
Applying Robust Semantics

Applying Robust Semantics

Ann Copestake

Computer Laboratory
University of Cambridge

September 2007

Applying Robust Semantics

Outline.

Introduction to Robust Semantics.

Flat semantics and DELPH-IN

Operations on RMRS

Generation and Idioms

QA and semantic pattern matching

Conclusions

Applying Robust Semantics

Introduction to Robust Semantics.

Outline.

Introduction to Robust Semantics.

Flat semantics and DELPH-IN

Operations on RMRS

Generation and Idioms

QA and semantic pattern matching

Conclusions

Applying Robust Semantics

Introduction to Robust Semantics.

Applications: 1970s-1980s.

I Natural language interfaces to databases and knowledge
bases:

I Who had the highest sales figures in June 1982?
I Is there a doctor on board the Vincennes?

I Exploit the limited domain: small lexicon, link to domain
concepts, domain-specific ambiguity resolution. Database
as denotation.

Applying Robust Semantics

Introduction to Robust Semantics.

Applications: late 1980s onwards

I Information management:
I Web search: return full documents (display snippets),

generally little language processing.
I Information Extraction (IE): relatively unrestricted text,

specific types of information (e.g., company takeovers,
terrorist incidents), instantiate fixed templates.

I Question Answering (QA): general queries, match query to
text/web.

I Broad-coverage, very shallow processing, mostly no
compositional semantics.

Applying Robust Semantics

Introduction to Robust Semantics.

Why use semantics in information management?

I Enables abstraction:
I Paper 1: The synthesis of 2,8-dimethyl-6H,12H-5,11

methanodibenzo[b,f][1,5]diazocine (Troger’s base) from
p-toluidine and of two Troger’s base analogs from other
anilines

I Paper 2: . . . Tröger’s base (TB) . . . The TBs are usually
prepared from para-substituted anilines

I Inference: e.g., search for papers describing Tröger’s base
syntheses which don’t involve anilines?

I Domain and application independence.

Applying Robust Semantics

Introduction to Robust Semantics.

Broad-coverage computational compositional
semantics: present day.

I High-throughput parsers with some form of semantic
output: CCG, RASP, ENJU, XLE . . . ERG/PET (medium
throughput) . . .

I Effective statistical techniques for parse ranking (for
syntactically different structures).

I Robust entailment as a common basis for applications.
I Links to ontologies/semantic web.
I More ‘stuff’ online, increased need for precision.

Applying Robust Semantics

Introduction to Robust Semantics.

What is Compositional Semantics?

Topics include:
I Predicate-argument structure (nouns, adjectives as well as

verbs).
Scopal (e.g., probably) vs non-scopal (e.g., quickly).

I Construction semantics: relative clauses, appositives, tag
questions, pseudo-partitives . . .

I Tense, aspect, distributivity, generics vs individual
reference, mass/count.

I Non-compositional multi-word expressions.
I Maybe: derivational morphology, sense extension.

Not: meaning of open-class words.

Applying Robust Semantics

Introduction to Robust Semantics.

Compositional Semantics: working definition

Meaning information that can be associated with syntax and
morphology.

I Fully identified (for English): Predicate-argument structure,
modifier scope, some constructions.

I Partially identified: quantifier scope, compound nouns,
tense, aspect, massness, genericity, sense extension.

Partial information, e.g. genericity:

Brontosaurus ate half a ton of vegetation a day
the Brontosaurus ate a sailor, but it was a herbivore
your brontosaurus ate my palm tree

Applying Robust Semantics

Introduction to Robust Semantics.

Implications of broad-coverage processing for
computational semantics.

I Semantic processing is relatively shallow. No underlying
knowledge base for disambiguation.

I Detailed lexical information is not available. At best,
irregular morphology, syntactic subcategorization for
frequent word senses, WordNet and/or FrameNet.
Incomplete/absent: multiword expressions, mass terms,
verb aspect, pseudo-partitive constructions . . .

I Support inter-sentential anaphora/text structure.
I Avoid semantics multiplying readings: underspecification.

Applying Robust Semantics

Introduction to Robust Semantics.

Underspecification and Sudoku solving

7 8
9 2

5 3 9
8 2

6 7
4 1

3 9 6
2 4

7 1

Applying Robust Semantics

Introduction to Robust Semantics.

