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Introduction

As the title of this report suggests, my work this year is primarily concerned
with three things: finite model theory, descriptive complexity and game comon-
ads. Most of the pages which follow will detail what I’ve learned about these
and how I believe I can develop them over the next two years of my PhD.

Finite model theory is the extensively studied mathematical theory of how
finite objects relate to the logical sentences they satisfy. Descriptive complex-
ity is one of the key twentieth century applications of this theory in computer
science. It relates the expressive power of the logical languages needed to de-
scribe a class of finite objects with the computational power needed to recognise
it. Game comonads are a brand new compositional perspective on descriptive
complexity, recasting logical relations as approximations to homomorphism and
identifying new connections throughout the field. In this report, I will demon-
strate that this new perspective is rich and shows much promise but is as yet
too limited to reimagine all of descriptive complexity theory and I will set out
my plan for overcoming some of these limitations over the next few years and
expanding the realm of compositional methods in descriptive complexity and
finite model theory.

The report itself is broken down into four parts as follows:

I Literature Review

II Preliminary Research

III Summary of Proposed Dissertation

IV Timetable & Milestones

Part I, the largest part, will expand greatly on the brief sketch provided above,
outlining the development of these three ideas throughout their existence, ar-
riving at the current state of affairs and the opportunities for further research.
Part II will summarise the work I have done throughout the year both in learn-
ing about this area and exploring the boundaries of what is currently possible
in the framework of game comonads.
Parts III and IV will provide a suggestive plan of how I intend to continue my
research over the next two years.
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1 Literature Review

Finite model theory is a vast area of computer science which studies the descrip-
tive power of logics over finite models. As we will see in this brief introduction,
this field straddles many areas including database theory, algorithms for con-
straint satisfaction and graph isomorphism and complexity theory. We will see
that the restriction to finite models is not simply a practical convenience but
adds new richness to the field mathematicians call model theory. We will see
how classical approaches to this field have relied on a plethora of combinatorial
tricks and tools. We will then see how the field has changed over the past twenty
years with the emergence of two streams of developments which have at times
extended the more combinatorial tools of the past. These streams, broadly
speaking, are what I will call the algebraic and categorical (or (co)monadic)
approaches to finite model theory. I will trace how each of these approaches has
opened up new and exciting connections in FMT and between different areas of
complexity and algorithms research but I will conclude that there is still work
to be done in uniting these approaches. This will lay the foundation for the
research I want to do in finding an expression of algebraic FMT methods in the
comonadic framework of Abramsky, Dawar and Wang.

1.1 Finite model theory: its origins and why we study it

In the early twentieth century, before the establishment of anything resembling
modern computer science, mathematicians were asking themselves questions
the relationship between logical formulae (usually in first-order logic) and the
objects or models which satisfy them. As anyone who has taken an undergrad-
uate course in logic knows, the resulting meta-theory, model theory, is elegant
and somewhat unexpected. We have, for one, a deep relationship between the
syntax of first-order sentences and their semantics, as summarised in Gödel’s
completeness theorem. Here I state a later form of it due to Leon Henkin:

Theorem 1 (Henkin, 1947 after Gödel, 1929).
If a first-order theory T is syntactically consistent (i.e. you can’t deduce a
contradiction from it) then T has a model

This forms the basis of a great number of results relating the syntax of
theories to the semantic properties of their models. To list a few:

•  Loś-Tarski Theorem: A first-order-definable property is preserved un-
der taking submodels if and only if it is definable in first-order logic using
only universal quantifiers.

• Lyndon’s Positivity Theorem: A first-order-definable property is pre-
served under surjective homomorphisms if and only if it is definable in
first-order logic without negations.

• Löwenheim-Skolem Theorem: If a (countable) first-order theory has
an infinite model then it has a model of size κ for eveny infinite cardinal
κ
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These theorems are clearly aesthetically pleasing and they form the beginnings
of a long and fascinating tradition of model theory which continues today and
which is excellently documented in Baldwin’s history of the topic [8].

At this point, an impatient computer scientist (perhaps the reader) might ask
“Why all this fuss about infinite cardinals” When we ask which models satisfy
a first-order formula (or perhaps query) we hardly care about countable models
let alone uncountable ones. What we really want to know is which finite inputs
(graphs, systems of equations, database entries) are going to satisfy our query.
So why not just restrict this elegant theory of models to finite ones and use the
relevant results? Call this subfield the model theory of finite structures and be
done with it. That would certainly make the writing of this review a lot simpler.
However, it turns out that the the realm of finite models is quite different from
its bigger sibling and this can for the most part be traced back to following
result (due to Trakhtenbrot) and its main consequences (beginning with the
failure of completeness). With this, we will soon see that the exploration of
these differences warrants a whole new field of finite model theory.

Theorem 2. Over a signature σ with at least one binary relation, the set of
FO formulas φ which are finitely satisfiable is undecidable.

Firstly why does this result show the failure of completeness? Well note
that the set of finitely satisfiable sentences is clearly recursively enumerable
(just go through each finite model in turn and halt if the sentence is satisfied)
so we have decidability iff unsatisfiable sentences are recursively enumerable. So
Trakhtenbrot shows that the set of sentences which are finitely unsatisfiable are
not recursively enumerable. This precludes a finite version of the completeness
theorem, as such a theorem would allow you to enumerate unsatisfiable sentences
by enumerating proofs of false.

The proof of Trakhtenbrot’s Theorem, which is given a nice exposition in
Chapter 9 of Leonid Libkin’s textbook on finite model theory [31], makes use
of an encoding of an arbitrary Turing Machine M into a first-order sentence
φM for which any model is a proof that M halts on the empty input. Then
we derive undecidability from that of the Halting Problem. This type of close
relationship between satisfiability over finite objects and computations halting
in finite time is precisely the content of the next section which will introduce
descriptive complexity theory.

1.2 Descriptive complexity theory

Descriptive complexity theory builds on the connection between finite model
theory and computation established by Trakhtenbrot’s theorem and has devel-
oped into a rich field studying the relationship between the logics used to state
queries and the complexity of the algorithms available to solve them. This sec-
tion will trace the development of this field. In particular, I will focus on the
work done towards the central problem of finding a logic which captures (in
a sense which I will define later) the complexity class P and the importance

3



of finite variable and infinitary logics in this work. Throughout this section
it should be clear that the language and techniques used in the development
of descriptive complexity have quite a combinatorial feel. As you will see in
following sections, it will be central to my thesis that we need a cleaner, more
systematic, compositional way to capture these developments.

