Supplementary Material: Perceptually Based Downscaling of Images

A. Cengiz Öztireli
ETH Zurich

Markus Gross
ETH Zurich

1 Solving the Problem in Equation 9

For simplicity of the equations, we make the following definitions $\mathbf{e}:=\mathbf{M}^{1 / 2} \mathbf{d}, \mathbf{b}:=\mathbf{M}^{-1 / 2} \mathbf{m}, c^{2}:=\alpha^{2} \mu_{h}^{2}+\gamma^{2} \sigma_{h}^{2}$, $\mathbf{f}:=\mathbf{M}^{-1 / 2} \mathbf{a}$. Then, the problem in Equation 5 of the paper can be rewritten as

$$
\begin{array}{cl}
\max _{\mathbf{e}} & \mathbf{f}^{T} \mathbf{e} \tag{1}\\
\mathbf{b}^{T} \mathbf{e}=\alpha \mu_{h}, & \|\mathbf{e}\|^{2}=c^{2} .
\end{array}
$$

We solve this problem with the method of Lagrange multipliers. Hence, we optimize the following function

$$
\begin{equation*}
F\left(\mathbf{e}, \lambda_{1}, \lambda_{2}\right)=\mathbf{f}^{T} \mathbf{e}-\lambda_{1}\left(\mathbf{b}^{T} \mathbf{e}-\alpha \mu_{h}\right)-\lambda_{2}\left(\|\mathbf{e}\|^{2}-c^{2}\right) . \tag{2}
\end{equation*}
$$

Taking the derivatives with respect to \mathbf{e}, λ_{1}, and λ_{2} gives us

$$
\begin{align*}
\mathbf{e} & =\frac{-\mathbf{f}-\lambda_{1} \mathbf{b}}{2 \lambda_{2}} \tag{3}\\
-\left(\mu_{h}+\lambda_{1}\right) & =2 \alpha \mu_{h} \lambda_{2} \tag{4}\\
\mathbf{a}^{T} \mathbf{l}+2 \lambda_{1} \mu_{h}+\lambda_{1}^{2} & =4 c^{2} \lambda_{2}^{2} . \tag{5}
\end{align*}
$$

Combining the last two equations, we can solve for λ_{1} and λ_{2} as

$$
\begin{align*}
& \lambda_{1}=\frac{-\mu_{h} \pm \alpha \mu_{h} \sqrt{\mathbf{a}^{T} \mathbf{l}-\mu_{h}^{2}}}{\gamma \sigma_{h}} \tag{6}\\
& \lambda_{2}=\mp \frac{1}{2} \frac{\sqrt{\mathbf{a}^{T} \mathbf{l}-\mu_{h}^{2}}}{\gamma \sigma_{h}} . \tag{7}
\end{align*}
$$

Substituting these into the expression for \mathbf{e} gives us

$$
\begin{equation*}
\mathbf{e}=\frac{-\mathbf{f}-\left(-\mu_{h} \pm \frac{\alpha \mu_{h} \sigma_{l}}{\gamma \sigma_{h}}\right) \mathbf{b}}{\frac{\mp \sigma_{l}}{\gamma \sigma_{h}}} . \tag{8}
\end{equation*}
$$

Hence, we get the solution

$$
\begin{equation*}
\mathbf{d}=\alpha \mu_{h} \mathbf{1} \pm \frac{\gamma \sigma_{h}}{\sigma_{l}}\left(\mathbf{l}-\mu_{h} \mathbf{1}\right) \tag{9}
\end{equation*}
$$

where 1 denotes the vector of ones. In order to decide on the sign, we recall that we would like to maximize the covariance and hence $\mathbf{a}^{T} \mathbf{d}$. Substituting the expression for \mathbf{d}, we can see that this dot product is maximized for the positive sign.

Acknowledgements

We thank Rogue State Media and the following Flickr users for making their images available under the public or Creative Commons license: Jim Frost, Nicolas Raymond, Ian Griffiths, frattonparker, @ sage_solar, Nicolas Raymond, Matthew Hillier, Giuseppe Milo, Papa Pic, Babak Farrokhi, Sakeeb Sabakka.

