Introduction	Compositional semantics	Lexical semantics	Scientific text processing	Natural and non-natural languages
	00 000000000 0000000	0000000 00000 000	00 00 0000	

What do we mean?

Computational approaches to natural language semantics

Ann Copestake

Natural Language and Information Processing Group Computer Laboratory University of Cambridge

May 2008

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)

 (日)

Introduction	Compositional semantics	Lexical semantics	Scientific text processing	Natural and non-natural languages
	00 000000000 0000000	0000000 00000 000	00 00 0000	

Outline.

Language and language processing

Compositional semantics

Lexical semantics

Scientific text processing

Natural and non-natural languages

Current research in language processing related to semantics, mostly NLIP group, with flashbacks to Karen's work.

Introduction	Compositional semantics	Lexical semantics	Scientific text processing	Natural and non-natural languages
	00 0000000000 0000000	0000000 00000 000	00 00 0000	

Outline.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Language and language processing

Compositional semantics

Language as an interface to a microworld Broad coverage compositional semantics Question answering

Lexical semantics

- Clustering
- Compound nouns
- Ontology extraction

Scientific text processing

- Flyslip Hedge terms and cita
 - Chemistry Information Extraction

Natural and non-natural languages

Introduction	
--------------	--

Lexical semantic 0000000 00000 0000 Scientific text processing

Natural and non-natural languages

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Language and language processing

Why is automatic language processing difficult?

Similar strings mean different things:

1. How fast is the TZ? (fast CPU speed)

2. How fast will my TZ arrive? (fast delivery time)

local ambiguity/vagueness

Different strings mean the same thing:

- 1. How fast will my TZ arrive? (my ordered by me)
- 2. Please tell me when I can expect the TZ I ordered.

synonymy/near synonymy

Introduction	
--------------	--

Compositional semantics

Lexical semantie 0000000 00000 0000 Scientific text processing

Natural and non-natural languages

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Language and language processing

Why is automatic language processing difficult?

Similar strings mean different things:

- 1. How fast is the TZ? (*fast* CPU speed)
- 2. How fast will my TZ arrive? (fast delivery time)
- local ambiguity/vagueness

Different strings mean the same thing:

- 1. How fast will my TZ arrive? (my ordered by me)
- 2. Please tell me when I can expect the TZ I ordered.

synonymy/near synonymy

Introduction	
--------------	--

Lexical semantie

Scientific text processing

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Language and language processing

Why is automatic language processing difficult?

Similar strings mean different things:

- 1. How fast is the TZ? (fast CPU speed)
- 2. How fast will my TZ arrive? (fast delivery time)

local ambiguity/vagueness

- 1. How fast will my TZ arrive? (my ordered by me)
- 2. Please tell me when I can expect the TZ I ordered. synonymy/near synonymy

Introduction	
--------------	--

Lexical semantic 0000000 00000 0000 Scientific text processing

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Language and language processing

Why is automatic language processing difficult?

Similar strings mean different things:

- 1. How fast is the TZ? (fast CPU speed)
- 2. How fast will my TZ arrive? (fast delivery time)

local ambiguity/vagueness

- 1. How fast will my TZ arrive? (my ordered by me)
- 2. Please tell me when I can expect the TZ I ordered. synonymy/near synonymy

Introduction	
--------------	--

Lexical semantion 0000000 00000 0000 Scientific text processing

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Language and language processing

Why is automatic language processing difficult?

Similar strings mean different things:

- 1. How fast is the TZ? (fast CPU speed)
- 2. How fast will my TZ arrive? (*fast* delivery time) local ambiguity/vagueness

- 1. How fast will my TZ arrive? (my ordered by me)
- 2. Please tell me when I can expect the TZ I ordered. synonymy/near synonymy

Introduction	
--------------	--

Lexical semantic 0000000 00000 0000 Scientific text processin

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Language and language processing

Why is automatic language processing difficult?

Similar strings mean different things:

- 1. How fast is the TZ? (fast CPU speed)
- 2. How fast will my TZ arrive? (fast delivery time)

local ambiguity/vagueness

- 1. How fast will my TZ arrive? (my ordered by me)
- 2. Please tell me when I can expect the TZ I ordered. synonymy/near synonymy

Introduction	
--------------	--

Lexical semantic 0000000 00000 0000 Scientific text processin

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Language and language processing

Why is automatic language processing difficult?