Fagin’s Theorem and P vs. NP The question of whether logics and com-
plexity classes can be related (which was raised by Trakhtenbrot’s Theorem) was
first answered in the affirmative in Ronald Fagin’s 1973 PhD thesis [20]. Fagin’s
Theorem, which says that existential second order logic captures1 NP, can be
seen inaugural result in descriptive complexity theory. This result raises natural
questions for complexity theorists, the most significant of which is whether there
is a similar logical characterisation of P. If there is such a logic then comparing
it with ∃SO will teach us about the relation between P and NP. If there is no
such logic, we will know that P 6= NP. So, this paradigm of descriptive com-
plexity and this question in particular of finding a logic to capture P are clearly
a worthy areas of research. I will now sketch the progress made towards this
goal since Fagin’s Theorem launched this field in 1973.

FO isn’t enough to capture P The natural place to start in this search
for a logic capturing P is, as it were, at the bottom i.e. with first-order logic.
This is a woefully inadequate language however which can’t even capture sim-
ple polynomial properties such as counting and graph connectivity. This inad-
equacy is laid out plainly in the first few chapters of Libkin’s textbook [31].
The main techniques for proving this weakness of FO over finite models are the
game theoretic arguments introduced in the 1960’s by Ehrenfeucht [19]. These
Ehrenfeucht-Fräıssé games and the accompanying EF Theorem form a template
for almost all the combinatorial techniques used to study the expressiveness of
logics over finite relational structures.
The game itself works as follows. A spoiler and duplicator take turns marking
elements in two relational structures A and B. Spoiler plays first on round i by
picking a structure, say A, and marking an element ai ∈ A. Spoiler responds by
marking an element in the other structure, e.g. bi ∈ B. By the end of the turn
spoiler wins unless the marked pebbles form a partial isomorphism ai 7→ bi from
A to B. The central theorem of [19] says that if spoiler has a winning strategy
for the k round version of this game (A ≡kEF B) then A and B agree on FO
sentences of quantifier rank at most k (A ≡Lk

B). This gives us a way of show-
ing that some property P of finite relational structures is not expressible in FO,
namely we find for each k there exists Ak ∈ P, and Bk /∈ P s.t. A ≡kEF B. In
the case of the EF games, we can show that, for example connectivity is not an
FO-definable property of graphs. This technique of using combinatorial games
to determine the expressiveness of logics has been a central theme of descriptive

1In the sense that for any set S of models whose decision problem is in NP there is a φS ∈
∃SO s.t S = {M | M |= φ} and for any φ ∈ ∃SO the decision problem for Sφ = {M | M |= φ}
is in NP.
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complexity theory and creating a unified perspective on these methods is one of
the aims of my work.

Recursion, fixed-points and infinitary FO Motivated by the example of
connectivity in graphs, a natural extension of FO is to try and introduce some
form of recursive definition. The way this has been handled in logic is with the
addition of fixed-point quantifiers to first-order logic as first explored indepen-
dently by Immerman [27] and Vardi [34]. These operators allow for the recursive
definition of new predicates such as ifp(φ(R, x̄, ȳ))(x̄). We call the extension of
FO by these operators, IFP or inflationary fixpoint logic. This logic can easily
capture connectivity and reachability queries that were impossible in FO logic
but the new syntax makes it difficult to use the same game techniques intro-
duced in the last section. The solution is to “unravel” IFP and contain this
finitary fixed-point logic inside an infinitary version of FO logic. The first naive
attempt to do this is L∞ω, the logic of FO sentences closed under infinitary
conjunctions and disjunctions. This, however, is far too strong. Note, in partic-
ular, that any relational structure A has a φA ∈ FO s.t. B |= φA =⇒ A ∼= B.
So by taking the disjunction of all the appropriate φA, L∞ω can express all
properties of finite relational structures, even undecidable ones! The solution,
which we’ll see in the next paragraph is the introduction of finite variable logics,
a key development in descriptive complexity and an important extension of the
realm of applicability of using games to reason about logics.

Finite variable infinitary logics give us some hope As pointed out at the
end of the last paragraph, IFP is contained in L∞ω but this containment can’t
tell us much as L∞ω is too powerful over finite models. Instead a restriction must
be found for which we can develop a notion of the EF game. This restriction is to
the finite variable form Lω∞ω =

⋃
Lk∞ω, where Lk∞ω is infinitary FO sentences on

no more than k variables (where variables can be reused). The development of
this theory in the FMT community is covered extensively in Kolaitis and Vardi’s
expository work [30]. A key part of this track of work was the characterisation
of Lk∞ω by a variant of the EF game where instead of limiting the number of
turns, we limit the marked positions to k movable “pebbles”. This k-pebble
game allows us to answer the question of whether IFP captures P. As we’ll
see this is not the case but the field of finite variable logic proves a fertile area
of research and the extension of these pebble games with various additional
operators has led to descriptions for increasingly powerful logics.

Still IFP and IFP+C are not enough The story of these developments
unfolds throughout the 80’s and 90’s and is reviewed comprehensively by Grohe
in his 1998 paper [23]. Early positive developments in this realm include Im-
merman and Vardi’s independent proofs that IFP captures P over finite totally
ordered structures and Kolaitis and Vardi’s discovery of a 0-1 law for Lω∞ω

2, and
by comparison also for IFP. The finite variable approach can also be used to

2which states that for φ ∈ Lω∞ω , either A |= φ for almost all A or A 6|= φ for almost all A
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prove negative results about extensions of FO. In particular, it is used to show
that IFP cannot capture P over all finite structures (by showing that parity is
not expressible in Lω∞ω). This then suggests the next extension of FO which
was posited to capture P, namely IFP + C, the extension of IFP with counting
quantifiers ∃≥n. In a similar manner to the bounding of IFP by Lω∞ω, this power
of this new logic can be bounded above by infinitary finite variable logic with
counting quantifiers Cω∞ω. Analysis of this logic was then enabled by modified
versions of the k pebble games introduced by Immerman and Lander [28] and
Hella [25]. The hope that IFP+C would capture P was then dashed by the
construction of Cai, Fürer and Immerman in [14]. This paper demonstrated a
graph property which which is decidable in P but is not expressible in Cω∞ω.
The process for deciding this graph property is essentially a canonisation algo-
rithm based on the efficient computation of linear algebraic rank and so it is no
surprise that the challenge of going beyond IFP+C has been answered in large
part over the last two decades by the addition of linear algebraic operators to
IFP+C. This will be covered in the following paragraph.

