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Abstract
To decidewhether the perceived quality of amesh is influenced by a certainmodification such as compression or simplification,
a metric for estimating the visual quality of 3D meshes is required. Today, machine learning and deep learning techniques are
getting increasingly popular since they present efficient solutions to many complex problems. However, these techniques are
not much utilized in the field of 3D shape perception. We propose a novel machine learning-based approach for evaluating
the visual quality of 3D static meshes. The novelty of our study lies in incorporating crowdsourcing in a machine learning
framework for visual quality evaluation.Wedeliberate that this is an elegantway sincemodelinghumanvisual systemprocesses
is a tedious task and requires tuning many parameters. We employ crowdsourcing methodology for collecting data of quality
evaluations and metric learning for drawing the best parameters that well correlate with the human perception. Experimental
validation of the proposed metric reveals a promising correlation between the metric output and human perception. Results
of our crowdsourcing experiments are publicly available for the community.

Keywords Visual quality assessment · Mesh quality · Perceptual computer graphics · Crowdsourcing · Metric learning

1 Introduction

Rapid advances in 3D rendering methods and technologies
have increased the usage of 3D meshes in mass-market
applications. Representing the meshes with high number of
vertices provides high-quality visualization,while increasing
the computational cost. Nevertheless, visual quality is actu-
ally judged by the human perception and there is no need to
spend additional cost for the physical realism of the details
that cannot be perceived by the observer. Therefore, a percep-
tual measure for estimating the visual quality of 3D graphical
contents is needed.
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Vast majority of the proposed methods designed for eval-
uating the visual quality of 3D meshes follow a bottom-up
procedure including low-level human visual system (HVS)
mechanisms. Yet, developing a bottom-up model for visual
quality assessment (VQA) of 3D triangulated meshes is a
difficult process. First of all, HVS is not fully explored and
all the theoretical models for explaining the visual perception
are designed for 2D. As a result, adapting the models origi-
nally devised for 2D on 3D realm is really challenging and
requires carefully tweaking a number of parameters. Further-
more, adapting 2D metrics on 3D makes the solution view
dependent, which is not desirable for 3D models. Therefore,
it is required that visual quality metrics for measuring the
quality of 3D models should operate directly in 3D. At this
point, amachine learning approach could be a neater solution
for obtaining a perceptual error metric whose parameters are
learned from ratings of the human observers.

Recent advances in machine learning have led to tremen-
dous progress in many fields of computer science. Moreover,
the increase in the prevalence of crowdsourcing tools facili-
tates the data gathering process and leverages the incorpora-
tion of human perception into computation. For that reason,
the use of crowdsourcing in computer graphics applications,
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where visual perception is an important concern, is promoted
in recent years [13,14].

In this paper, we propose an objective perceptual dis-
tance metric for assessing the global visual quality of 3D
static meshes. As an alternative to the classical bottom-up
approaches, we suggest a data-driven approach in which a
quality metric is directly learned from observer evaluations.
The proposed method relies on crowdsourcing and metric
learning techniques and well correlates with human percep-
tion according to the experimental analysis.

2 Related work

2.1 3D visual quality assessment

Methods for assessing the quality of triangle meshes can be
categorized as perceptual and non-perceptual methods. Non-
perceptual methods do not take human visual perception into
account and propose purely geometric errormeasures such as
Euclidean distance, Hausdorff distance, root-mean-squared
error. The most common geometric measure defined for 3D
meshes is the Hausdorff distance [7]. On the other hand, per-
ceptual methods aim at measuring the perceived quality of
meshes by incorporating HVS mechanisms. Recent works
[4,25] review the mesh quality assessment literature. More-
over, Corsini et al. [9] and Lin and Kuo [27] presented recent
surveys on perceptual methods for quality assessment.

