINS algorithm defines the desired number of neigh-
bors of a point. We set NTARGET to 200 in our experiments.
Although a more elegant method could be developed
based on the number and the distribution of points, our ef-
fortless selection worked very well for all the models used
in this study (note that the models contain a number of
points that range from 7k to 100k, noise up to 5σ , and a
significant number of outliers). Another parameter thC is
a threshold for clustering the points with distinct descrip-
tor values into groups based on their proximity to each
other. The value of thC can be set approximately to a few
multiples of σ . As thC is increased, one goes from several
small feature regions scattered around the model to a few
large regions only. Small and scattered feature regions are
eliminated at the third stage of the proposed feature selec-
tion method. Finally, thDI is another threshold parameter
used in MDV to decide if the magnitudes of two vectors
influenced by the noise are equal. In this regard, the value
of thDI can be set approximately equal to the magnitude of
noise.
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