Beyond IFP+C: Linear Algebraic Logics At this point in our story we
catch our first glimpse of a phenomenon that my work will aim to better un-
derstand. That phenomenon is the application of algebraic techniques to fi-
nite model theory and descriptive complexity. This first becomes an important
thread in the search for a logic capturing P when Dawar et al. introduce rank
logic in [17]. This new logic, FPR, extends IFP with operators for computing
the rank of nr×nr matrices over the field Fp for some p. By varying r and p this
is shown to generalise IFP+C and to express the the previously inexpressible
queries underlying the CFI construction. This makes it a good candidate for a
logic capturing P. To analyse the limits of this new logic, the theory of pebble
games is extended by Dawar and Holm to include algebraic rules that make it
harder for spoiler to win, an overview of which is provided in [18]. These peb-
ble games are used by Holm in his PhD thesis [26] to rule out FPR capturing
P for r = 1 but left open the possibility that FPR could capture P for some
parameter r and some choice of prime q. This possibility is ruled out by Grädel
and Pakusa in [22] who show, using non-game theoretic techniques that for all
arities FPR over q and FPR over p are incomparable and so none of these cap-
ture P. Furthermore, very recent work by Dawar, Grädel and Pakusa [16] shows
that even with the addition of all linear algebraic operators (over finite fields
Fq for q ∈ Q) as seen in LAω(Q), we can’t capture P if Q is not the set of all
primes. Additionally, they show that this logic is the logic captured by Dawar
and Holm’s k-invertible-maps game[26] over the set of primes Q. This extension
by linear algebraic operators remains an object of interest in descriptive com-
plexity theory. For example, it is not yet known if the logic with operators over
all prime fields capture P.
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1.3 Categorical methods in finite model theory

Having traced the development of the fields of finite model theory and descrip-
tive complexity theory in the last two sections, I will now introduce the cate-
gorical methods which are central to my work in these areas. I’ll outline how
the introduction of the pebbling comonad by Abramsky, Dawar and Wang in [2]
and the extension of this framework by Abramsky and Shah [4] have given us
a rich compositional perspective on the fragments of FO which are important
for finite model theory, exposing new connections between purely combinatorial
and logical approaches of the past. I’ll show that this framework, while power-
ful, is not yet equipped to describe some the more recent algebraic developments
in descriptive complexity (some of which we saw in the previous section) and
other algebraic techniques in related areas. This, I hope will set the scene for
the work I have been doing this year and for my planned research over the next
two years.

Homomorphisms in finite model theory The study of homomorphisms
between finite relational structures has been of interest to researchers in com-
plexity theory, implicitly or explicitly, for quite a long time. Indeed, two central
problems studied in complexity theory, namely, the graph isomorphism (GI)
and constraint satisfaction problems (CSPs) can be stated in terms of homo-
morphisms. GI asks for any two (finite) graphs if there exists an invertible
homomorphism (isomorphism) between them, while CSP can be phrased as the
following decision problem: for a signature σ and domain A over σ, and some B,
a relational structure over σ (seen as a set of variables with some constraints)
decide whether there is a homomorphism B → A (seen as a satisfying assign-
ment of the variables in B to elements in A.) It seems natural then to consider
as central to finite model theory the category R(σ), with finite relational struc-
tures over signature σ as objects and homomorphisms between them as maps.
However, one issue with this is evident throughout the last section. Much of the
work done in investigating the power of logics over finite structures is done not
through studying homomorphism or isomorphism between structures but rather
the weakened versions of these relations engendered by the various combinatorial
games described above. These games give us useful (and crucially polynomial
time computable) approximations to isomorphism and homomorphism in R(σ).
This in turn leads to a way of studying algorithms for the CSP and GI problems.
The challenge of relating these approximations to the underlying category R(σ)
and developing a systematic theory of these approximations has been, until re-
cently, unexplored.

The Pebbling Comonad (& Friends) The first part of this challenge is
answered by Abramsky, Dawar and Wang’s seminal paper [2] on the pebbling
comonad. This paper introduces a comonad, Tk which in a sense captures the
k pebble game. Tk sends a relational structure to the set of histories of pebble
positions over that structure with relations induced on those tuples of histories
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which are consistently ordered and whose pebbled positions are related in the
original structure. This construction on R(σ) “captures the k pebble game, in
the sense that the morphisms in the coKleisli category category of Tk correspond
to winning strategies for duplicator in the one-way k pebble game, i.e. a map
TkA→ B tells duplicator where to play their pebble in B in response to every
history of moves of spoiler on A. Abramsky, Dawar, and Wang then show how
standard constructions in this category theoretic framework have interesting
(and somewhat surprising) finite model theory interpretations. For example,
the isomorphisms in this coKleisli category turn out to be strategies for the k-
bijection game and coalgebras of TkA are tree decompositions of A witnessing
treewidth(A) < k. These new formal connections between classical finite model
theory techniques and parameters gives a sense of the richness of this comonadic
perspective and we will see later how it is being used presently to reinterpret
finite model theory results and algorithms for CSP and GI.

Faced with the second part of this “challenge”, to develop a systematic
framework of tractable approximations to homomorphism and isomorphism,
the main source of progress we have is work done by Abramsky and Shah in [4].
This uses the pebbling comonad as a template for constructing and analysing a
number of different game-theoretic approximations to homomorphism found in
finite model theory. The other two games in this article, alongside the k pebble
game, are the k round Ehrenfeucht-Fräıssé and modal bisimulation games. In
each case, they give an account of how the comonad can be used to encode very
similar connections as were seen in the pebbling comonad. This establishes a
systematic way of analysing some of the basic logical games at the heart of finite
model theory and descriptive complexity.

Limitations of Game Comonads The framework provided by game comon-
ads is satisfying and elegant but, as of yet, relatively limited. Indeed, as outlined
by Abramsky and Shah, it thus far only accounts for games used to test logics
weaker than IFP + C, which we know is not enough to analyse all polynomial
time approximations to homomorphism. In particular, this framework stops
short of describing games with linear algebraic rules, such as Holm and Dawar’s
IM-equivalence game and thus cannot be used to analyse logics which may cap-
ture P such as LA(Q). A major open problem in this field then is how to extend
this category-theoretic framework to capture such more powerful logics. This is
what I hope to answer in the course of my research and in the following section
I’ll show why answering this question is likely to provide insight into some hot
topics in logic, algorithms and complexity theory.

