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Most data acquired from the real world 
is or can be interpreted as geometric in 
nature. Advanced and affordable sen-

sors, printers, displays, and the Internet make 
geometric data increasingly important for many 
disciplines. Most geometric data comes in the 
form of unstructured point samples. Giving struc-
ture and meaning to this data has been one of the 
main challenges of computer graphics as well as 
other fi elds in the last few decades. 

Vast amounts of geometric data are collected in 
many fi elds such as medical imaging, robotics, ge-
ography, seismology, architecture, and archeology, 
just to name a few. The data can hence represent 
many different structures. The datasets are mas-
sive—a conventional depth camera with a frame 
rate of 30 frames per second (fps) can easily gener-
ate billions of points in minutes—but the acquired 
data are far from perfect, with noise, outliers, and 
missing parts. 

My PhD thesis started as an effort to turn this 
massive amount of data into digitally meaningful 
representations useful for various applications in 
computer graphics and beyond. We relied on the 
observation that the majority of geometric data 
in computer graphics and many other fi elds rep-
resent object surfaces and repetitive structures. 
We thus targeted the problems of reconstructing 
manifold surfaces, which are smooth watertight 
surfaces bounding objects, and stochastic point 
patterns that are random distributions of points 
with certain characteristics, from unstructured 
point samples.

Feature Preserving Robust Reconstructions
Reconstructing a manifold surface from points 
sampled on the surface is an inherently ill-posed 
problem in the absence of further assumptions. 
Thus, typically, a degree of smoothness is assumed 
for regularizing the problem. However, just as 
smooth images interfere with our perception of 
edges, smooth surfaces that lack sharp features 
and fi ne details are not always what we expect. 

Local Fits for a Global Surface Reconstruction
One way of achieving accurate and effi cient re-
constructions under the infl uence of noise and 
outliers is approximating the surface using mov-
ing least squares (MLS) based approximations.1,2

But these reconstructions inherently smooth out 
sharp features and fi ne details. In fact, MLS can 
also be regarded as a smoothing fi lter. Inspired by 
the bilateral fi lter3 and its relation to robust statis-
tics, the fi rst part of my thesis deals with extend-
ing MLS with robust statistics such that we can get 
more accurate reconstructions with sharp features 
in the presence of noise and outliers.

MLS-based implicit surfaces accept points pos-
sibly with surface normals as the input and solve 
a local least-squares system to fi t a local surface 
around each query point. Local kernel regression 
also operates with the same idea, and we indeed 
show that many implicit MLS surface defi nitions 
are actually local kernel regressions with various 
constraints.

Robust MLS Approximations
This relation then opens the door to incorporat-
ing robust statistics into the defi nition of MLS 
surfaces in ways proven to provide accurate re-
sults in statistics under the infl uence of outli-
ers. For surface reconstruction, there are outlier 
points resulting from corrupted data as well as 
outliers in the normal space near sharp features. 
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Normals of a smooth patch are actually outliers 
for the normals of another smooth patch meeting 
the former at a sharp feature such as an edge or 
a corner. Building on this observation, we show 
that it is possible to extend MLS surfaces with 
robust statistics and formulate a nonlinear fit-
ting that can be solved by iteratively reweighted 
least squares. 

The result is a manifold surface definition that 
we call robust implicit MLS (RIMLS). It preserves 
sharp features and details under the influence of 
noise, outliers, and a lack of samples. It also in-
herits the simple and efficient nature of MLS with 
pure local computations and a simple mathemati-
cal definition with no special cases to handle for 
any types of features.

Figure 1 illustrates the effects of the spatial and 
normal robustness terms on the reconstruction of 
a curve (one-manifold in the plane).4 The recon-
struction with MLS is easily biased by even a single 
outlier, as the horizontal part of the reconstructed 
curve shows. Introducing the spatial robustness 
term solves this problem, but the resulting defini-
tion still lacks the sharp corner. The corner can be 
accurately reconstructed with the normal robust-
ness term, and finally combining the two terms 
gives a sharp and unbiased reconstruction. 

Of course, the samples themselves do not pro-
vide the information regarding whether or not 
there should be sharp features on a surface. The 
sharpness of the features is thus controlled with 
a single user-given parameter, as shown for the 
reconstruction of a cube from just four samples 
at each face in Figure 2. The features are not lim-
ited to edges and simple corners. They can also be 
where more than three planes meet or where peaks 
and other fine details exist, as we show in Figure 
3. RIMLS better preserves corners than previous 
MLS-based reconstruction methods such as alge-
braic point set surfaces (APSS).5

Sampling for Accurate Reconstructions
Reconstruction is just one side of the story, how-
ever. We have experienced long running times for 
some of the reconstructions with RIMLS because 
of unnecessarily dense datasets, with millions or 
billions of points. On the other hand, as well inves-
tigated in signal processing, accurate reconstruc-
tions necessarily depend on adequate samplings. 
Without enough data points in a surface region, 
it is impossible to get an accurate reconstruction 
using MLS in that part.