Similar strings mean different things:

- 1. How fast is the TZ? (fast CPU speed)
- 2. How fast will my TZ arrive? (fast delivery time)

local ambiguity/vagueness

- 1. How fast will my TZ arrive? (my ordered by me)
- 2. Please tell me when I can expect the TZ I ordered. synonymy/near synonymy

Introduction	
--------------	--

Lexical semantic 0000000 00000 0000 Scientific text processing

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Language and language processing

Why is automatic language processing difficult?

Similar strings mean different things:

- 1. How fast is the TZ? (fast CPU speed)
- 2. How fast will my TZ arrive? (fast delivery time)

local ambiguity/vagueness

Different strings mean the same thing:

- 1. How fast will my TZ arrive? (my ordered by me)
- 2. Please tell me when I can expect the TZ I ordered.

synonymy/near synonymy

Introduction	
--------------	--

Lexical semantic 0000000 00000 0000 Scientific text processing

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Language and language processing

Why is automatic language processing difficult?

Similar strings mean different things:

- 1. How fast is the TZ? (fast CPU speed)
- 2. How fast will my TZ arrive? (fast delivery time)

local ambiguity/vagueness

- 1. How fast will my TZ arrive? (my ordered by me)
- 2. Please tell me when I can expect the TZ I ordered. synonymy/near synonymy

In	tro	du	cti	on

Lexical semantic 0000000 00000 0000 Scientific text processin

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Language and language processing

So, natural languages are a bad thing, to be replaced wherever possible by precise, well-specified formal languages?

Natural language properties essential to communication:

- incredibly flexible; learnable while compact
- emergent, evolving systems

Ambiguity/synonymy properties are inherent to flexibility and learnability. (Spärck Jones, 1964, p126–136: 'Model 4 languages')

Language can be indefinitely precise:

- ambiguity is largely local (at least for humans)
- natural languages accommodate (semi-)formal additions

Int	rod	uct	ion	
	iou	uci		

Language and language processing

So, natural languages are a bad thing, to be replaced wherever possible by precise, well-specified formal languages?

Natural language properties essential to communication:

- incredibly flexible; learnable while compact
- emergent, evolving systems

Ambiguity/synonymy properties are inherent to flexibility and learnability. (Spärck Jones, 1964, p126–136: 'Model 4 languages')

Language can be indefinitely precise:

- ambiguity is largely local (at least for humans)
- natural languages accommodate (semi-)formal additions

	h	ntı	od	uc	tio	n
--	---	-----	----	----	-----	---

Language and language processing

So, natural languages are a bad thing, to be replaced wherever possible by precise, well-specified formal languages?

Natural language properties essential to communication:

- incredibly flexible; learnable while compact
- emergent, evolving systems

Ambiguity/synonymy properties are inherent to flexibility and learnability. (Spärck Jones, 1964, p126–136: 'Model 4 languages')

Language can be indefinitely precise:

- ambiguity is largely local (at least for humans)
- natural languages accommodate (semi-)formal additions

Introduction	Compositional semantics	Lexical semantics	Scientific text processing	Natural and non-natural languages
	00	0000000	00	
	000000000	00000	00	
	0000000	000	0000	

Outline.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Language and language processing

Compositional semantics

Language as an interface to a microworld Broad coverage compositional semantics Question answering

Lexical semantics

- Clustering Compound nouns
- Ontology extraction

Scientific text processing

- Flyslip Hedge terms and citations Chemistry Information Extraction
- Natural and non-natural languages

Compositional semantics

Lexical semantics

Scientific text processing

Natural and non-natural languages

Natural language interfaces to databases (e.g., Copestake and Spärck Jones, 1989)

OWNER	OOid OSurnam Olnits
OWNERSHIP	OWOid OWPid
PARCEL	PPid PBid PStrnum PStrnam PLuc
	PPark PDwell PFI PCityv PSqft
BLOCK	BBid BWid
WARD	WWid

• Who owns a house in a street with parcels in Block 3/2?