1.4 Related fields and the outlook for category-theoretic
finite model theory

So far in this review, I have outlined the finite model theory underpinning my
proposed work, traced the development of the central question in descriptive
complexity theory of whether there are logics capturing P over finite and intro-
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duced the new and somewhat incomplete category-theoretic approach to this
question. In this section, I will review some recent advances in related areas of
finite model theory, algorithms and complexity theory and some other categor-
ical perspectives emerging in the field. My hope is that my work in expanding
the language of game comonads will develop new connections and a deeper un-
derstanding of some of these areas. The developments which I think are most
relevant, and which I’ll focus on here are recent breakthroughs in algorithms for
CSP and GI, new homomorphism preservation theorems in finite model theory
and novel uses of monads in other areas of complexity and model theory. As
my hope is to extend the comonadic framework to capture games with algebraic
rules, I will lay an emphasis in this section on the wealth of results in these
related areas which have a similar algebraic flavour.

New algorithms for CSP and GI CSP and GI are central problems stud-
ied in algorithms and complexity theory and both have experienced recent high-
profile breakthroughs: in GI a quasi-polynomial time algorithm was found by
Babai [7] and in CSP two independent (though as yet unverified) proofs, by Bu-
latov [12] and Zhuk [35] have emerged for the long-standing Dichotomy Conjec-
ture, stating that all instances of CSP are in P or NP-complete and introduced
in terms of CSPs by Feder and Vardi in [21]. As mentioned in the previous
section, both GI and CSP can be expressed as questions about maps in the cat-
egory R(σ). Indeed, as noted by Abramsky et al. [2], the Tk comonad provides
an interesting connection between k-local consistency methods for CSP and k-
Weisfeiler-Lehman methods for GI, both of which are approximate solutions to
the respective problems which run in polynomial time and correspond to exact
solutions over classes of structures with bounded treewidth. In particular, the
coKleisli morphisms TkA → B represent k-locally consistent solutions to the
instance A of CSP(B) while the coKleisli isomorphisms A ∼=K B correspond to
the structures A and B being deemed isomorphic under the k-Weisfeiler-Lehman
process.

This connection is interesting but these two approximations are far from
state-of-the-art in CSP or GI. Recent developments in CSP research, culminat-
ing in the resolution of the Dichotomy Conjecture, make clear that there is much
more to be understood in this framework and give some indications of how this
might be done. This program of work, centres around the idea, introduced by
Jeavons, Cohen and Gyssens in [29] and developed by Bulatov, Jeavons and
Krokhin in [11], that domains B3 which admit non-trivial higher-order symme-
tries (polymorphisms) are precisely the ones for which CSP(B) are tractable.
This line of work has effectively classified instances of CSP, up to L-reduction,
based on their algebras of polymorphisms. Powerful techniques such as Barto
and Kozik’s Absorption Lemma [9] have reduced the tractable classes to essen-
tially two. The first is the problems for with bounded treewidth (solvable by
k-local consistency methods) and the second is those with few subpowers. This

3Explain the caveats that go with this
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second grouping, which are tractably solvable by an algorithm which essentially
generalises Gaussian elimination, is one which currently doesn’t have a neat ex-
position in the comonadic framework of Abramsky, Dawar et al. I believe that
finding such an exposition would help to better understand the work done in re-
solving the Feder-Vardi Conjecture and perhaps relate this to tractable cases for
GI. A good starting point for this line of work is the work of Atserias, Bulatov
and Dawar from 2009 [6] which shows that the domains of these few subpowers
cases of CSP cannot be captured in IFP+C.

Homomorphism preservation theorems Another and perhaps more obvi-
ous possible advantage of viewing finite model theory through the compositional
framework of comonads, is gaining a more natural understanding of the inter-
action between homomorphisms and first-order sentences over finite models.
Interest in this area of finite model theory has been reignited by Rossman’s
spectacular proof in 2005 [33] that the homomorphism preservation theorem is
one of the few results of classical model theory which remains true over finite
models. Rossman’s proof of this result involves some inspired combinatorial
constructions and is still feels a bit mysterious (at least to me). It is hoped that
game comonads may provide a more systematic way of explaining this and other
similar results. This is the motivation behind Abramsky and Paine’s recent note
on Functorializing Rossman [3], which starts this process of formalising Ross-
man’s proof in this framework. Other finite homomorphism theorems such as
Otto’s Finite Guarded Invariance Theorem proved in [32] may also admit such
interpretations in our framework. In fact, curiously enough, this proof has an
algebraic flavour, relying at a crucial point on some group theoretic construc-
tions. This seems to suggest that to truly understand preservation theorems in
the comonadic framework we may first need to answer our outstanding questions
about enhancing it to encompass the more powerful algebraic logics discussed
above. I will discuss these ideas further later when I discuss my recent project
on homomorphism preservation theorems in Section 2.1.

Other category-theoretic horizons in finite model theory I’d like to
conclude this section and this literature review by touching on two other very
recent applications of category theory to the study of finite relational structures.
These are Abramsky, Barbosa, de Silva and Zapata’s Quantum Monad [1] and
Bojańczyk’s Two Monads for Graphs [10].

The first of these gives a categorical representation of the notion of a quan-
tum homomorphism between relational structures, a game approximating homo-
morphism wherein two separated players (with access to some d shared qubits)
aim to convince a verifier of the existence of a homomorphism between the
structures. This is done via a monad Qd for which Kleisli morphism coincide
with d-quantum homomorphisms in much the same way as Tk captures k local
homomorphisms described previously. It seems very natural then that these
constructions should be seen as duals and indeed Abramsky and Dawar, in a re-
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cent grant proposal suggest using the terminology of resources for such monads
and coresources for such comonads. It thus could be important to understand
any developments made in this sister field or even to relate these ideas formally
(as I have tried to do this year in work I will describe in Section 2.3).

The second application, that of Bojańczyk, is less obviously related to the
game comonad but I see it as providing a interesting alternative to the set-up
of monads/comonads on R(σ), while also providing an elegant description of
a famous result in finite model theory. This paper [10] provides a novel cate-
gory theoretic exposition of Courcelle’s Theorem4. In the course of doing this,
Bojańczyk uses monads to construct hypergraphs out of the category of ranked
sets. This is interesting to me in part because the method doesn’t “bake in” the
signature of the underlying hypergraphs to the category being considered. This
set-up seems considerably more flexible than the one we use in game comonads
and understanding it may help to incorporate natural notions of finite model
theory such as interpretations into our framework.

Whether these applications turn out to be related directly to the theory
of game comonads is not yet known but I believe that understanding them
is important to seeing game comonads in their proper context, as part of a
wider effort to understand problems previously thought of as combinatorial or
algorithmic in a systematic way. Furthermore, these applications all emerging at
the same time reinforces the idea that the time is ripe for categorical methods
in finite model theory and makes the field very exciting to work in. These
are horizons (or co-horizons) I will be watching keenly as I continue with my
proposed work.

