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Distributions in Nature 

[Filckr	  user	  Hans	  Dekker]	  



•  Conversion from continuous to discrete 
•  Integration in rendering 

Sampling 

[Filckr	  user	  Josh	  Pesavento	  ]	  



Point Distributions 
•  All kinds of patterns 



Studying Point Distributions 
•  How can we analyze patterns? 

Periodogram 

[Heck	  et	  al.	  2013]	   [Fa<al	  2011]	  

Density 



Point Processes 
•  Formal characterization of point patterns 



Point Processes 
•  Definition 

Point Process 



Point Processes 
•  Infinite point processes 

Observation window 



Point Process Statistics 
•  Correlations as probabilities 

%(n)(x1, · · · ,xn)dV1 · · · dVn = p(x1, · · · ,xn|N)

Product density Small volumes Points in space Point process 

xi



Point Process Statistics 
•  Correlations as probabilities 

– First order product density 

x

Expected number of points around x 
Measures local density 

%(1)(x) = �(x)
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Point Process Statistics 
•  Correlations as probabilities 

– First order product density 
%(1)(x) = �(x)

Constant 



Point Process Statistics 
•  Correlations as probabilities 

– Second order product density 

Expected number of points around x & y 

Measures the joint probability  p(x,y)
x

y

%(2)(x,y) = %(x,y)



Point Process Statistics 
•  Correlations as probabilities 

– Higher order? 

x

y
z

%(3)(x,y, z)

Expected number of points around x y z 
The “second order dogma” in physics 



Point Process Statistics 
•  Summary: 

– First and second order product densities 

%(2)(x,y) = %(x,y)

%(1)(x) = �(x)

x x

y



Point Process Statistics 
•  Example: homogenous Poisson process 

– a.k.a random sampling 
p(x) = p p(x,y) = p(x)p(y)

p(x,y) = %(x,y)dV
x

dV
y

= p(x)p(y) = �(x)dV
x

�(y)dV
y

= �2�(x)dV = p
�(x) = �p(x,y) = %(x,y)dV

x

dV
y

= p(x)p(y) = �(x)dV
x

�(y)dV
y

= �2

p(x,y) = %(x,y)dV
x

dV
y

= p(x)p(y) = �(x)dV
x

�(y)dV
y

= �2

%(x,y) = �(x)�(y) = �2



Stationary Processes 

Stationary  
(translation invariant) 

Isotropic 
(translation & rotation invariant) 

[Zhou	  et	  al.	  2012]	  



Stationary Processes 

�(x) = �

•  Stationary processes 

%(x,y) = %(x� y)

= �2g(x� y)

Pair Correlation Function (PCF) 
DoF reduced from d2 to d! 



Stationary Processes 
•  Pair Correlation Functions = �2g(x� y)

No points close to each other 

PCF 

For isotropic processes: 
radially symmetric 



Stationary Processes 
•  PCF is related to the periodogram 

F{g(h)} = P (!)

F{g(h)} = P (!)F{g(h)} = P (!)



Isotropic Processes 
•  Rotation invariant 

�(x) = �
g(x� y) = g(||x� y||)

PCF 



Isotropic Processes 
•  Smooth estimator of the PCF 

g(r) ⇡ 1

|@Vd|rd�1�2

X

i 6=j

k(r � d(xi,xj))

Volume of the unit 
hypercube in d dimensions 

Intensity Distance 
measure 

Kernel, e.g. 
Gaussian 



Isotropic Processes 
•  Estimated PCFs 

1

Random Stratified Poisson Disc 



1

Isotropic Processes 
•  Estimated PCFs 

[Balzer  
et al. 2009] 

[Schlömer  
et al. 2011] 

Regular 



1

Isotropic Processes 
•  Estimated PCFs 

Clustering Clustering Clustering 



Reconstructing Point Patterns 
•  Least squares fitting of point patterns 

x

k+1
i = x

k
i � t

@E

@xk
i

Gradient descend on the  
sample point locations 

Sample Points 
PCF of  
sample points 

Target PCF 

[Oz@reli	  and	  Gross	  2012]	  



Reconstructing Point Patterns 
•  Least squares fitting of point patterns 

[Oz@reli	  and	  Gross	  2012]	  



Reconstructing Point Patterns 
•  General isotropic patterns 

–  [Wachtel et al. 2014] 
–  [Heck et al. 2013] 
–  [Zhou et al. 2012] 
–  [Oztireli and Gross 2012] 



General Point Processes 
•  What about: general point patterns 

[Fa<al	  2011]	  



General Point Processes 
•  Idea 1: Use a tailored distance 

g(r) ⇡ 1

|@Vd|rd�1�2

X

i 6=j

k(r � d(xi,xj))

PCF 

[Fa<al	  2011]	  



General Point Processes 
•  Idea 1: Use a tailored distance 

d(x,y) = (x� y)TM(x)(x� y)

[Li	  et	  al.	  2010]	  



General Point Processes 
•  Idea 1: Use a tailored distance 

[Chen	  et	  al.	  2013]	  



General Point Processes 
•  Idea 2: Change an initial point set 

Example: thinning according to a density 
Start with an isotropic sampling 
Remove each point with probability 1 - p(x) 
 
 



General Point Processes 
•  Idea 2: Change an initial point set 

Example: thinning according to a density 
Start with an isotropic sampling 
Remove each point with probability 1 - p(x) 
 
 �(x) = p(x)�
%(x,y) = g(||x� y||)�(x)�(y)



General Point Processes 
•  Idea 3: Define the probability of a sampling 

– Fall back to classical statistics 
– So far: infinite point processes 
– Now: finite with n number of points 
– Define the probability of a configuration: 

f(x1, · · · ,xn)



General Point Processes 
•  Idea 3: Define the probability of a sampling 

f(x1, · · · ,xn) = f1 f(x1, · · · ,xn) = f2



General Point Processes 
•  Idea 3: Define the probability of a sampling 

– Generation of point patterns - MCMC 

Accept with probability 

X 0X

min

✓
1,

P (X 0)M(X|X 0)

P (X)M(X 0|X)

◆

Proposal distribution 



General Point Processes 
•  Idea 4: General correlations 

%(2)(x,y) = %(x,y)

%(1)(x) = �(x)

x x

y



Further Generalizations 
•  Marked point processes 

Point locations + marks 
g1(r)

g2(r)

PCF for class 1 

PCF for class 2 

g12(r)Cross PCF for class 1 & 2 
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Further Generalizations 
•  Marked point processes 

– Discrete vs. continuous marks 

[Wei	  2010]	  



Further Generalizations 
•  Space-time point processes 

[Ma et al. 2013] 



Conclusions 
•  Stochastic point processes 

– Theoretical foundations 
– Explains general point patterns 
– Unified analysis and synthesis 
– Generalizes to measure spaces 



Thanks 

Cengiz Öztireli 