• Which owners are in Market Place? i.e., Which owners own properties which are in Market Place? metonymy

Compositional semantics

Lexical semantics

Scientific text processing

Natural and non-natural languages

Natural language interfaces to databases (e.g., Copestake and Spärck Jones, 1989)

OWNER	OOid OSurnam OInits
OWNERSHIP	OWOid OWPid
PARCEL	PPid PBid PStrnum PStrnam PLuc
	PPark PDwell PFI PCityv PSqft
BLOCK	BBid BWid
WARD	WWid

- Who owns a house in a street with parcels in Block 3/2?
- Which owners are in Market Place? i.e., Which owners own properties which are in Market Place? metonymy

Compositional semantics

Lexical semantics

Scientific text processing

Natural and non-natural languages

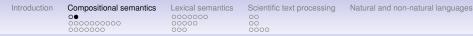
Natural language interfaces to databases (e.g., Copestake and Spärck Jones, 1989)

OWNER	OOid OSurnam OInits
OWNERSHIP	OWOid OWPid
PARCEL	PPid PBid PStrnum PStrnam PLuc
	PPark PDwell PFI PCityv PSqft
BLOCK	BBid BWid
WARD	WWid

- Who owns a house in a street with parcels in Block 3/2?
- Which owners are in Market Place? i.e., Which owners own properties which are in Market Place? metonymy

Compositional semantics

Lexical semantics


Scientific text processing

Natural and non-natural languages

Natural language interfaces to databases (e.g., Copestake and Spärck Jones, 1989)

OWNER	OOid OSurnam OInits
OWNERSHIP	OWOid OWPid
PARCEL	PPid PBid PStrnum PStrnam PLuc
	PPark PDwell PFI PCityv PSqft
BLOCK	BBid BWid
WARD	WWid

- Who owns a house in a street with parcels in Block 3/2?
- Which owners are in Market Place? i.e., Which owners own properties which are in Market Place? metonymy

Limited domain vs broad coverage language processing

- Until late 1980s: limited domain, often detailed semantics. Systems as agents.
- 1990–2005: broad coverage, information management. Systems as aids to humans.
 - Spoken dialogue systems: limited domain-dependent grammars.
 - Broad coverage text processing: shallow analysis.

Limited compositional semantics.

 2005–: question answering (aka 'semantic search'), robust inference.

Compositional semantics

<mark>_exical semantics</mark> ⊃000000 ⊃0000 ⊃000 Scientific text processing

Technical progress on broad-coverage compositional semantics

- Better parsing (e.g., PARC/Powerset, DELPH-IN, CCG):
 - Deep parsers incorporating statistical ranking
 - Faster deep parsers
 - More robustness
- Better representations:
 - Language-friendly logical representations (event variables, generalised quantifiers)
 - Underspecification (Alshawi and Crouch (1992): Quasi-logical form (QLF). Copestake, Flickinger, Sag, Pollard (2005): MRS)
 - Semantics from shallower parsers (RMRS)
- Semantics as automatic markup on natural language, not replacement.

Intro		

Compositional semantics

exical semantics

Scientific text processing

Technical progress on broad-coverage compositional semantics

- Better parsing (e.g., PARC/Powerset, DELPH-IN, CCG):
 - Deep parsers incorporating statistical ranking
 - Faster deep parsers
 - More robustness
- Better representations:
 - Language-friendly logical representations (event variables, generalised quantifiers)
 - Underspecification (Alshawi and Crouch (1992): Quasi-logical form (QLF). Copestake, Flickinger, Sag, Pollard (2005): MRS)
 - Semantics from shallower parsers (RMRS)
- Semantics as automatic markup on natural language, not replacement.

Introduction
Compositional semantics
Compositional sem

Logical representations: first order predicate calculus

Every cat chased some dog

$$\forall x [\operatorname{cat}'(x) \implies \exists y [\operatorname{dog}'(y) \land \operatorname{chase}'(x, y)]] \\ \exists y [\operatorname{dog}'(y) \land \forall x [\operatorname{cat}'(x) \implies \operatorname{chase}'(x, y)]]$$

Cannot decide between scope on the basis of syntax.

Thus requires full parse and scope disambiguation to produce a valid logical representation.