4The original [15] states that any property of finite graphs which is definable in monadic
second-order logic with counting is recognised by a finitary algebra (which is roughly a gener-
alisation of recognisability by a finite automaton and has as a consequence that the property
is decidable in linear time on the class of graphs with bounded tree width). The generalisation
presented in [10] is an analogous result on finite hypergraphs
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2 Preliminary Research

As demonstrated above in the literature review, the comonadic approach to
game-theoretic arguments in finite model theory is a rather recent development
with only a small number of papers written about it so far. As a result, the
focus of my year has been to familiarise myself with this new technique through
a number of smaller research projects. Broadly speaking, these projects divide
into three categories, each reflecting an aspect of the work that I plan to do
going forward. These categories are:

• Using comonads to interpret and generalise classical results in finite model
theory.

• Asking and answering new questions inspired by the comonadic approach.

• Relating game comonads with other category-theoretic approaches to finite
model theory.

The three projects I’ve followed throughout the year which correspond to these
categories are, respectively:

• Interpreting preservation theorems with comonads

• Cores in the coKleisli category of a game comonad

• Relating the quantum monad to game comonads

In this section of my report I’ll summarise the work I have done in these tracks
and the lessons I’ve learned along the way. I believe the groundwork done in
these areas has been fruitful both in what it has revealed about the power and
shortcomings of the current formulation of game comonads and for the minor
results found along the way. Full sets of notes from this research are available
on request.

2.1 Interpreting Preservation Theorems with Comonads

2.1.1 Motivation & Aims

Preservation theorems are central to traditional model theory and they all take
something resembling the following general form, for some type of function
X between relational structures (homomorphisms, surjective homomorphisms,
embeddings) and some fragment LX of a logic L (usually FO):

If φ ∈ L defines a property P which is preserved by all maps of type
X between all structures, then φ is equivalent (over all structures)
to some φX ∈ LX

Some of the famous theorems of this form in classical model theory are
collected in Table 1. The proofs of these often rely on the Completeness Theorem
which, as noted in my literature review, fails over finite models. This would

12



Name Maps of type X LX Holds in finite?

Loś-Tarski Embeddings ∃FO 7

Lyndon Surjective Homomorphisms +FO 7

Homomorphism Preservation Homomorphisms ∃+FO 3 [33]
Guarded Invariance [5] Guarded Bisimulation GF 3 [32]

Table 1: Some preservation theorems in classical model theory

suggest that there is little hope of finding theorems of the above form when we
replace “all structures” with “finite structures”. However, despite the definite
failure of some of these results, there has been some recent success in proving
preservation results in the finite. The two examples of this that we chose to
study were Rossman’s Finite Homomorphism Preservation Theorem [33] and
Martin Otto’s finite version [32] of Andréka, Németi and van Benthem’s Guarded
Invariance Theorem[5]. Both have, in contrast to their infinite counterparts,
proofs which are difficult and quite involved. In addition, the proofs of these
two results are very different from one another, making it satisfying to study
them comparatively. For example, Rossman’s relies on intricate combinatorial
constructions while Otto uses a construction motivated by group theory. We
aimed to express these results and their proofs using the comonads of Abramsky
et al. and see if any links could be made between these results. We worked on
this in collaboration with Samson Abramsky and his student Tom Paine, whose
comments and notes were much appreciated.

2.1.2 Summary of Work Done

The approach to this project consisted of two part. In the first part, we looked
at Rossman’s Equirank Homomorphism Preservation Theorem. Using an un-
published note [3] by Abramsky which expresses this result in terms of the Ek
comonad, we sought to clarify to what extent this approach can be used with
other comonads. In particular, we looked at using the Tk comonad to prove an
equivariable homomorphism preservation theorem. In the second part, I studied
Otto’s proof of the Finite Guarded Invariance Theorem. The aim here was to use
the systematic group theory of Otto’s construction to find an alternative char-
acterisation of the inspired (if somewhat mystical) combinatorial construction
that Rossman uses to prove his Finite Homomorphism Preservation Theorem in
[33]. The aim was to use the comonadic approach to extract the methods used
in Otto’s work and see what they correspond to in the context of Rossman’s
work.

Each of these parts led to a short set of rough notes which I hope can be
developed further when later work towards my PhD clarifies some of the issues
we encountered. Here I will give a brief summary of what we found out.
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Towards an equivariable homomorphism preservation theorem Ross-
man states the equirank homomorphism theorem as follows:

Theorem 3 (Equirank H.P.T). A first-order sentence is preserved by homomor-
phisms on all structures if and only if it is equivalent to an existential-positive
of equal quantifier rank

In Rossman’s proof of this theorem, he defines a notion of a k-extendable
structure, which are ones for which �k implies ≡k. The crucial use of this
idea is to find a k-extendable cover for all structures. Abramsky rephrases
this notion using the Ek comonad and derives an analogous k-extendable cover,
by giving a category-theoretic proof of Rossman’s key lemma which classifies
k-extendability. This set-up made it natural to ask what happens if the Ek
comonad is replaced with the Tk comonad, i.e. does the same proof give a
proof of an analogous equivariable homomorphism preservation theorem. We
formulate this question as follows:

Conjecture 1. A first-order sentence is preserved by homomorphisms on all
structures if and only if it is equivalent to an existential-positive in the same
number of variables

We worked on the analogous idea of k-extendability in the equivariable case
for a number of weeks alongside Abramsky and Paine but a proposed proof of
this conjecture was seen to fail. This issue has not yet been resolved and seems
to hint to get at a subtle difference between Tk and Ek.

Functorializing Otto Independent of this shared work with Abramsky and
Paine, I also undertook to compare Rossman’s Finite Homomorphism Preserva-
tion Theorem to the Finite Guarded Invariance Theorem proved by Otto in [32].
It was suggested, by Anuj, that the algebraic flavour of the latter could help to
come up with a more succinct proof of the former (which takes up the majority
of Rossman’s original paper and introduces a few dense ad-hoc combinatorial
definitions). In my analysis I found that the two proofs are (perhaps neces-
sarily) based on a similar structure, namely, that of finding for each structure
A, a finite extendable cover Ã. In both cases, extendable means something like
Ã�k′ B =⇒ Ã ≡k B where for Rossman �k′ means k′-homomorphism equiv-
alence and for Otto it means k′ variable bisimulation equivalence. The methods
used diverge in how they construct Ã. Rossman tackles this directly by care-
fully gluing together different cores of A and showing that for large enough k′

the extendability property can be achieved. Otto on the other hand presents a
series of reductions, firstly showing that it suffices to construct a highly acyclic
hypergraph cover of the hypergraph of A and then that this is equivalent to the
existence of certain highly acyclic groups. To transfer this method to the setting
of k-homomorphism equivalence, we would like to show what these reductions
mean in terms of a guarded bisimulation comonad over A and see if this suggests
reductions in the homomorphism equivalence setting. From my work on this, I
think it is not too hard to construct the required guarded bisimulation comonad
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but the difficulty will be in formulating the reductions in this framework. This
will likely require a notion of expressing logical interpretations in the comonadic
framework, something which I identify as an aim of my research in Section 3.