Solving.

7 8
9 2

5 3 9
8 2

6 7
4 1

3 9 6
2 4

7 1

Applying Robust Semantics

Introduction to Robust Semantics.

Possibility 1.

7 8
9 2

5 3 9
8 2

6 7
4 1

3 9 6
2 4

7 1

7

Applying Robust Semantics

Introduction to Robust Semantics.

Possibility 2.

7 8
9 2

5 3 9
8 2

6 7
4 1

3 9 6
2 4

7 1

7

Applying Robust Semantics

Introduction to Robust Semantics.

Underspecification.

7 8
9 2

5 3 9
8 2

6 7
4 1

3 9 6
2 4

7 1

7

7

Applying Robust Semantics

Introduction to Robust Semantics.

Inference on underspecified form.

7 8
9 2

5 3 9
8 2

6 7
4 1

3 9 6
2 4

7 1

7

7

Applying Robust Semantics

Introduction to Robust Semantics.

Inference on underspecified form.

7 8
9 2

5 3 9
8 2

6 7
4 1

3 9 6
2 4

7 1

7

7

7

Applying Robust Semantics

Introduction to Robust Semantics.

Some examples of underspecification in computational
semantics.

I Quantifier scope: single underspecified reading from each
syntactic analysis.

I Genericity, massness, aspect.
I Compound nominal relations: general relationship.
I Prepositional phrase attachment: limit syntactic ambiguity.
I Word senses: hierarchy of word senses.
I Feature values: hierarchy of values. Underspecification for

morphology vs semantically coherent classes.

Applying Robust Semantics

Introduction to Robust Semantics.

Inference and robust semantics

I Inference motivates use of semantic representations.
I BUT:

I Inference on underspecified representations?
I Higher-order constructs?
I Limited speed of theorem provers.
I No closed world assumption (in contrast to database

query).
I Not robust to missing information.

I SO: pattern matching operations on semantics . . .

Applying Robust Semantics

Introduction to Robust Semantics.

Inference and robust semantics

I Inference motivates use of semantic representations.
I BUT:

I Inference on underspecified representations?
I Higher-order constructs?
I Limited speed of theorem provers.
I No closed world assumption (in contrast to database

query).
I Not robust to missing information.

I SO: pattern matching operations on semantics . . .

Applying Robust Semantics

Introduction to Robust Semantics.

Applying robust semantics in DELPH-IN

Related work: PARC/Powerset, Moldovan et al, Bos et al. etc
This talk:

I MRS/RMRS approach to semantic representation.
I Abstract operations.
I Various applications.
I Relationship to ‘proper’ inference.

Semantic operations on (R)MRS have evolved and expanded:
emphasis on practical utility, not theory.

Applying Robust Semantics

Flat semantics and DELPH-IN

Outline.

Introduction to Robust Semantics.

Flat semantics and DELPH-IN

Operations on RMRS

Generation and Idioms

QA and semantic pattern matching

Conclusions

Applying Robust Semantics

Flat semantics and DELPH-IN

DELPH-IN: Deep Linguistic Processing using HPSG

I Informal collaboration on tools and grammars: see
http://www.delph-in.net/

I Large grammars for English, German and Japanese;
medium/growing for Spanish, Norwegian, Portuguese,
Korean, French. Many small grammars.

I Common semantic framework: Minimal Recursion
Semantics (MRS) and Robust MRS. RMRS also from
shallower parsing, chunking, POS tagging.

I Parsing and generation (realization), integrated shallower
processing.

I Grammar Matrix: framework/starter kit for the development
of grammars for diverse languages.