Curvature and roughness of a surface arewidely employed
for describing surface quality. GL1 [15] and GL2 [38] are
roughness-basedmetrics that use Geometric Laplacian of the
mesh vertices. Lavoue et al. [24] measured structural sim-
ilarity between two mesh surfaces by using curvature for
extracting structural information. This metric is improved
with a multi-scale approach in [22]. Two definitions of sur-
face roughness are utilized for deriving two error metrics
called 3DW PM1 and 3DW PM2 [8]. Another metric called
FMPD is also based on local roughness estimated from
Gaussian curvature [43]. Curvature tensor difference of two
meshes is used for measuring the visible errors between two
meshes [39]. A novel roughness-based perceptual error met-
ric, which incorporates structural similarity, visual masking,
and saturation effect, is proposed by Dong et al. [11].

Image-based perceptual metrics operate in 2D image
space by using rendered images of the 3D mesh while evalu-
ating the visual quality. Thesemetrics generally employHVS
models such as Contrast Sensitivity Function (CSF), which
maps spatial frequency to visual sensitivity. Most common
image quality metric is visible difference prediction (VDP)
method which produces a 2D local visible distortions map
[10]. Similarly, Visual Equivalence Detector method outputs
a visual equivalence map which demonstrates the equally
perceived regions of two images [34]. A perceptual quality

metric based on VDP method is also proposed in [44] for
animated triangle meshes.

All of the aforementioned methods are bottom-up which
means they are stimulus-driven. Such approaches require
applying HVS models and carefully tuning many parame-
ters, which is a difficult process. Alternatively, a machine
learning-based approach which is fed by human evaluations
could provide a more calibrated perceptual quality metric.

2.2 Machine learning and crowdsourcing for VQA

Machine learning techniques have been successfully
employed in 2D image quality assessment, especially for
blind VQA where the reference image is not available. Mit-
tal et al. [31] extracted natural scene statistics features from
images and learn amapping between these features and qual-
ity scores through a regression model. A similar approach
is followed in the study by Saad et al. [35], where DCT
domain features are used and a Bayesian learning frame-
work is constructed. A recent work [20] develops a support
vector regression (SVR) model for learning the quality of
tone-mapped HDR pictures.

There are also several recent attempts which use machine
learning techniques in 3DVQA.Lavoue et al. [23] proposed a
pioneering work in the sense that it leverages machine learn-
ing for mesh quality assessment; by optimizing the weights
of several mesh descriptors using multi-linear regression.
Abouelaziz et al. [1] used mean curvature values as features
of the 3D models and estimate the weights of these features
through a general regression neural network. Nouri et al. [33]
proposed a 3D blind mesh quality assessment index based on
saliency and roughness statistics features, whose weights are
learned by a SVR model. A similar SVR model is developed
in [5], which uses several VQA metrics such as Hausdorff
distance, 3DWPM2 [8], andMSDM[24] as features.Another
SVR model employs mesh dihedral angles as features [2].

Despite the success and prevalence of the machine learn-
ing techniques in 2D VQA, it is relatively immature in 3D
VQA. Thus, we aim to contribute to this field by proposing a
full-reference 3D VQA metric based on a machine learning
framework. We also strengthen our framework with crowd-
sourcing tools which facilitate gathering training data.

Crowdsourcing is recently utilized for different purposes
such as determining the best viewpoint in 3D scenes [37],
semantic editing of 3D models [45], parameter tweaking
in visual design explorations such as color correction for
images, camera and light control on3Dscenes, shader param-
eter control, and determining the blendshape weights [18].

Crowdsourcing has also been a common tool for estimat-
ing similarity in several applications such as semantic image
similarity [16], illustration style for clip arts [12], 3D shape
style similarity [29], compatibility for 3D furniture models
[28], and style similarity for infographics design [36]. The

123



Amachine learning framework for full-reference 3D shape quality assessment

Fig. 1 Overview of the proposed method. Human observer evaluations
of 3D meshes are gathered through crowdsourcing. Then important
features are extracted from the 3D meshes and lastly, the weights of
these features are learned by a metric learning framework

main approach in these studies is that they collect relative
comparisons through a crowdsourcing platform; they extract
several features for the items whose similarities will be mea-
sured; and based on these features, they define ametricwhose
parameters are learned to maximize the likelihood of observ-
ing training data obtained in crowdsourcing. We extend such
techniques to 3D shape perception in this study.