2.1.3 Conclusions

The conclusions to this section of work were as follows:

• Rossman’s proof of the Equirank Homomorphism Preservation Theorem
has a nice formulation in terms of the Ek comonad.

• Proving an equivariable homomorphism preservation theorem turned out
not to be as easy as expected and this seemed to be related to a subtle
but fundamental difference between the Ek and Tk comonads.

• Otto’s result, despite it’s group theoretic appearance, appears to have
more in common with Rossman’s result than it first seemed.

• Comparing this in our framework would require developing a notion of
a Gk comonad corresponding to k-variable guarded bisimulation and a
notion of expressing logical interpretations in the comonadic framework.

2.2 Cores in the coKleisli Category of a Game Comonad

2.2.1 Motivation & Aims

Central to Rossman’s proof of the finite Homomorphism Preservation Theorem
(see above) is a notion of the k-core of a structure, which is, in essence, a
minimal retract of structure which retains satisfies the same Lk sentences. In our
previous project we encountered this idea of k-core as a difficulty in generalising
the proof of the equirank Homomorphism Preservation Theorem to one for an
equivariable Homomorphism Preservation Theorem It seemed that the notion
of a “k-variable-core” was not as well-behaved as the equivalent for quantifier
rank. We wanted to know why this was the case and so sought to develop a
general idea of a core of a finite structure over a logic using the comonadic
framework of Abramsky, Dawar and Wang. To this end I started by looking
at a paper of Hell and Nešetřil [24], which formulates the notion of a core in
the category of finite graphs, and I sought to generalise this and apply it to
the coKleisli category of the Tk comonad in the hope of gaining a notion of a
k-variable-core.

2.2.2 Summary of Work Done

Firstly, I used Hell and Nešetřil’s definition of a graph core to formulate con-
ditions for an arbitrary category of relational structures to have cores. I then
proceeded to test these conditions in the coKleisli category K(Tk). To do this I
needed to characterise the monic and epic maps of K(Tk) which I showed to be
equivalent to injective and surjective strategies for the k-pebble homomorphism
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game. Furthermore, I derived a necessary and sufficient logical conditions for
such maps between structures A and B to exist in the following lemma

Lemma 1.

1. If A→i
k B ⇐⇒ A �∃+Ck B

2. If A→s
k B ⇐⇒ A �+Lk B

To prove this, I adapted Hella’s proof of a similar result for bijection games
with some subtle changes (one of which I’m particularly proud was an applica-
tion Hall’s Marriage Theorem).

With this characterisation I was able to show that K(Tk) satisfied all bar
one of the properties mentioned at the start. This meant that K(Tk) had a
definable notion of a core but that these were not necessarily unique. The final
condition states that for any two cores C1, C2 of A there should be surjective
maps C1 →s

k C2, C2 →s
k C1. The latter part of my work on this project

focused on this property. I still do not know if this holds or not but in one
interesting line of investigation I showed that K(Tk) being a regular category
would guarantee the property. Then I showed that K(Tk) is not regular. Despite
this failure, this led me to investigate regular categories and their relationship
to logic which I did through reading and writing notes on Carsten Butz’s article
[13]. Most striking seemed to be what he had to say on the relation between these
categories and “Regular Logic”, which appears to be the fragment of FO logic
that model theorists would call primitive-positive first-order logic. As the set of
pp-sentences closed under disjunction gives ∃+FO (the fragment of FO which is
preserved under homomorphism) it seems natural to ask whether this property
of a category of relational structures being a regular category corresponds to
the presence of a homomorphism preservation theorem. This might relate this
work to Section 2.1, i.e. maybe the failure of regularity for K(Tk) can be used
to show a failure for an equivariable homomorphism preservation theorem This
is the direction I’d like to take this work in going forward. To do this I would
need to learn a bit more about categorical logic.

2.2.3 Conclusions

• The properties which guarantee the existence of unique graph cores in [24]
can be generalised to arbitrary categories of relational structures.

• Most of these properties succeed in K(Tk), meaning that this category has
cores but whether they are unique is still open.

• We can characterise the monic and epic maps inK(Tk) both game-theoretically
and logically.

• Uniqueness of cores would be guaranteed by regularity of K(Tk) but this
is not the case.
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• Regular categories have a connection to a fragment of FO logic this might
shine light on the categorical origins of homomorphism preservation the-
orems.

2.3 Relating the Quantum Monad to Game Comonads

2.3.1 Motivation & Aims

Originally, this project had had the aim of extending the pebbling comonad to
give a description of the pebble games with algebraic rules introduced by Dawar
and Holm in [17]. These games, as outlined in the literature review, capture
a stronger fragment of infinitary FO than the standard k pebble games. They
do this by imposing extra algebraic rules on the possible moves of duplicator,
making it harder to find a winning strategy. What we are interested in doing
is understanding how these rules can be modelled in the language of comonads
and category theory. To start off towards this ambitious goal, I sought to get
inspiration by investigating other category theoretic methods in finite model
theory which use linear algebra in some form. The main candidate for this was
the Quantum Monad of Abramsky et al. [1]. This monad Qd is defined by
sending a relational structure A to a structure on distributions of d-dimensional
linear algebraic projectors over the elements of A and it captures the notion of
quantum homomorphism between relational structures as its Kleisli morphisms.
We decided to follow up on an open question posed at the end of [1] about the
relationship between this and the pebbling comonad of [2], which asks if there
a distributive law between the Tk comonad and the Qd monad. Answering this
would allow us to define a biKleisli category for this monad-comonad pair which
would give us a notion of a quantum winning strategy for the k pebble game.
This question is very interesting in its own right but also raised some questions
about including algebraic rules in the comonadic finite model theory framework.