Applying Robust Semantics

Flat semantics and DELPH-IN

Some recent projects using MRS/RMRS

I DeepThought: Information Extraction, email response
I LOGON: Norwegian-English MT (semantic transfer)
I SciBorg: IE from Chemistry texts
I Reasoning about meetings (Schlangen et al, 2003)
I Dridan (2006), Dridan and Bond (2006): Question

Answering (also Watson et al (2003))
I QUETAL: QA from structured knowledge (Frank et al)
I Herbelot and Copestake (2006): Ontology extraction from

Wikipedia
I Nichols, Bond, Flickinger (2005): Ontology extraction from

MRDs

Applying Robust Semantics

Flat semantics and DELPH-IN

Semantic representation: MRS

The mixture was allowed to warm to room temperature.
〈 l3:_the_q(x5,h6,h4), l7:_mixture_n(x5),
l9:_allow_v_1(e2,u11,x5,h10), l13:_warm_v_1(e14,x5),
l13:_to_p(e15,e14,x16), l17:udef_q(x16,h18,h19),
l20:compound(e22,x16,x21), l23:udef_q(x21,h24,h25),
l26:_room_n(x21), l20:_temperature_n(x16) 〉
〈 qeq(h6,l7), qeq(h18,l20), qeq(h24,l26), qeq(h10,l13) 〉

Applying Robust Semantics

Flat semantics and DELPH-IN

MRS: main features

I Flat: list of EPs (each with label), list of qeqs.
I Underspecified quantifier scope: labels and holes, linked

with qeqs (equality modulo quantifiers).
l9:_allow_v_1(e2,u11,x5,h10), qeq(h10,l13),
l13:_warm_v_1(e14,x5)

I Conjunction from modification etc indicated by shared
labels: l13:_warm_v_1(e14,x5), l13:_to_p(e15,e14,x16)

I Lexical predicates (leading underscore): lexeme, coarse
sense (POS), fine sense.

I Construction predicates (e.g., compound).
I Sorted variables: tense, etc (and simple information

structure).

Applying Robust Semantics

Flat semantics and DELPH-IN

One of the scoped forms

The mixture was allowed to warm to room temperature.
_the_q(x5,_mixture_n(x5),
_allow_v_1(e2,u11,x5,
udef(x21, _room_n((x21),
udef(x16,compound(e22,x16,x21) ∧ _temperature_n(x16),
_warm_v_1(e14,x5) ∧ _to_p(e15,e14,x16)))))

Applying Robust Semantics

Flat semantics and DELPH-IN

Semantic representation: RMRS

The mixture was allowed to warm to room temperature.
〈 l3:a1:_the_q(x5), l7:a2:_mixture_n(x5), l9:a3:_allow_v_1(e2),
l13:a5:_warm_v_1(e14), l13:a6:_to_p(e15), l17:a7:udef_q(x16),
l20:a8:compound(e22), l23:a9:udef_q(x21),
l26:a10:_room_n(x21), l20:a11:_temperature_n(x16)〉
〈 a1:RSTR(h6), a1:BODY(h4), a3:ARG2(x5), a3:ARG3(h10),
a5:ARG1(x5), a6:ARG1(e14), a6:ARG2(x16), a7:RSTR(h18),
a7:BODY(h19), a8:ARG1(x16), a8:ARG2(x21), a9:RSTR(h24),
a9:BODY(h25) 〉
〈 qeq(h6,l7), qeq(h18,l20), qeq(h24,l26), qeq(h10,l13) 〉

Applying Robust Semantics

Flat semantics and DELPH-IN

MRS vs RMRS

I l9:_allow_v_1(e2,u11,x5,h10) in MRS
l9:a3:_allow_v_1(e2), a3:ARG2(x5), a3:ARG3(h10) in
RMRS.

I Further factorization: separation of arguments.
I All EPs have an anchor which relates args to EPs.
I RMRS can omit or underspecify ARGs: robust to missing

lexical information.

Applying Robust Semantics

Flat semantics and DELPH-IN

Character positions

The mixture was allowed to warm to room temperature.
〈 l3:a1:_the_q(x5)〈0, 3〉, l7:a2:_mixture_n(x5)〈4, 11〉,
l9:a3:_allow_v_1(e2)〈16, 23〉, l13:a5:_warm_v_1(e14)〈27, 31〉,
l13:a6:_to_p(e15)〈32, 34〉, l17:a7:udef_q(x16)〈35, 52〉,
l20:a8:compound(e22)〈35, 52〉, l23:a9:udef_q(x21)〈35, 52〉,
l26:a10:_room_n(x21)〈35, 39〉, l20:a11:_temperature_n(x16)〈40, 52〉〉
〈 a1:RSTR(h6), a1:BODY(h4), a3:ARG2(x5), a3:ARG3(h10),
a5:ARG1(x5), a6:ARG1(e14), a6:ARG2(x16), a7:RSTR(h18),
a7:BODY(h19), a8:ARG1(x16), a8:ARG2(x21), a9:RSTR(h24),
a9:BODY(h25) 〉
〈 qeq(h6,l7), qeq(h18,l20), qeq(h24,l26), qeq(h10,l13) 〉