3 Approach

Processing pipeline of the proposed method is illustrated in
Fig. 1. First of all, using crowdsourcing, we collect compar-
ative evaluations of 3D meshes from human observers. Then
we extract several descriptive features from the 3D meshes
used in the experiment. Lastly, we define a simple distance
function and learn the weights of the extracted features on
this function through optimization.

3.1 Crowdsourcing experiment

According to our methodology, we first need to collect user
evaluations. The most common way of this process is to
utilize online crowdsourcing platforms. We chose Amazon
Mechanical Turk (AMT)1 as our crowdsourcing platform due
to its prevalence, efficiency, and sound documentation. We
benefit from the AMT command line tools,2 which offer a
simple and efficient interface to the AMT library.

Using AMT services, one can easily design and conduct
simple user tests each of which is called Human Intelligence
Task (HIT). AMTsuppliesmuch functionality for performing
user experiments which allow displaying images and videos.
However, it does not provide built-in functionality to show
3D meshes, which is crucial for our experiments. Therefore,
we constructed a framework which can display 3D meshes
interactively on the web browser by directing AMT server to
external pages runningWebGL3 and Javascript 3D Library.4

3.1.1 Data

We constructed our dataset for training our model, using
models from public datasets LIRIS/EPFL general-purpose
dataset [24], 3D mesh watermarking benchmark [42], LIRIS
masking dataset [21], and 3D mesh animation quality
database [40]. Table 1 lists the properties of these meshes,
and Fig. 2 displays the reference meshes.

For the meshes Armadillo, RockerArm, Dinosaur, and
Venus, two types of distortion; noise addition and smooth-
ing, were applied with different strengths at four locations:
on the whole model, on smooth areas, on rough areas, and on
intermediate areas. This dataset also provides mean opinion
scores (MOS) and several metric results for the models. For
the rest of the meshes, only noise addition is applied at the
four locations described above. We selected these distortions
since noise addition and smoothing are considered sufficient
to reflect many possible distortions in 3D mesh processing
methods, thus allowing a general-purpose metric [24].

In our AMT experiments, if the original meshes have high
number of vertices (> 40K), we used 50% simplified ver-
sions of the models, with boundary preserving constraint,
to prevent possible loading overhead on the client browsers.
We applied the quadric edge collapse decimation method in
MeshLab [6], for simplifying the meshes. All the data used
in the experiments are included in the supplemental material.

1 https://www.mturk.com/mturk/welcome.
2 https://requester.mturk.com/developer/tools/clt.
3 http://get.webgl.org/.
4 http://threejs.org/.
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Table 1 Properties of the
meshes used in crowdsourcing
experiments

Mesh Reference dataset #Vertices #Faces #Distortions Distortion types #Triplets

Armadillo [24] 20002 40000 21 Noise, smoothing 210

Dinosaur [24] 21074 42144 21 Noise, smoothing 210

RockerArm [24] 20088 40176 21 Noise, smoothing 210

Venus [24] 24834 49664 21 Noise, smoothing 210

Bimba [21] 8857 17710 12 Noise 66

Bunny [42] 34835 69666 12 Noise 66

Dragon [42] 25000 50000 12 Noise 66

Dress [40] 20772 40570 12 Noise 66

Hand [42] 36619 72958 12 Noise 66

Rabbit [42] 35330 70656 12 Noise 66

Ramesses [42] 30002 60000 12 Noise 66

Fig. 2 Meshes used in the AMT experiment

3.1.2 Experiment design

It is known that human observers are better at providing
relative comparisons than making absolute judgments. In
our experiments, we preferred triplet design in which three
meshes from the same object type with different distortions
are presented. The task of the viewer is then to select which
of the meshes is more similar to the reference mesh (dis-
played in Panel A), in terms of visual quality (Fig. 3). At
the top of the HIT page, we provide a list of guidelines to
the subjects explaining that they should consider the spatial
distortions in the mesh surface while judging the visual qual-
ity. We have opted for a forced choice design with only two
options; we have not presented a “None of them” or “Both
of them” option since such options are highly abused by lazy
turkers.