Underspecification allows useful semantic representation even when this is impossible.

	tr				

Compositional semantics 000000000

Lexical semantics

Scientific text processing Natural and non-natural languages

Underspecification and Sudoku solving

			7					8
		9					2	
	5			3			9	
8					2			
		6				7		
			4					1
	3			9			6	
	2					4		
7					1			

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction	Compositional semantics	Lexical semantics	Scientific text processing	Natural and non-natural languages
	00 000000000 0000000	0000000 00000 000	00 00 0000	

Solving.

			7						8
		9						2	
	5			3				9	
8					2				
		6				1	7		
			4						1
	3			9				6	
	2					2	1		
7					1				

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Introduction	Compositional semantics	Lexical semantics	Scientific text processing	Natural and non-natural languages
	00 000000000 0000000	0000000 00000 000	00 00 0000	

Possibility 1.

			7					8
		9					2	7
	5			3			9	
8					2			
		6				7		
			4					1
	3			9			6	
	2					4		
7					1			

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Compositional semantics	0000000	Scientific text processing
0000000	000	0000
	00	00000000000000000000000000000000000000

Possibility 2.

			7					8
		9					2	
	5			3			9	7
8					2			
		6				7		
			4					1
	3			9			6	
	2					4		
7					1			

Natural and non-natural languages

Introduction	Compositional semantics
	00
	0000000000
	0000000

Lexical semantics

Scientific text processing

Natural and non-natural languages

Underspecification.

			7					8
		9					2	7
	5			3			9	7
8					2			
		6				7		
			4					1
	3			9			6	
	2					4		
7					1			

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

					io	

Compositional semantics 00000000000

Lexical semantics

Scientific text processing Natural and non-natural languages

Inference on underspecified form.

			7						8
		9						2	7
	5			3				9	7
8					2				
		6					7		
			4						1
	3			9				6	
	2					4	ŀ		
-7-					1				

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

					io	

Compositional semantics 00000000000

Lexical semantics

Scientific text processing Natural and non-natural languages

Inference on underspecified form.

			7						8
		9						2	7
	5			3				9	7
8					2				
		6				1	7		
			4						1
	3			9				6	
	2					2	1	7	
-7-					1				

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Compositional semantics

exical semantics

Scientific text processing

Natural and non-natural languages

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Semantics via incremental annotation (RMRS)

Most cats noisily chased a large dog most_DAT cat_NN2 noisily_RR chase_VVD a_AT1 large_JJ dog_NN1

a1:l1:most_q(x1) a2:l2:cat_n(x2) a3:l3:noisy(e3) a4:l4:chase(e4) a5:l5:a(x5) a6:l6:large(e6) a7:l7:dog(x7)

Introduction		r	ş	÷	r		d		0	÷		\$	n
	ļ	1		ε		U	u	u	U	υ	I,	,	

Compositional semantics

<mark>_exical semantic</mark> ⊃000000 ⊃0000 ⊃000 Scientific text processing

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Semantics via incremental annotation (RMRS)

Most cats noisily chased a large dog most_DAT cat_NN2 noisily_RR chase_VVD a_AT1 large_JJ dog_NN1

a1:l1:most_q(x1)	x1=x2
a2:l2:cat_n(x2)	
a3:l3:noisy(e3)	
a4:l4:chase(e4)	
a5:l5:a(x5)	x5=x7
a6:l6:large(e6)	a6:ARG1(x7) 6= 7
a7:l7:dog(x7)	

	uction	

Compositional semantics

<mark>_exical semantic</mark> ⊃000000 ⊃0000 ⊃000 Scientific text processing

Semantics via incremental annotation (RMRS)

Most cats noisily chased a large dog most_DAT cat_NN2 noisily_RR chase_VVD a_AT1 large_JJ dog_NN1

a1:l1:most_q(x1)	x1=x2
a2:l2:cat_n(x2)	
a3:l3:noisy(e3)	l3=l4 e3=e4
a4:l4:chase(e4)	a4:ARG1(x1) a4:ARG2(x5)
a5:l5:a(x5)	x5=x7
a6:l6:large(e6)	a6:ARG1(x7)
a7:l7:dog(x7)	