Applying Robust Semantics

Flat semantics and DELPH-IN

RMRS from POS tagger

The mixture was allowed to warm to room temperature.
〈 l1:a2:_the_q(x3), l4:a5:_mixture_n(x6), l7:a8:_allow_v(e9),
l10:a11:_warm_v(e12), l13:a14:_to_p(e15),
l16:a17:_room_n(x18), l19:a20:_temperature_n(x21)〉
〈〉
〈〉
All variables distinct, no ARGs, no qeqs.
Chunker: equate nominal indices, etc.

Applying Robust Semantics

Flat semantics and DELPH-IN

RMRS as semantic annotation of lexeme sequence.

I Annotate most lexemes with random label, anchor, arg0.
Note: null semantics for some words, e.g., infinitival to.

I Partially disambiguate lexeme with n, v, q, p etc.
I Add sortal information to arg0.
I Implicit conjunction: add equalities between labels.
I Ordinary arguments: add ARGs (possibly underspecified)

between anchors and arg0.
I Scopal arguments: add ARG plus qeq between anchors

and labels.

Standoff annotation on original text via character positions.

Applying Robust Semantics

Flat semantics and DELPH-IN

RMRS Elementary Predication

An RMRS EP contains:
1. the label of the EP: this is shared by other EPs to indicate

implicit conjunction.
2. an anchor, not shared by any other EPs.
3. a relation
4. up to one argument of the relation (the arg0)

This is written as label:anchor:relation(arg0).
l13:a5:_warm_v_1(e14)
l13:a6:_to_p(e15)

Applying Robust Semantics

Flat semantics and DELPH-IN

RMRS ARGs

An RMRS ARG relation contains:
1. an anchor, which must also be the anchor of an EP.
2. an ARG relation, taken from a fixed set (here: ARG1,

ARG2, ARG3, RSTR, BODY, plus the underspecified
relations: ARG1-2, ARG1-3, ARG1-2, ARG2-3, ARGN).

3. exactly one argument. This must be ‘grounded’ by an EP:
i.e., if it is a normal variable it must be the ARG0 of an EP,
or if it is a hole, it must be related to the label of an EP by a
qeq constraint.

a5:ARG1(x5), l13:a5:_warm_v_1(e14), l7:a2:_mixture_n(x5)

Applying Robust Semantics

Flat semantics and DELPH-IN

RMRS structures

An RMRS structure contains:
1. rels: The bag of EPs.
2. args: The bag of argument relations.
3. hcons: qeq constraints. A qeq relationship always holds

between a hole in an argument relation and the label of an
EP.

Applying Robust Semantics

Operations on RMRS

Outline.

Introduction to Robust Semantics.

Flat semantics and DELPH-IN

Operations on RMRS

Generation and Idioms

QA and semantic pattern matching

Conclusions

Applying Robust Semantics

Operations on RMRS

RMRS Matching

lb1:every_q(x),
lb1:RSTR(h9),
lb1:BODY(h6),
lb2:cat_n(x),
lb4:some_q(y),
lb1:RSTR(h8),
lb1:BODY(h7),
lb5:dog_n_1(y),
lb3:chase_v(e),
lb3:ARG1(x),
lb3:ARG2(y)

lb1:every_q(x),
lb1:RSTR(h9),
lb1:BODY(h6),
lb2:cat_n(x),
lb4:some_q(y),
lb1:RSTR(h8),
lb1:BODY(h7),
lb5:dog_n_1(y),
lb3:chase_v(e),
lb3:ARG1(x),
lb3:ARG2(y)