The user is able to rotate, zoom in/out, and translate the
models and the user interaction is simultaneous for three
models. Panel A always contains the reference model with-
out distortions. This generates 1302 query triplets in total
(Table 1). We asked two comparison questions (triplets) in
each HIT, one of which is a control question with an obvious
answer. The duration of each HIT, for which we paid $0.03,
was approximately 3 minutes. Each triplet was evaluated by
at least twenty users, at the end of the experiment.

3.1.3 Reliability check for the crowdsourced data

Data gathered through online crowdsourcing platforms are
prone to some reliability concerns; because we do not have
full control over the response collection process as it is per-
formed remotely. Thus, in order to assure the reliability of
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Fig. 3 Screenshot from our AMT experiment

the collected data, we employ several design issues in our
AMT experiments, following the suggestions in [13]. Our
precautions for the purpose of reliability can be summarized
as below:

– First of all, each user has to take a training session with
obvious answers, which facilitates the learning of the
test procedure for the user. The users are allowed to
proceed to the actual test, only if they answer all the train-
ing questions correctly. This training session was easily
implemented through the “qualification” facility of the
AMT library. (See online supplementary material for the
details.)

– Secondly, each HIT contains one control question with
an obvious answer. If the user fails to answer the control
question correctly, that HIT is rejected.

– Lastly, a response time check is performed to identify
sloppy participants. In this regard, if the response time
for a HIT is shorter than a threshold value, that HIT is
also rejected. As the threshold value, we used 15 seconds,
which roughly corresponds to the standard deviation.

– If a user has three or more rejected HITs, we regard him
as unreliable and do not include his responses in the final
dataset.

At the end of the experiment, 22 subjects were blocked
among 207 unique subjects participated in the experiment
and the ratio of the rejected HITs over the total submitted
HITs is about 1.5%.

In addition, before the optimization,we have observed that
some of the responses in the collected data are not discrim-
inative in the sense that disagreement between the subjects
is high. Such kind of responses do not improve the learning
process and introduces computational overhead. Hence, we

preprocessed the data collected from the AMT experiment
to remove the non-discriminative responses (i.e., 9 of the
responses are B and 11 of them are C, or vice versa). About
5% of the tuples were eliminated at the end of this process.

3.2 Feature extraction

Themain purpose of this step is to extract several features that
describe the geometry of the meshes. We have implemented
the following geometric attributes that are widely used for
visual quality calculations, in ourmethod. All these attributes
are per-vertex. Four moments extracted from the distribution
of each per-vertex attribute are used as descriptors. These
moments are mean, variance, kurtosis, and skewness of the
histograms. Stacking all these attributes together generates a
feature vector of size 28.

– Curvatures Surface curvature is considered to be dire-
ctly related to the visual quality of the mesh, in the
literature. Minimum (κ1), maximum (κ2), mean ((κ1 +
κ2)/2), and Gaussian (κ1 × κ2) curvature fields are esti-
mated as in [3]. According to this definition, curvature
tensor T for every vertex v for the neighborhood B,
approximated by a geodesic disk around this vertex, is
calculated as below.

T (v) = 1

|B|
∑

edges e

β(e) |e ∩ B| −e τ e (1)

where |B| is the surface area over which the tensor is
estimated, β(e) is the signed angle between the normals
of the faces incident to edge e, |e∩ B| is the length of the
intersection of edge e with the region B, and −e is a unit
vector in the same direction with e. Eigendecomposition
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of the tensor field T is used to estimate the minimum and
maximum curvatures.

– Shape index Koenderink and van Doorn [17] state that
“all local approximations for which the ratio of the prin-
cipal curvatures is equal are of the same shape” [17].
Based on this definition, they calculate shape index as in
Eq. 2, where κ1 and κ2 are the minimum and maximum
curvatures, respectively.