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Compositional semantics

exical semantic exical Scientific text processing

Semantics via incremental annotation (RMRS)

Most cats noisily chased a large dog most_DAT cat_NN2 noisily_RR chase_VVD a_AT1 large_JJ dog_NN1

a1:I1:most_q(x1) x⁻⁻ a2:I2:cat_n(x2) a3:I3:noisy(e3) I3 a4:I4:chase(e4) a4 a5:I5:a(x5) x! a6:I6:large(e6) a4 a7:I7:dog(x7)

```
x1=x2 a1:RSTR(h1) h1=_ql2
l3=l4 e3=e4
a4:ARG1(x1) a4:ARG2(x5)
x5=x7 a5:RSTR(h5) h5=_ql6
a6:ARG1(x7) l6=l7
```

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Introduction	Compositional semantics	Lexical semantics	Scientific text processing	Natural a
	00	0000000	00	
	000000000	00000	00	

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○○

Semantics via incremental annotation (RMRS)

Most cats noisily chased a large dog most_DAT cat_NN2 noisily_RR chase_VVD a_AT1 large_JJ dog_NN1

a1:I1:most_q(x1)x1=x2 a1:RSTR(h1) $h1=_ql2$ a1:BODY(l5)a2:l2:cat_n(x2)a3:l3:noisy(e3)l3=l4 e3=e4a4:l4:chase(e4)a4:ARG1(x1) a4:ARG2(x5)a5:l5:a(x5)x5=x7 a5:RSTR(h5) $h5=_ql6$ a1:BODY(l3)a6:l6:large(e6)a6:ARG1(x7) l6=l7a7:l7:dog(x7)a7:l7:dog(x7)

Introduction	Compositional semantics	Lexical semantics	Scientific text processing	Natural a
	00	0000000	00	
	0000000000	00000	00	

Semantics via incremental annotation (RMRS)

Most cats noisily chased a large dog most_DAT cat_NN2 noisily_RR chase_VVD a_AT1 large_JJ dog_NN1

a1:11:most_q(x1)x1=x2 a1:RSTR(h1) $h1=_ql2$ a1:BODY(l3)a2:l2:cat_n(x2)a3:l3:noisy(e3)l3=l4 e3=e4a4:l4:chase(e4)a4:ARG1(x1) a4:ARG2(x5)a5:l5:a(x5)x5=x7 a5:RSTR(h5) $h5=_ql6$ a1:BODY(l1)a6:l6:large(e6)a6:ARG1(x7) l6=l7a7:l7:dog(x7)a1:BODY(l2)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Introduction	Compositional semantics ○○ ○○○○○○○● ○○○○○○○	Lexical semantics 0000000 00000 000	Scientific text processing	Natural and non-natural languages
			wampla	

Very few of the Chinese construction companies consulted were even remotely interested in entering into such an arrangement with a local partner.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Introduction Compositional semantics	Lexical semantics 0000000 00000 000	Scientific text processing	Natural and non-natural languages
	A ve el e		

Very few of the Chinese construction companies consulted were even remotely interested in entering into such an arrangement with a local partner.

modified quantifier

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

C C	Compositional semantics	Lexical semantics	Scientific text processing	Natural and non-natural languages

Very few of the Chinese construction companies consulted were even remotely interested in entering into such an arrangement with a local partner.

partitive

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Introduction	Compositional semantics	Lexical semantics 0000000 00000 000	Scientific text processing	Natural and non-natural languages
		A		

Very few of the Chinese construction companies consulted were even remotely interested in entering into such an arrangement with a local partner.

compound nominal

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Introduction	Compositional semantics ○○ ○○○○○○○● ○○○○○○○	Lexical semantics 0000000 00000 000	Scientific text processing	Natural and non-natural languages
			wample	

Very few of the Chinese construction companies consulted were even remotely interested in entering into such an arrangement with a local partner.

reduced relative

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Introduction	Compositional semantics	Lexical semantics 0000000 00000 000	Scientific text processing	Natural and non-natural languages
		A		

Very few of the Chinese construction companies consulted were even remotely interested in entering into such an arrangement with a local partner.

modified modifier

▲□▶▲□▶▲□▶▲□▶ □ のQ@

C C	Compositional semantics	Lexical semantics	Scientific text processing	Natural and non-natural languages

Very few of the Chinese construction companies consulted were even remotely interested in entering into such an arrangement with a local partner.

predeterminer

Introduction	Compositional semantics	Lexical semantics	Scientific text processing	Natural and non-natural languages
	00 000000000	0000000	00	
	●000000	000	0000	

Question Answering by semantic pattern matching

What eats jellyfish?