Applying Robust Semantics

Operations on RMRS

RMRS Matching

lb1:every_q(x),
lb1:RSTR(h9),
lb1:BODY(h6),
lb2:cat_n(x),
lb4:some_q(y),
lb1:RSTR(h8),
lb1:BODY(h7),
lb5:dog_n_1(y),
lb3:chase_v(e),
lb3:ARG1(x),
lb3:ARG2(y)

lb1:every_q(x),
lb1:RSTR(h9),
lb1:BODY(h6),
lb2:cat_n(x),
lb4:some_q(y),
lb1:RSTR(h8),
lb1:BODY(h7),
lb5:dog_n(y),
lb3:chase_v(e),
lb3:ARG1-2(x),

Applying Robust Semantics

Operations on RMRS

RMRS Matching

lb1:every_q(x),
lb1:RSTR(h9),
lb1:BODY(h6),
lb2:cat_n(x),
lb4:some_q(y),
lb1:RSTR(h8),
lb1:BODY(h7),
lb5:dog_n_1(y),
lb3:chase_v(e),
lb3:ARG1(x),
lb3:ARG2(y)

lb1:every_q(x),

lb2:cat_n(x),
lb4:some_q(y),

lb5:dog_n(y),
lb3:chase_v(e)

Applying Robust Semantics

Operations on RMRS

ERG-RASP comparison 1

Applying Robust Semantics

Operations on RMRS

ERG-RASP comparison 2

Applying Robust Semantics

Operations on RMRS

RMRS EP matching

An EP1 matches EP2 if:
1. the relation associated with EP1 is compatible with the

relation associated with EP2. ‘compatibility’: partial order
on relations.

2. the arg0 associated with EP1 is compatible with the arg0
associated with EP2 (including sortal properties)

3. Neither of the anchors are already matched.
If EP1 matches EP2, variable equivalences are:
l1/l2, a1/a2, arg01/arg02.
Full set of variable equivalences from matching two RMRSs:
RMRS1/RMRS2.

Applying Robust Semantics

Operations on RMRS

RMRS ARG matching

Matching argument relations depends on RMRS1/RMRS2.
ARG-REL1 matches ARG-REL2 iff:

1. the anchor of ARG-REL1 is bound to the anchor of
ARG-REL2 in RMRS1/RMRS2

2. and, if the argument of ARG-REL1 is a normal variable, it
is bound to the argument of ARG-REL2 in RMRS1/RMRS2

3. or, if the argument of ARG-REL1 is a hole, it is qeq a label
which is bound to a label l2 in RMRS1/RMRS2 such that
the argument of ARG-REL2 is qeq l2

4. and the relation in ARG-REL1 is compatible with the
relation in ARG-REL2

Applying Robust Semantics

Operations on RMRS

RMRS matching

RMRSs R1 and R2 match iff:
I each EP in R1 matches an EP in R2
I each EP in R2 matches an EP in R1
I each argument relation in R1 matches an argument

relation in R2
I each argument relation in R2 matches an argument

relation in R1
(BODY arguments are generally ignored: unscoped
representations)

Applying Robust Semantics

Operations on RMRS

RMRS matching variants

I RMRSs may be checked for subsumption rather than
compatibility: e.g., idiom patterns.

I RMRS patterns may be used rather than matching two
RMRSs derived by a grammar: e.g., information extraction.

I Unmatched EPs allowed on one or both sides: e.g., QA.
I Robust weighted match: score according to which EPs

match and whether their arguments match: e.g., QA.
I A match may signal some action: e.g., ‘null semantic items’

for generation.

Matching is a component of merging and ‘munging’.

Applying Robust Semantics

Operations on RMRS

RMRS merging

I Two matching RMRSs may be merged: conjunction.
I Merging for patching up a partial deep analysis: Heart of

Gold (Ulrich Schäfer).
I Packing partially compatible RMRSs into a lattice.
I Merging uniqueness for parse results guaranteed by

ordering of EPs in analysis.

Applying Robust Semantics

Operations on RMRS

(R)MRS ‘munging’

I Rules for mapping between (R)MRSs
I Originally a hack for Verbmobil, later found many uses . . .
I Rules: input, output, context (all optional).

If the input matches part of an MRS, and the context also
matches, then the input is converted to the output.

I Each rule applied multiple times to one MRS, rules applied
in a sequence in a ruleset, no reapplication of rulesets.

I Refined by Stephan Oepen for LOGON semantic transfer:
also monolingual paraphrase, mapping input to a
domain-specific representation (e.g., Schlangen et al).