In the second part of my thesis, we investigate the 
sampling problem: what sampling conditions are 
required to get the surface geometry and topology 
correct, while preserving sharp features and fine 
details and avoiding redundancy? For functions, 
the sampling theorem gives concise conditions to 
get accurate reconstructions for a regular sampling 
and accurate functional values. But the data we get 
does not represent a function. Instead, it is sampled 
from a manifold surface, and it is typically not reg-
ular with respect to a known metric. Hence, it is 
a much more difficult problem to derive sampling 
conditions for a particular surface definition.

Spectral Measure for Sampling
The first challenge is defining a measure that tells 
us the accuracy of reconstructions for a given 
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Figure 1. Reconstructed curve using robust implicit moving least squares 
(RIMLS). Compared with implicit MLS,4 this process is less influenced 
by the outlier and preserves the sharp corner if both spatial and normal 
robustness terms are used.

Sampling Smooth Sharp

Figure 2. Reconstructed cube from just four samples at each face. The sharpness of the features is controllable 
by a single user-given parameter.
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sampling of a surface. Such a measure should 
only depend on the intrinsic structure of the 
surface and should be independent of the actual 
representation.

The Laplace-Beltrami operator and its spectrum 
have been proven to accurately represent mani-
folds both in theory and practice for many prob-
lems. In fact, it is one of the most fruitful tools 
in geometric processing. Its spectrum contains a 
vast amount of information about the surface 
and satisfies all the required properties we seek. 
The Laplace-Beltrami operator is a generalization 
of the Laplace operator. It acts on the functions 
living on the manifold surface, instead of those 
defined in an Euclidean space. Intuitively, the ei-
genvalues correspond to frequencies, and the ei-
genfunctions correspond to oscillating functions 
with those frequencies, reminiscent of cosines and 
sines in the Euclidean space.

We thus define the contribution of a point to the 
surface definition as the change it makes to the 
Laplace-Beltrami spectrum of the reconstructed 
surface. Conceptually, we compute the Laplace-
Beltrami spectrum before and after adding or re-
moving one or more points. If the change is not 
significant, we say the added or removed points 
are not important for an accurate reconstruction.

Computing the Measure
However, getting from the reconstructed surface 
definition to the spectrum is challenging. First of 
all, we need to define which method we use to 
reconstruct the surface because sampling condi-
tions are meaningful only when the reconstruc-
tion method is defined. We use our RIMLS as the 
basis reconstruction method. 

In principle, for a greedy sampling algorithm, we 
could mesh the surface reconstructed with RIMLS 

before and after adding a point to the point set 
defining the surface and then compute the change 
in the spectrum. But this involves computing the 
eigen-decompositions of global matrices at each 
step, which is too expensive. Furthermore, to get 
accurate samplings, we also need to optimize with 
respect to this measure. Taking derivatives and 
designing optimization procedures directly for the 
pure measure is also difficult.

Instead, we utilize the relation between the 
Laplace-Beltrami operator and surface’s heat ker-
nel and its approximations with kernels in the em-
bedding Euclidean space. The heat kernel defines 
how heat is transferred between two points on the 
surface. For the Euclidean space, this is just an iso-
tropic Gaussian. For general manifolds, it can have 
different forms depending on where we are on the 
manifold surface. The heat kernel’s relations to 
the Laplace-Beltrami operator and Gaussian ker-
nels have been studied extensively in the machine 
learning and harmonic analysis literature.6,7 Uti-
lizing these relations, our derivations finally result 
in a local measure based on the kernel definition 
we use to compute RIMLS. This measure involves 
inverting a local kernel matrix constructed us-
ing the neighboring sample points for each query 
point and is actually equivalent to the distance 
of the query point to the subspace defined by the 
neighboring points in the kernel’s feature space.

Fast Sampling Algorithms
We utilize the resulting measure in fast and out-of-
core sampling algorithms. The algorithms ensure 
that each sample point contributes maximally and 
equally to the surface, which leads to a considerable 
reduction in the number of points needed to rep-
resent the surface. The resulting samplings adapt 
to the surface definition via the kernels used such 

APSS RIMLS APSS RIMLS

Figure 3. Feature preservation. Corners where more than three planes meet or where peaks and other fine 
details exist are better preserved with RIMLS than with previous MLS-based reconstruction methods such as 
algebraic point set surfaces (APSS).5
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that we get accurate reconstructions while avoiding 
redundancy, when used together with RIMLS. The 
samples are also distributed evenly on the surface, 
as we show in Figure 4, and the sampling adapts 
to the features depending on the kernel definition 
(Figure 5). Hence, we can also mesh the points di-
rectly without computing the implicit surface for 
accurate reconstructions, as in Figure 6.