2.3.2 Summary of Work Done

The main work so far on this project has involved finding and testing lots of
different candidate distributive laws λ : TkQd → QdTk. Given the complexity
of the definitions of these (co)monads, finding something to pass even a basic
type-check proved quite difficult and we still don’t know if there is such a natural
transformation (let alone a distributive law). I found some promising candidates
however which are given in detail in the notes for this project which are available
on request. In doing so, there seemed to be an underlying tension between three
properties that λ needed to have, namely normalisation, “forbidding” tuples
(t1, . . . tn) ∈ (TkA)n which are “unordered” and “forbidding” tuples (t1, . . . tn) ∈
(TkA)n which are “unrelated” in A. I could find candidates satisfying any two
of these rules but not all three. For example, I came up with a technique of
padding projectors which allowed us to achieve normalisation and forbidding
unordered tuples. This technique still needs some work (I found for example
that it didn’t preserve the property of being a projector). This difficulty (and
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many others) makes me suspect that in fact there is no distributive law between
this pair. To this end I intend to look into some recent No-Go Theorems for
distributive laws (of monads over monads) due to Zwart and Marsden in [36]. In
future I hope to adapt these to monad-comonad pairs and see if we can disprove
that Tk distributes over Qd.

2.3.3 Conclusions

• Distributive laws for the pair (Tk,Qd) are hard to find!

• Finding a distributive law in this case (if it exists) will require reconciling
the three “competing” properties named above and in my notes.

• Zwart and Marsden’s No-Go Theorems are not directly applicable in this
case but might be adapted to show that no distributive law can exist here.
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3 Description of Proposed Research

As we’ve seen in this report, this is an exciting time for finite model theory
and descriptive complexity. On one hand, there has been surprising progress on
long-standing problems. For example,

• A new family of logics, LAk(Ω)[16], augmented with linear algebraic oper-
ators, and their corresponding games, the k,Ω-IM games[26] have emerged
with no known properties in P which they can’t decide.

• The Feder-Vardi Dichotomy Conjecture[21], has been resolved, indepen-
dently by Bulatov [12] and Zhuk[35]

• New preservation theorems, for example due to Rossman[33] and Otto [32]
have been shown to hold over finite models

On the other hand, a new research programme initiated by Abramsky and
Dawar has begun to recast the fundamental parts of finite model theory in
terms of category theory. In their language, the two-way and one-way games
used to isomorphism and homomorphism of structures, can be seen as being
governed by resources (advantages given to duplicator, e.g. qubits in [1]) and
coresources (advantages given to spoiler, e.g. number of pebbles in [2]). In turn,
these resources and coresources can be modelled in category theory by graded
monads such as Qd and comonads, such as Tk. This view has led to fascinating
and unexpected insights for finite model theory and hints at a deep new way
of thinking about both computational and logical (co)resources in a common
framework and the beginning of a new era in descriptive complexity.

My hypothesis is that the recent advances in linear algebraic logic, dichotomy
for CSPs and preservation theorems can be interpreted in the categorical lan-
guage of resource and coresource and that doing so will help us to understand,
connect and generalise these results and to ask, and answer, new questions about
the deep connection between logic and computation. Testing and developing
such a hypothesis in its entirety may constitute an entire research programme
rather than the work of a single PhD. However, in pursuit of my PhD, I intend
to use this hypothesis a guide to test and push the boundaries of Abramsky and
Dawar’s theory of resource and coresource.

As this is a newly developing field and it is not yet clear how it will develop,
there is a certain amount of risk in pursing this research. In order to mitigate
this risk, I will lay out in the next section how I intend to test the ambitious
hypothesis described above. I have done this by first dividing the work into two
natural tracks: A coresource theory of the IM game and Coresources, cores and
preservation theorems. These are then broken down into a series of interrelated
questions and milestones. In my view, and the view of my supervisor, this plan
provides a reasonably certain path to a thesis, minimising the risks of working
in a relatively new field, while at the same time maintaining a coherent purpose.
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4 Timetable & Milestones

In this section, I will lay out more concretely how I intend to progress with the
programme of research described previously. The research proposed is divided
here for the purposes of clarity into two tracks:

1. A coresource theory of the IM game

2. Coresources, cores and preservation theorems

These tracks are intended to be pursued in tandem and I will interleave work
on questions from each track over the next two years to ensure steady progress
towards a thesis.

The questions and milestones outlined are intended to take 3-6 months of
work each, given any prerequisite work. Not all of the questions below will need
to be answered to constitute a substantial contribution to the emerging theory
of resource and coresource. In my opinion and that of my supervisor, a collec-
tion of results from both tracks should make a compelling and coherent thesis.

Diagrams are provided to indicate what Prof. Dawar and I think is a logical
way to approach the questions arising in each of these areas. The full arrows

( A B ) denote that resolving A should enable B (or at least the inten-

tion to do A after B) and the dotted lines ( A B ) indicate relation or
similarity between A and B. In many cases however, as with all research, the
set of arrows presented and their direction is only indicative and things may
change as I learn more about these questions and pose new ones.
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4.1 A coresource theory of the IM game

One of the major insights provided by the first paper on the pebbling comonad
was the connection it provided between the approximation to homomorphism
provided by the k-local consistency method for CSPs (also seen in the one-way k
pebble game) and the (k−1)-Weisfeiler-Lehman approximation to isomorphism
(also the k pebble bijective game).

This track of research aims to investigate if coresource theory will reveal re-
lationships between stronger approximations to homomorphism, such as k-local
consistency augmented with the few subpowers algorithm of Barto and Kozic,
and stronger approximations to isomorphism, such as the k-invertible maps (k-
IM) equivalence. This track intends to answer this question by developing a
coresource theory of the IM game. The main goal in doing so will be to develop
a tool similar to the comonad of Abramsky, Dawar and Wang in this richer
context. I provide below a roadmap of how I will work towards this aim.

A comonad for
the IM game

One-way game
for IM

Coresources for
LAk(Ω)

Few subpowers
game

pp-interpretation
in games

New perspectives
on CFI

Figure 1: Towards a (co)resource view of the IM game

1. A game for few subpowers To get a one-way version of the k-IM
game it might help to look at other approximations to homomorphism of
relational structures with a similar linear algebraic structure. One such
is the few subpowers algorithm [9] which generalises Gaussian elimination
and represents (along with k-local consistency) one of the two P algorithms
for CSP.

Question: Is there a one-way game where duplicator wins from
A to B if and only if the few subpowers algorithm accepts
(A,B)?

2. pp-interpreting in games The work of Atserias Bulatov and Dawar [6]
showed that relational structures which can pp-interpret modular arith-
metic, admit CFI-like constructions which cannot be distinguished in
Ck∞ω. This currently is not accounted for in the compositional frame-
work. I’d like to do so by relating the Tk comonad on one signature to
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the Tk comonad on another signature which can be pp-interpreted by the
original.