Shape Index = 2/π arctan [(κ2 + κ1)/(κ2 − κ1)] (2)

– Curvedness In conjunction with the shape index notion,
curvedness refers to the amount of surface curvature and
is defined in Eq. 3.

Curvedness =
√

(κ12 + κ22)/2 (3)

– Surface roughness Local roughness for each vertex is
defined as the absolute value of the Laplacian of the
discrete Gaussian curvature [43]. First, mesh Laplacian
matrix is calculated as in Eq. 4, with cotangent weights.

Di j = cot(βi j ) + cot(β ′
i j )

2
, f or j ∈ N (V )

i

Dii = −
∑

j

Di j

(4)

where N (V )
i is the one-ring neighborhood of vi , and βi j

and β ′
i j are the two angles opposite to the edge con-

structed by vi and v j . Then the local roughness at each
vertex is defined as in Eq. 5, where GC denotes the dis-
crete Gaussian curvature.

LRi =
∣∣∣∣∣GCi +

∑
j∈N (V )

i
Di j .GC j

Dii

∣∣∣∣∣ (5)

In addition to these features, several other attributes were
also included in the initial attempts of our method. However,
they are excluded from the final implementation as they do
not have significant contributionon the accuracywhile ampli-
fying the computational cost. These additional features are
mesh saliency values calculated according to the method by
Lee et al. [26], largest 10 eigenvalues of the mesh Laplacian
operator, and mesh dihedral angles [41].

3.3 Metric learning

Based on the feature vector definition in the previous section
and training data gathered through crowdsourcing, we for-
mulate our problem as an instance of metric learning [19].
As a general approach in these studies, an objective function,
based on a logistic formulation which expects more noise for

relative comparisons with less clear answers, is defined and
minimized [12].

More precisely, given two meshes (X and Y ) to be com-
pared, let fX and fY be their feature vectors, respectively.We
define the weighted Euclidean distance between them as in
Eq. 6. Our goal is then to learn the weights on the diagonal of
W , in such a way that the likelihood of observing the training
data is maximized.

D(X ,Y ) =
√

( fX − fY )T W ( fX − fY ) (6)

Given a triplet of meshes<A, B,C>, we model the prob-
ability that the user selects B as more similar to A than C by
a sigmoid function (Eq. 7).

PA
BC = 1

1 + exp (D(A, B) − D(A,C))
(7)

Learning is performed by Maximum A Posteriori (MAP)
estimation which is acquired by minimizing the objective
function in Eq. 8, over the set of all training triplets T . The
second term in the equation is L1 regularization term which
is added for the purpose of obtaining a sparse feature vector,
where w is the diagonal of the weight matrix W .

−
∑

T

log (PA
BC ) + λ||w||1 (8)

We solve this nonlinear unconstrained optimization prob-
lem by Sequential Quadratic Programming (SQP) imple-
mentation in Matlab [32], as one of the state-of-the-art
numerical solutions for nonlinear optimization. Coefficient
λ in Eq. 8 is the regularization weight and experimentally set
to 0.1, in our implementation. The optimization procedure is
initialized by small random weights.

4 Results

4.1 Implementation of experiments

The results are calculated by leave-one-out cross-validation
according to the mesh classes. For instance, all the classes
except Armadillo are used for training and the resulting met-
ric is tested on Armadillo class, then the same procedure is
applied for Dinosaur class, and so on. It took approximately
10 minutes to converge our optimization procedure, on a 1.8
GHz PC.

The optimization ended up with 10 nonzero weights
among 28 features, as listed in Table 2. Too small weights
(< 0.1) were also set to 0. In the results, we see that local
roughness variation is predominantly high. This is consistent
with the findings in the literature which state the importance
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Table 2 Learned weights of the feature vector (Only nonzero weights
are listed)

Feature Weight

Minimum curvature variance 2.48

Maximum curvature variance 0.46

Mean curvature mean 1.24

Mean curvature variance 2.16

Shape index mean 4.29

Shape index variance 2.78

Curvedness mean 2.82

Curvedness variance 0.47

Local roughness mean 0.42

Local roughness variance 15.95

of local roughness on perceived mesh quality [21,40]. Mean
of shape index is found as the second important feature while
curvedness, minimum, maximum, and mean curvatures also
contribute to the result. As a remark, this is not the unique
solution; therefore, there could be many different settings of
the features that produce a similar result.