Match robust semantics of question with semantics of possible answer:

[?x, a:eat(e), a:ARG1(x), a:ARG2(y), jellyfish(y)] (simplified)

Matches on *turtles eat jellyfish, jellyfish are eaten by turtles* [turtle(x), a:eat(e), a:ARG1(x), a:ARG2(y), jellyfish(y)]

But won't match on *jellyfish eat fish* [jellyfish(x), a:eat(e), a:ARG1(x), a:ARG2(y), fish(y)]

Introduction	Compositional semantics	Lexical semantics	Scientific text processing	Natural and non-natural languages
	00 000000000 0000000	0000000 00000 000	00 00 0000	

Jellyfish eaters: pattern matching and inference

Turtles eat jellyfish and they have special hooks in their throats to help them swallow these slimy animals.

Semantic pattern matches Inference: $P \land Q$ entails P

Introduction	Compositional semantics	Lexical semantics	Scientific text processing	Natural and non-natural languages
	00 000000000 0000000	0000000 00000 000	00 00 0000	

Jellyfish eaters: pattern matching and inference

Sea turtles, ocean sunfish (Mola mola) and blue rockfish all are able to eat large jellyfish, seemingly without being affected by the nematocysts.

Semantic pattern matching: contexts have to be specified to block.

Inference: axioms have to be specified to license.

Negative context may exist in another document, especially in scientific text.

Introduction	Compositional semantics	Lexical semantics	Scientific text processing	Natural and non-natural languages
	00 000000000 0000000	0000000 00000 000	00 00 0000	

Jellyfish eaters: pattern matching and inference

Sea turtles, ocean sunfish (Mola mola) and blue rockfish all are able to eat large jellyfish, seemingly without being affected by the nematocysts.

Semantic pattern matching: contexts have to be specified to block.

Inference: axioms have to be specified to license.

Negative context may exist in another document, especially in scientific text.

Introduction	Compositional semantics	Lexical semantics	Scientific text processing	Natural and non-natural languag
	00	0000000	00	
	000000000	00000	00	
	0000000	000	0000	

Compositional semantics: summary

- Broad coverage grammars for English and other languages exist which can provide quite detailed compositional semantic representations.
- Logics are relatively 'language friendly' and support underspecification.
- Compositional semantics seen as annotation of text rather than replacement.

Robust inference and semantic pattern matching (NB ongoing work by Bergmair)

In					

Compositional semantics

Lexical semantic 0000000 00000 000 Scientific text processin

Natural and non-natural languages

Karen on compositional semantics

Spärck Jones, 1985

More recent developments in the theory of grammar, for example Generalized Phrase Structure Grammar (Gazdar et al, 1985) are much more hospitable to exploitation for automatic language processing, though as far as the semantic content necessary for effective language processing goes, one view is that they are essentially still empty vessels, awaiting the water of life in an account of word meanings.

▲口→▲御→▲臣→▲臣→ 臣 のへで

Introduction	Compositional semantics
	00
	000000000
	0000000

Lexical semantics 0000000 00000 000

Scientific text processing Natural and non-natural languages

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ● ◆ ◆ ◆ ●

'They all had a use once'

Introduction	Compositional semantics
	00
	000000000
	000000

Lexical semantics

Scientific text processing

Natural and non-natural languages

'They all had a use once'

Introduction Compos	00000	000000	Scientific text processing	Natural and non-natural languages
---------------------	-------	--------	----------------------------	-----------------------------------

Outline.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Language and language processing

Compositional semantics

Language as an interface to a microworld Broad coverage compositional semantics Question answering

Lexical semantics

Clustering Compound nouns Ontology extraction

Scientific text processing

Flyslip Hedge terms and citations Chemistry Information Extraction

Natural and non-natural languages

Introduction	Compositional semantics	Lexical semantics	Scientific text processing	Natural and non-natural languages
	00 000000000 0000000	0000000 00000 000	00 00 0000	

Lexical semantics in language applications

- The Information Retrieval approach: no explicit semantic representation.
- Domain-specific semantics: e.g., interfaces to databases.