Question: If σ pp-interprets σ′ what is the relationship between
Tσk and Tσ′

k ?

3. New perspectives on CFI To understand the resource limitation that’s
taking place in the k-IM game and in looking at finite structures up to
LAk(Ω)-equivalence, it will help to understand the extra expressive power
of these. This extra expressive power is usually understood through the
graphs of Cai-Furer-Immerman [14] which are not distinguishable in Ck∞ω
but are distinguished by k-IM games. These graphs are still not widely
understood. An idea for understanding this might be to look at another
situation in which computation of rank over finite fields is relevant. Sim-
plicial (co)homology is one such idea but there may be others.

Question: Is there a query on graphs (perhaps inspired by topol-
ogy) which is expressible in IFP+rk but not in IFP+C?

4. A one-way game for IM The standard strategy for building the core-
source theory of a given game in finite model theory has been to encode a
one-way game into a comonad so that the coKleisli morphisms are exactly
the approximation to homomorphism in this resource-limited view. Doing
this for IM games is hard because the game is baked in at multiple levels
to be bidirectional. Picking this apart will hopefully reveal more about
the resources being limited in this game.

Question: Can we weaken the rules and restrict spoiler suffi-
ciently in the k,Ω-IM game to get a truly one-way version of
this game?

5. Coresources for LAk(Ω) A one way game is one way to find a composi-
tional framework for the IM game but it may not be the only one. Perhaps
a deeper understanding of other ways in which linear algebra features in
approximating homomorphism and isomorphism will give us a more direct
“coresource” with which to model the k-IM game.

Question: Is there a single parameter or syntactic feature of
LAk(Ω) sentences that we can limit to get an approximation of
homomorphism? If not how does we restrict both variables and
the primes of Ω work?

6. A comonad for IM game Having a compositional framework to under-
stand the k-IM game of Dawar and Holm [17] would be a big achievement
for the theory of resource and coresource and would represent uniting
the state-of-the-art of descriptive complexity with this category theoretic
view.

Question: Is there a comonad (or other resource-restricting
structure) capturing the k,Ω-IM game?
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4.2 Coresources, cores and preservation theorems

Preservation theorems have always been of interest to finite model theorists.
Ever since Trakhtenbrot showed the failure of completeness over finite models
and thus the failure of many standard proofs of preservation theorems in classi-
cal model theory, finite model theorists have asked which of these are just untrue
in the finite and which are redeemable. The result is an interesting patchwork;
some fail (such as Los-Tarski and Lyndon’s Positivity Theorem), some succeed
often with rather formidable proofs (such as the Homomorphism Preservation
and Bisimulation and Guarded Bisimulation Preservation) and some, such as
the Janin-Walukiewicz Theorem, are not known to fail or succeed.

This track of work aims to build on the investigations I’ve undertaken this
year on cores and preservation theorems which indicates that the theory of re-
source and coresource will help to explain this patchwork and may offer new
proofs of old results and may even resolve some unanswered questions about
preservation over finite models. To get to a general coresource theory of preser-
vation theorems I will build on my work and partial results from this year while
also extending the coresource theory to cover various notions of bisimulation for
which there exist a variety of preservation theorems and open questions. Over-
all, I would hope to find a way of explaining which types of resource limitations
lead to preservation theorems and which lead to failure of classical results.

Preservation with
limited resources

Regularity in
(co)resources

No-go theorems for
bisimulation

Coresources in
ML,GF,& Lµ

preservation

k-Cores and no-go
for Tk

Comonad for the
guarded fragment

Figure 2: Towards a (co)resource view of preservation theorems

1. k-Cores and no-go theorems for Tk My exploration of k-cores so
far has led to some interesting failures of standard constructions (namely
cores[24]) when our model theory is resource limited to k variables. It is
believed that this is connected to the no-go theorem about the impossi-
bility of finding a finitary version of Tk proven in [2]

Question: For Tk (of any game comonad Gk) does a no-go
theorem for a finitary version of the comonad imply the non-

23



existence of cores in its coKleisli category, and vice versa?

2. A comonad for guarded bisimulation Guarded bisimulation is a lim-
ited bisimulation relation between hypergraphs of relational structures
which was shown by Otto in [32] to have an interesting FMT preserva-
tion theory. No comonad is known for this bisimulation yet. Finding one
would be a contribution to the field and would allow us to consider what
features of this comonad are necessary for Otto’s proof.

Question: Is there a game comonad GFk for which the isomor-
phisms of its coKleisli category correspond to a resource limited
form of guarded bisimulation?

3. Regularity in (co)resources In my work on cores, I came across a cu-
rious sufficient condition for categories to permit cores, namely regularity.
Regular categories also seem deeply related in categorical logic (see for
example Butz [13]) to regular logic which is know to finite model theorists
as primitive-positive first-order logic and is central to much of FMT.

Question: Can coresource comonads with non-regular coKleisli
categories admit preservation theorems?

4. No-go theorems for bisimulation In reasoning about pebble games,
we often think of them using the same imagery of infinite tree unfoldings
as is often used to describe bisimulation. On way of thinking of Abram-
sky, Dawar and Wang’s No-Go Theorem for the Tk comonad is that this
unfolding for pebble games is necessarily infinite in some way. One way to
think of Otto’s result is that for guarded bisimulation, the unfolding can
be finitised. I think it will be important to understanding preservation
theorems to understand which bisimulation comonads have this necessary
infiniteness and which do not.

Question: Does the GFk comonad (but also do comonads for
ML and Lµ) admit no-go theorems/cores/regular coKleisli cat-
egories?

5. Coresources in ML,GF,& Lµ preservation There are finite bisimu-
lation preservation theorems for both ML, due to Rosen, and GF, due to
Otto. There is a similar result for modal µ-calculus, Lµ, which is not yet
know to hold in the finite. With a comonad for guarded bisimulation and
one modal logic (which exists in [4]), I think it would be an interesting
test of the theory of coresources to develop a comonad for Lµ and inves-
tigate whether there is a coresource-based explanation for the differences
in preservation theorems for these.

Question: Can we create a game comonad for Lµ? Does com-
paring this to the comonads for ML and GF explain why there
are preservation theorems for two but not yet for the third?
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6. Preservation theorems in resource-limited views Rossman and Otto
have proved preservation theorems recently that were believed by some
not to hold over finite models. My work on cores has shown that in some
resource limited views some of these may not hold. What differentiates
these settings is an interesting line of study and giving a category-theoretic
account of it would be a major achievement.

Question: Is there a general theorem governing when a resource-
limited view will admit a preservation theorem?
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