4.2 Quantitative prediction accuracy

In order to evaluate the success of our data-driven VQAmet-
ric, we have calculated prediction accuracy which measures
how well a distance metric predicts the preferences of the
human observers. We compare our metric to several state-
of-the-art metrics by computing their prediction accuracy
values.

To define the prediction accuracy formally, let tuple t col-
lected from the crowdsourcing experiment, be in the form of
< A, B,C, q>; where A is the reference mesh, B and C are
the distorted test meshes to be compared, and q is the query
response as a binary variable with 1 indicating that B was
selected as more similar to A and 0 indicating that C was
selected as more similar to A. Given the set of testing tuples
T , prediction accuracy (PAd ) is computed as the percentage
of correct predictions for variable q, when a specific metric
d is used as the decision maker (Eq. 9).

PAd = 100 ×
∑

t∈T δqt st

|T | (9)

where δ is the Kronecker delta and st is the metric decision
for tuple t , determined according to Eq. 10.

s<A,B,C,q> =

⎧
⎪⎪⎨

⎪⎪⎩

0, d(A, B) > d(A,C)

1, d(A, B) < d(A,C)

0, d(A, B) = d(A,C) & q = 0
1, d(A, B) = d(A,C) & q = 1

(10)

As stated previously, each tuple is evaluated by at least
twelve users in our crowdsourcing experiment. We have
determined the binary variable q for a triplet, according to the
majority response for that triplet, as in other crowdsourcing
applications such as [29] and [36].

Table 3 includes the prediction accuracies for our metric
and several other state-of-the-art methods. Other than these
metrics, we also compared our metric to GL1 [15], GL2 [38],
3DWPM1 [8], and 3DWPM2 [8]metrics for themesh classes
Armadillo, Dinosaur, RockerArm, and Venus since they are
given in the original dataset. However, the results of those
metrics are very low and their source codes are not avail-
able to measure other mesh classes. Therefore, we have not
included those results in the table. Still, themost recentmetric
results are available for all the meshes, giving us the current
state-of-the-art results.

In the table, “Uniform” is calculated by setting all the
weights of the features to 1 in Eq. 6; and “Learned” is our
metric where the feature weights are learned from the user
responses. The table also includes the prediction accuracies
calculated only using local roughness variance (“L.R.V.”),
since the weight of this feature is quite high when compared
to other features (Table 2). As the results depict, our learned
distance yieldsmuch better performance than themost recent
metrics.

4.3 Validation of themetric

During AMT experiments, we have used meshes with small
number of faces in order to prevent overhead on client
browsers. Furthermore, our training dataset contains only
two types of distortions, noise addition and smoothing, to
allow a general-purpose metric (see Sect. 3.1.1). Therefore,
it is necessary to validate the generalization of our met-
ric on different distortion types and more complex mesh
topologies. To that end, we have calculated the correlation
between our metric results and differential mean opinion
score (DMOS) values, which correspond to the differences
between the MOS values of test and reference meshes, on
public datasets. The datasets used for this purpose are orig-
inal version of LIRIS/EPFL general-purpose dataset [24],
UWBmesh compression dataset [41], and 3DMesh Anima-
tion Quality Database (uniform and Gaussian noise) [40].

Table 4 includes average Pearson and Spearman Rank
Order Correlation Coefficient (SROCC) for each dataset and
metric. These results reveal that our perceptual distance met-
ric is model-free in that it is independent of training dataset
and can be used as a general-purpose metric.