Applying Robust Semantics

Generation and Idioms

Outline.

Introduction to Robust Semantics.

Flat semantics and DELPH-IN

Operations on RMRS

Generation and Idioms

QA and semantic pattern matching

Conclusions

Applying Robust Semantics

Generation and Idioms

Generation / realization

Generate all and only the strings with ‘compatible’ semantics:
I If LF1 is generated by grammar G from string S, and LF2 is

logically equivalent to LF1, then a realiser working with
grammar G should accept LF2 and produce string S

I Unfortunately impossible for even first order predicate
calculus (pointed out by Shieber)

I RMRS matching criterion instead: output has same
predications, equivalence of ‘grammatical’ conjunction.
Broaden this by underspecification.

Applying Robust Semantics

Generation and Idioms

Lexicalist generation (simplified!)

[a(y), consultant(y), german(y), every(x), manager(x),
interview(e,x,y)]

1. For each elementary predication, find a corresponding
lexical entry.

2. Set the argument positions in the lexical entry. to constant
values - e.g., interview(c2,c1,c3), manager(c1),
consultant(c3), german(c3), a(c3), every(c1)
This means that unification ensures that the
predicate-argument structure is correct.

3. Generate by parsing different orders of lexical items.

Applying Robust Semantics

Generation and Idioms

Generation chart (simplified!)

1. no overlap: check as the edges are constructed that EPs
are only used once

2. completeness check at the end
3. some restrictions on the grammar:

I daughters may not overlap — e.g., cannot have semantics
constructed by means of multiple inheritance between
types contributed from two sources

I monotonicity: none of the components may be removed
when constructing a phrase

Applying Robust Semantics

Generation and Idioms

Null semantics in generation

I Some lexical entries (e.g., infinitival to, expletive there)
have no associated EP

I introduce on the basis of null semantics rules triggered by
match on the input MRS

I l:a:_be_v_there_rel(e) -> "there_expl"
where "there_expl" is a lexical entry identifier.

Applying Robust Semantics

Generation and Idioms

Idioms

I Most idioms are ‘compositional’: meaning of the idiomatic
phrase can be treated as composed of the meaning of the
component parts, with weird senses.

I take heart, spill beans, cat out of (the) bag. e.g., spill the
beans corresponds roughly to reveal the secrets.

I Syntactic variation:
We take considerable heart from the knowledge
. . . (from BNC)

I Idiomatic senses as normal lexical entries with use
constrained by semantic patterns acting as root conditions:
l:a:_take_v_i(e), ARG2(a,x), l1:a1:_heart_n_i(x)

Applying Robust Semantics

QA and semantic pattern matching

Outline.

Introduction to Robust Semantics.

Flat semantics and DELPH-IN

Operations on RMRS

Generation and Idioms

QA and semantic pattern matching

Conclusions

Applying Robust Semantics

QA and semantic pattern matching

Questions and answers: QA, NLID etc

A valid answer should entail the query (with suitable
interpretation of wh-terms etc).
Is a dog barking?
∃x [dog′(x) ∧ bark′(x)]

A dog is barking entails A dog is barking

Rover is barking and Rover is a dog entails A dog is barking.
bark′(Rover) ∧ dog′(Rover) entails ∃x [dog′(x) ∧ bark′(x)]

which dog is barking?
bark′(Rover) ∧ dog′(Rover) entails ∃x [dog′(x) ∧ bark′(x)]
Bind query term to answer.

Applying Robust Semantics

QA and semantic pattern matching

QA example 1

Example
What eats jellyfish?

Applying Robust Semantics

QA and semantic pattern matching

QA example 1

Example
What eats jellyfish?

Applying Robust Semantics

QA and semantic pattern matching

QA example 1

Example
What eats jellyfish?

Pattern matching on RMRS:
[a:eat(e), ARG1(a,x), ARG2(a,y), jellyfish(y)]
So won’t match on jellyfish eat fish.

Applying Robust Semantics

QA and semantic pattern matching

What eats jellyfish?

Example
Turtles eat jellyfish and they have special hooks in their throats
to help them swallow these slimy animals.

Applying Robust Semantics

QA and semantic pattern matching

What eats jellyfish?