Understanding and Reproducing Patterns  
in Nature
The point samples do not always represent deter-
ministic structures such as surfaces, as we have 
assumed so far. Many real-world data actually 
come from repeated structures and patterns. It is 
a well-studied fact that nature is fundamentally 
repetitive at various scales. Examples range from 
surface textures to the distribution of trees in 
a forest or the dynamic locations of people in a 
crowd. These distributions seem random but also 
exhibit certain characteristics. 

We need tools to analyze and synthesize such 
general point distributions with various character-
istics. However, most works in computer graph-
ics only focus on understanding the so-called 
blue noise distributions, where the points have a 
certain distance between them and are otherwise 
randomly distributed, similar to the distributions 
we studied for surface sampling. There is a gen-
eral need for a deeper theoretical understanding 
of point patterns.

Figure 4. Evenly distributed samples. Because each sample contributes equally and maximally to the surface, we get distributions 
with blue noise characteristics on the surfaces.

Figure 5. Sampling and kernel definition. By changing 
the surface and hence the kernel definition, we can 
also get adaptive samplings (right) to better preserve 
surface features.

Input Remeshing

Figure 6. 
Generated 
samplings. 
The points can 
be meshed 
directly 
without 
computing the 
implicit surface. 
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Point Processes as a Theoretical Basis
In other domains such as physics and spatial 
statistics, more complex patterns have been 
heavily investigated, under the discipline called 
point processes.8 Each distribution can be an in-
stance of an underlying point process, or con-
versely, a point process can generate infinitely 
many different point distributions with common 
characteristics. To understand a distribution’s 
characteristics, we thus need to reconstruct its 
underlying point process.

In the last part of my thesis, we propose learn-
ing a point distribution’s underlying point process 
and using it to analyze the pattern the distribution 
represents as well as to synthesize new point dis-
tributions with the same characteristics.

As the basis of our methods, we utilize first- 
and second-order product density measures and, 
in particular, the pair correlation function (PCF), 
which intuitively measures the probability of hav-
ing a pair of points at particular locations in space, 
assuming that the point pattern is translation 
and rotation invariant. The PCF only depends on 
the distance between two locations in space, and 
hence it is a one-dimensional function, regardless 
of the space the points live in. 

Analyzing and Relating Point Distributions
We propose estimating a smoothed version of the 
PCF of a point process from a point distribution(s). 

Each given distribution can be regarded as a 
sample generated by an underlying point process, 
and hence it is normally difficult to compute the 
characteristics of a point process from a single 
distribution. Fortunately, the invariance assump-
tion significantly reduces the space of allowable 
PCFs because the distance between each pair of 
points can be regarded as a sample from the prob-
ability distribution of the distances that the PCF 
measures. 

Figure 7 plots example PCFs extracted from 
distributions with different characteristics, along 
with an associated irregularity measure we derived 
from the PCFs. Intuitively, this measure quantifies 
how irregular the point distribution is at differ-
ent distances. As you can observe from the plots, 
the PCF is actually a normalized measure of how 
many points are present at certain distances.

We next interpret the PCF as the mean of 
a distribution specific to a point process in a 
functional space. In this space, it is possible to 
establish relations among distributions. We em-
pirically show the interesting property that many 
distributions in this space live fundamentally in a 
two-dimensional subspace, which we illustrate in 
Figure 8. At one end, we have the clustering dis-
tributions, which are irregular. As we approach the 
other end, the distributions become more regular, 
with the regular grid as the rightmost point in this 
space. Hence, regularity plays a fundamental role 
in distinguishing and relating many of the point 
distributions we encounter.

General Synthesis Algorithm
Finally, we would like to synthesize new distribu-
tions with characteristics extracted from other dis-
tributions. This means that the resulting synthesis 
algorithm can mimic any previous algorithm pro-
posed for generating sampling patterns, given a 
sample distribution generated by that algorithm.

We again use the PCF for this purpose because 
it is widely accepted to uniquely describe almost 
all practical isotropic distributions in physics and 
statistics.8 Given an example point distribution, 

1 151
PCF Irregularity

Figure 7. Example pair correlation functions (PCFs). The PCF and irregularity measures provide an intuitive and descriptive 
characterization of general point distributions.

Figure 8. Relations among point distributions. We show that point 
distributions can be mapped to a space where many distributions live in 
an essentially two-dimensional subspace.
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the algorithm finds an output distribution with 
a PCF matching that of the example distribution.

We show some example results obtained with 
this minimization in Figure 9. For each case, al-
though point locations in the example and output 
distributions differ, they exhibit the same visual 
pattern. The synthesis algorithm is also general 
such that example and output distributions can 
contain different numbers of points, live in differ-
ent metric spaces, and belong to multiple classes.