4.4 Qualitative results

The results also implicate that our perceptual distance metric
well reflects the common perceptual notions. Firstly, visual
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Table 3 Prediction accuracy of
each metric for each mesh
(highest values are marked with
bold font)

MSDM2 (%) FMPD (%) TPDM (%) L.R.V. (%) Uniform (%) Learned (%)

Armadillo 80 78 84 73 80 85

Dinosaur 83 86 88 60 47 88

RockerArm 84 86 85 71 59 88

Venus 86 86 79 53 48 91

Bimba 100 98 100 85 89 100

Bunny 95 94 94 79 56 97

Dragon 95 94 94 74 83 98

Dress 98 100 98 74 77 100

Hand 89 94 94 69 80 97

Rabbit 91 95 91 73 94 97

Ramesses 97 97 90 32 78 97

Mean 91 92 91 68 72 94

Table 4 Pearson and Spearman correlation coefficients for different
metrics and datasets (P denotes Pearson and S denotes Spearman.
Dataset 1: LIRIS/EPFL general-purpose original [24], Dataset 2: UWB
compression dataset [41], Dataset 3: 3D Mesh Animation Quality
Database [40])

Dataset 1 Dataset 2 Dataset 3

P (%) S (%) P (%) S (%) P (%) S (%)

MSDM2 84 85 81 55 97 92

FMPD 84 84 76 76 98 93

TPDM 79 82 90 70 98 93

Our 90 90 91 86 98 93

masking is a well-known perceptual issue which refers to the
fact that perception of a target stimulus is affected by the
presence of a masking stimulus. In the field of mesh quality
evaluation, the consequence of visual masking effect is that

distortions on the rough regions of a mesh are less likely to
be perceived than the distortions on smooth regions.

In Fig. 4, two distorted versions are presented for two
models: Venus and Armadillo. Although the same amount
of noise is introduced by both distortions, their DMOS val-
ues are quite different. The first version of noise addition is
applied on the whole mesh uniformly, while the second dis-
tortion is applied only on the rough regions of the meshes.
As a result of the visual masking effect, the perception of
quality degradations is less likely in rough regions. This can
be directly seen in the DMOS as well as our metric scores.

Another property that affects visual quality perception is
the structure of the models; smoothing and blurring may
degrade the structure of 3D models. In Fig. 5, a reference
mesh and three distorted meshes that are smoothed with
Taubin smoothing algorithm in different amounts are por-
trayed. For the smoothed meshes in medium and high levels,

Fig. 4 Visual masking effect. Same amount of noise is applied on both
meshes, but it is applied uniformly on thefirstmesh andon rough regions
in the secondmesh. The effect is visible in smooth regions, marked with

borders. (Learned distance is directly correlated with the DMOS score,
with a lower distance corresponding to a lower DMOS for each mesh.
DMOS scores are obtained from the original datasets given in Table 1)
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Fig. 5 Effect of the structural changes on perceived quality. (Learned distance is directly correlated with the DMOS score, with a lower distance
corresponding to a lower DMOS for each mesh. DMOS scores are obtained from the original datasets given in Table 1.)

both our perceptual distance and DMOS values are quite
high; indicating a low perceived quality. The reason is that
smoothing fades away some structural properties of themesh
such as eye boundaries. This property is also well captured
in our distance metric.

4.5 Failure cases

We have also examined the failure cases where our metric
results contradict with DMOS values. Our metric gener-
ally fails when compared meshes are very similar and their
distances are close. Figure 6 displays several examples for
typical failures of our metric. When we investigate these
cases deeply, we see that either perceptual distances or
DMOS values are quite close.

In the comparison triplet of Armadillo (the first row of
Fig. 6), the second mesh is smoothed in medium amount and
the third mesh is smoothed in high amount. The second row
of the figure shows Dinosaur triplet, where rough regions
are smoothed in the second mesh and intermediate regions
are smoothed in the third mesh. In both of these examples,
DMOS values and our metric results produce opposite rank-
ings of the mesh distances, although they are very close.
Our metric fails in similar cases since it cannot properly sort
medium and high distortion amounts, also rough and inter-
mediate regions.