Example
Turtles eat jellyfish and they have special hooks in their throats
to help them swallow these slimy animals.

Match on [a:eat(e), ARG1(a,x), ARG2(a,y), jellyfish(y)]

A logically valid answer which entails the query since the
conjunct can be ignored.

Applying Robust Semantics

QA and semantic pattern matching

What eats jellyfish?

Example
Turtles eat jellyfish and they have special hooks in their throats
to help them swallow these slimy animals.

Applying Robust Semantics

QA and semantic pattern matching

Turtles again

Applying Robust Semantics

QA and semantic pattern matching

What eats jellyfish?

Example
Sea turtles, ocean sunfish (Mola mola) and blue rockfish all are
able to eat large jellyfish, seemingly without being affected by
the nematocysts.

Applying Robust Semantics

QA and semantic pattern matching

What eats jellyfish?

Example
Sea turtles, ocean sunfish (Mola mola) and blue rockfish all are
able to eat large jellyfish, seemingly without being affected by
the nematocysts.

Applying Robust Semantics

QA and semantic pattern matching

What eats jellyfish?

Example
Sea turtles, ocean sunfish (Mola mola) and blue rockfish all are
able to eat large jellyfish, seemingly without being affected by
the nematocysts.

Pattern matching on RMRS:
[a:eat(e), ARG1(a,x), ARG2(a,y), large(y), jellyfish(y)]

eat large jellyfish entails eat jellyfish (because large is
intersective)

Applying Robust Semantics

QA and semantic pattern matching

What eats jellyfish?

Example
Also, open ocean-dwelling snails called Janthina and even
some seabirds have been known to eat jellyfish.

Applying Robust Semantics

QA and semantic pattern matching

What eats jellyfish?

Example
Also, open ocean-dwelling snails called Janthina and even
some seabirds have been known to eat jellyfish.

Applying Robust Semantics

QA and semantic pattern matching

What eats jellyfish?

Example
Also, open ocean-dwelling snails called Janthina and even
some seabirds have been known to eat jellyfish.
[a1:know(e), ARG2(a1,h1), qeq(h1,lb), lb:a:eat(e), ARG1(a,x),
ARG2(a,y), jellyfish(y)]

Logically valid if know is taken as truth preserving.

∀P∀y [know(y , P) =⇒ P]

Axioms like this required for logically valid entailment: missing
axiom would cause failure to match.

Applying Robust Semantics

QA and semantic pattern matching

QA Example 2

Example
What is the largest town in Cornwall?

Interface to database of Cornish towns could use numerical
population values and calculate this.
QA: assumption is the data is directly available in some text (no
closed world assumption)

Applying Robust Semantics

QA and semantic pattern matching

QA Example 2

Example
What is the largest town in Cornwall?

Interface to database of Cornish towns could use numerical
population values and calculate this.
QA: assumption is the data is directly available in some text (no
closed world assumption)

Applying Robust Semantics

QA and semantic pattern matching

What is the largest town in Cornwall?

St Austell is Cornwall’s largest town and a centre of
the china clay industry.

Query: [named(x,"Cornwall"), in(e,x,y), large(e,y), superl(e1,e),
town(y)]
Answer: [named(x,"Cornwall"), poss(e,y,x), large(e,y),
superl(e1,e), town(y)]
So strict match misses here where word match would work.
Actual QA experiments: weighted match. Closed-class words
and construction relations are given less weight than matches
on EPs derived from lexemes.
Better alternative long term: set of valid equivalence rules
(poss as underspecified relation).

Applying Robust Semantics

QA and semantic pattern matching

What is the largest town in Cornwall?

In spite of its city statue (sic), Truro is not the largest
town in Cornwall; there are several larger
agglomerations.

Negation: like know in earlier example, but here simple pattern
matching gets it wrong.
Contexts which block match (versus axioms which allow
entailment for theorem proving).

Applying Robust Semantics

QA and semantic pattern matching

What is the largest town in Cornwall?

Penzance is the largest town in west Cornwall.

west can be treated as intersective, but this does not imply

Penzance is the largest town in Cornwall.

Superlatives require a notion of the comparison set (not in
current ERG/RMRS representation).

Applying Robust Semantics

QA and semantic pattern matching

What is the largest town in Cornwall?