Post-thesis Developments
We have been pleased that the ideas and tech-
niques proposed in this thesis have helped us and 
other researchers with several theoretical and 
practical developments in computer graphics as 
well as in other fields. (See https://graphics.ethz 
.ch/~cengizo/ for more details.) 

We strongly believe in making the code and 
implementations of research works available to 
the public for the advancement of computer sci-
ence. We thus integrated RIMLS into the Mesh-
Lab software (http://meshlab.sourceforge.net) 
and provide our sampling codes via our website 
as well as on demand. This has proven to be use-
ful indeed, as researchers from many fields have 
been able to use our methods for their own pur-
poses and to test the weaknesses and limits for 
particular applications.

Applications
In geometry processing, many works have investi-
gated our methods and utilized them for different 
applications. Our surface sampling and reconstruc-
tion methods have been applied to objects with dif-
ficult sharp features, multiple parts, or structural 
constraints. They have been utilized in rendering, 
filtering geometry, feature extraction, remeshing, 
alignment of range scans, surface deformations, 
volume visualization, texturing, model detection 
in scenes, free viewpoint video, and data fusion 
from depth and color cameras.

Our algorithms have also been used as base tools 
for research problems in related fields. In robotics, 
accurate 3D reconstructions of the scenes the ro-
bots live in are becoming increasingly common. 
Surface reconstruction is thus emerging as an im-
portant problem. Several works have experimented 
with our methods for this problem because of their 
accuracy and efficiency. 

In medical applications, researchers are experi-
menting with new 3D scanning technologies to 
make the procedures and visualizations conve-
nient for the doctors and patients while keeping 
the costs low. Our reconstruction method has 

been used in several applications in the medical 
field such as 3D orthodontic dental models and 
surgical planning.

Our techniques have also been utilized in some 
works on understanding the motions of cells, visu-
alizations for astrophysics, and preserving cultural 
heritage.

Exploring New Ideas
Apart from algorithms, the ideas on applying ro-
bust methods to MLS, quantifying the change in 
a manifold using the Laplace-Beltrami spectrum, 
and analysis and synthesis of distributions with 
theoretical tools have also been utilized and ex-
tended in several ways. 

In geometric processing, robust averaging and 
the idea of a joint space of point positions and at-
tributes have been applied to various interpolation 
problems. In machine learning and data mining, 
the spectral measure we propose has been used 
for manifold learning, classification, and anomaly 
detection. Several works on sampling have inves-
tigated the synthesis of point distributions with 
general characteristics and how the PCF can be 
further utilized to analyze distributions in the 
context of reconstruction and integration of func-
tions, rendering, and discrete and continuous tex-
ture synthesis.

Prospects for the Future
In terms of applications, we expect to see an in-
creasing interest in 3D reconstructions as a result 
of the availability of affordable scanning devices 
as well as wider adoption of the technology in 
various fields. We believe our sampling and recon-
struction algorithms will continue to be useful for 
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Figure 9. A general synthesis algorithm. We propose a pattern 
reconstruction algorithm that can mimic any previous point 
distribution generation algorithms given an example distribution.
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practical systems on object surface generation and 
scene building. We have recently demonstrated 
an example of utilizing dynamic data from mul-
tiple depth and color cameras for spatiotemporally 
smooth and accurate reconstructions.9 

We have also seen increased utilization of ro-
bust and feature-preserving techniques for in-
terpolation problems arising in many problems 
in computer graphics. However, the relations be-
tween MLS approximations, local kernel regres-
sion, robust methods, sparse methods, and other 
approximation techniques are still to be explored 
and exploited further.

Measures based on the Laplace-Beltrami spec-
trum connect with kernel methods, manifold 
learning, spectral graph theory, data mining, and 
geometry processing. Such measures have also 
been applied to nonmanifold geometries. We hope 
that our ideas and insights will be useful in fur-
ther explorations of nonmanifolds and more com-
plex data.

Sampling is an important problem in rendering, 
image processing, and texture synthesis, where the 
reconstructed or integrated function should have 
no noticeable noise and regularity artifacts. So 
far, density of points has mostly been considered 

for improving the error and perceptual quality, 
excluding low discrepancy and blue noise distri-
butions. The theoretical tools we present can be 
used to explore how correlations among point lo-
cations, along with the density, can be adapted to 
the functions to be represented.

The analysis and synthesis methods for patterns 
can be extended using marked and space-time 
point processes, which can be useful in example-
based physically based simulations, crowd simula-
tions, and geometry textures.

We hope that the ideas, methods, and algo-
rithms proposed will continue to be useful and 
are looking forward to new explorations. 
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