The third row in Fig. 6 includes another failure case for
the RockerArm mesh. In this example, the second mesh has
the same amount of noise with the third mesh; but the noise
is added on the rough regions of the second mesh, while it
is added only on the smooth regions in the third mesh. The
same situation holds on for the Venus triplet in the last row.
Our metric finds the meshes with noise in smooth regions
more distant to the reference meshes. Actually, this is more

suitable to the visual masking effect since noise in smooth
regions is more perceptible.

5 Application of themetric

To show the effectiveness of our perceptual distance metric,
we have also applied it on vertex coordinate quantization,
which is widely employed in mesh compression algorithms
[30,38]. Here, our aim is to find the optimum quantization
level in bits per coordinate (bpc) that enables the maximum
possible compression rate without introducing any visible
artifact. In view of that we have quantized several meshes
with bpc values from 7 to 12 and measured the perceptual
distances of the resulting meshes to the undistorted meshes.

Figure 7 displays the results of these measurements. The
optimum quantization level for each mesh can be determined
easily by inspecting this plot. For each mesh, perceptual dis-
tance becomes constant and almost zero after a specific bpc
value. A threshold distance value (1 for our metric) can be
set to determine this region, following a similar approach to
recent studies [39,43]. According to this thresholding, the
optimum quantization levels are determined as 9, 10, 10 bpc
for Armadillo, Dress, and RockerArm meshes, respectively.
This simple approach is quite effective as illustrated in Fig. 8.

6 Conclusions

Main contribution of this study is a method for estimating the
perceived quality of a static mesh using a machine learning
pipeline, in which crowdsourced data is used while learning
the parameters of a distance metric that best fits the human
perception. To the best of our knowledge, this is the first
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Fig. 6 Typical examples for the failure cases of our metric. (First column includes reference meshes for each row, second and third columns include
compared meshes along with their learned distances and DMOS values
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Fig. 7 Plot of learned distance vs. quantization level (in bits per coor-
dinate, bpc) of three meshes. Dashed line shows the threshold distance
value for selecting the optimum quantization level

attempt for a 3D VQA metric that utilizes crowdsourcing
tools in a machine learning pipeline. Experimental results
show that our metric is model-free and outperforms the base-
linemetrics. In addition, feature vector calculationmakes the
metric independent of themesh topology and allows distance

computation betweenmeshes with different vertex count and
connectivity.

Limitations and future work
Despite the efficiency of the proposed method, there are

several limitations. We have already explained the reliability
concerns and our preventive actions. Although we believe
that these precautions minimize the bias in the collected
data, they may not be sufficient. For instance, we can fore-
see that a diverse range of viewing parameters and display
properties are used in the experiments by the subjects. Since
these parameters have significant impact on the perception
of visual quality, we are planning to expand this method
by applying a multi-scale approach in which features are
extracted for several simplification levels of the original
mesh. This will improve the robustness of the algorithm by
incorporating different levels of detail.

In addition, feature extraction is an important step and
may influence the accuracy of the metric rigorously. Thus,
new features should be investigated and their effects on the
accuracy should be experimented. We also intend to exploit
deep learningmethods to automatically extractmesh descrip-

Fig. 8 Quantizedmeshes with different bpc values (first three columns are 8, 9, 10 bpc, respectively). The last column is the original mesh. Optimum
quantization level for each mesh is marked with borders
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tors, instead of using the manually extracted features. Lastly,
the model should be trained by a more diverse set of meshes
conveying several distortion types, with more participants.

As the initial attempt for a crowdsourcing-based VQA
method for 3D meshes, our metric handles the global visual
quality of static meshes only, in a full-reference scenario.
Nevertheless, we have plans to extend this idea for evalu-
ating the local visibility of distortions and also considering
animated meshes. A similar approach can be devised even
for no-reference quality assessment.

7 Supplemental material

Supplementary material consisting of meshes used in this
study, comparison tuples obtained fromcrowdsourcing exper-
iment, and resulting feature weights can be downloaded via
the following link:
https://www.dropbox.com/s/m3bnb93vun91763/Learning.
VQA.zip?dl=0.
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