Penzance is the largest town in west Cornwall.

west can be treated as intersective, but this does not imply

Penzance is the largest town in Cornwall.

Superlatives require a notion of the comparison set (not in
current ERG/RMRS representation).

Applying Robust Semantics

QA and semantic pattern matching

What is the largest town in Cornwall?

St Austell is the largest town in Cornwall, in terms of
population.

Dimensionality of adjectives: this is hard!

Applying Robust Semantics

QA and semantic pattern matching

What is the largest town in Cornwall?

Also at [URL], St Austell is said to be the largest town,
however the population figure is doubtful. (from
Wikipedia Portal talk)

Contexts which might block an inference may be indefinitely far
away in a document, maybe even in a different document.
Cf scientific texts: want to extract citations which contradict a
paper. Trustworthiness of documents: implausible can be
obtained by detailed textual analysis with current technology,
but approximations.

Applying Robust Semantics

QA and semantic pattern matching

What is the largest town in Cornwall?

Also at [URL], St Austell is said to be the largest town,
however the population figure is doubtful. (from
Wikipedia Portal talk)

Contexts which might block an inference may be indefinitely far
away in a document, maybe even in a different document.
Cf scientific texts: want to extract citations which contradict a
paper. Trustworthiness of documents: implausible can be
obtained by detailed textual analysis with current technology,
but approximations.

Applying Robust Semantics

QA and semantic pattern matching

Matching in QA: Summary

I Word overlap: no account of the context of the query
words in the answer.

I Simple RMRS matching: context relating the query words,
but no context from the remainder of the sentence.

I Refined RMRS matching: check for specific types of
context, such as negation.

I Full sentence-based entailment takes into account the
sentence context, but not document context or
inter-document context.

RMRS: augment language with explicit semantics to different
extents.
Robust matching: augment bag-of-words technique to different
extents.

Applying Robust Semantics

Conclusions

Outline.

Introduction to Robust Semantics.

Flat semantics and DELPH-IN

Operations on RMRS

Generation and Idioms

QA and semantic pattern matching

Conclusions

Applying Robust Semantics

Conclusions

The Semantic Web
I Like NL search, QA etc, semantic web querying:

I cannot rely on a closed world assumption
I requires mapping between representations

I Claim: language processing will soon just be needed for
old texts. All new publication will use semantic markup.

I But: agreement on semantic markup languages is limited.
Even scientific publishing is not simply about facts.

I ‘Information Layer’ (Spärck Jones 2007): connection via
words may be good enough for many tasks.

I Semantic web markup best seen as an addition to natural
language, not a replacement.
Computational semantics: enrich texts to make aspects of
meaning more accessible to subsequent processing.

Applying Robust Semantics

Conclusions

Concluding comments

I Computational semantic representations can be robust to
missing information, especially missing lexicon.

I Flat, ‘surfacy’ representations: more robustness, easier
processing, semantics as annotation of natural language
rather than replacement for it.

I Semantics is useful in applications even without ‘proper’
inference. Semantic operations can be robust to missing
‘axioms’.

I Going deeper:
I Lexical semantics: symbolic relationships between

predicates, vector space model of predicates.
I Discourse relations, anaphora, context.

Applying Robust Semantics

Conclusions

Credits

Dan Flickinger, Simone Teufel, CJ Rupp, Ben Waldron, Advaith
Siddharthan, Ted Briscoe, John Carroll, Ivan Sag, Carl Pollard,
Anette Frank, Alex Lascarides, David Schlangen, Stephan
Oepen, Emily Bender, Rob Malouf, Francis Bond, Tim Baldwin,
Aline Villavicencio, Melanie Siegel, Lars Hellan, Dorothee
Beerman, Ulrich Callmeier, Ulrich Schäfer, Bernd Kiefer, Victor
Poznanski, Susanne Riehemann, Anna Ritchie, Rebecca
Dridan, Aurelie Herbelot, Richard Bergmair

with funding from BMBF, CSLI IAP, NSF, EPSRC, NTT,
European Commission and Boeing.

Applying Robust Semantics

Conclusions

	Introduction to Robust Semantics.
	Flat semantics and DELPH-IN
	Operations on RMRS
	Generation and Idioms
	QA and semantic pattern matching
	Conclusions