- Hand code: e.g., WordNet, specialist terminology resources/ontologies.
- Supervised and unsupervised machine learning.

Introduction	Compositional semantics	Lexical semantics	Scientific text processing	Natural and non-natural languages
	00 000000000 0000000	•000000 00000 000	00 00 0000	

You shall know a word by the company it keeps! (Firth, 1957)

Words represented as vectors of features:

	feature ₁	feature ₂	 feature _n
word ₁	<i>f</i> _{1,1}	<i>f</i> _{2,1}	<i>f_{n,1}</i>
$word_2$	f _{1,2}	f _{2,2}	<i>f</i> _{n,2}
 word _m	f _{1,m}	f _{2,m}	<i>f</i> _{<i>n</i>,<i>m</i>}

Features: co-occur with word_n in some window, co-occur with word_n as a syntactic dependent, occur in paragraph_n, occur in document_n...

First computational application: Spärck Jones (1964)

Introduction	Compositional semantics	Lexical semantics	Scientific text processing	Natural and non-natural languages
	00	000000	00	
	000000000	00000	00	
	0000000	000	0000	

Words co-occurring with words

	arts	boil	data	function	large	sugar	summarized	water
apricot	0	1	0	0	1	1	0	1
pineapple	0	1	0	0	1	1	0	1
digital	1	0	1	1	0	0	1	0
information	1	0	1	1	0	0	1	0
(from Jurafsky and Martin, 2008)								

apricot: { boil, large, sugar, water } pineapple: { boil, large, sugar, water } digital: { arts, data, function, summarized } information: { arts, data, function, summarized }

Clustering: group together words with 'similar' vectors.

Introduction	Compositional semantics	Lexical semantics	Scientific text processing	Natural and non-natural languages
	00	000000	00	
	0000000000	00000	00	

Words co-occurring with words

	arts	boil	data	function	large	sugar	summarized	water
apricot	0	1	0	0	1	1	0	1
pineapple	0	1	0	0	1	1	0	1
digital	1	0	1	1	0	0	1	0
information	1	0	1	1	0	0	1	0
(from Jurafsky and Martin, 2008)								

apricot: { boil, large, sugar, water } pineapple: { boil, large, sugar, water } digital: { arts, data, function, summarized } information: { arts, data, function, summarized }

(日) (日) (日) (日) (日) (日) (日)

Clustering: group together words with 'similar' vectors.

Introduction	Compositional semantics	Lexical semantics	Scientific text processing	Natural and non-natural languages
	00	000000	00	
	0000000000	00000	00	

Words co-occurring with words

	arts	boil	data	function	large	sugar	summarized	water
apricot	0	1	0	0	1	1	0	1
pineapple	0	1	0	0	1	1	0	1
digital	1	0	1	1	0	0	1	0
information	1	0	1	1	0	0	1	0
(from Jurafsky and Martin, 2008)								

apricot: { boil, large, sugar, water } pineapple: { boil, large, sugar, water } digital: { arts, data, function, summarized } information: { arts, data, function, summarized }

Clustering: group together words with 'similar' vectors.

Introduction	Compositional semantics	Lexical semantics	Scientific text processing	Natural and non-natural languages
	00 000000000 0000000	000000 00000 000	00 00 0000	

Early clustering: Spärck Jones (1967)

Harper (1965): cooccurrence data for 40 nouns from 120,000 words of Russian scientific text: adjective dependents, noun dependents, noun governors.

Harper clustered by:

$$\frac{|V_1 \cap V_2|}{|F_1 F_2|}$$

where V_1 , V_2 are cooccurring sets, F_1 , F_2 are the frequencies of the nouns in the corpus.

Spärck Jones (1967): Harper's similarity coefficient is 'of doubtful propriety'. Instead clustered ('clumped') by Jaccard:

$$\frac{|V_1 \cap V_2|}{|V_1 \cup V_2|}$$

Introduction	Compositional semantics	Lexical semantics	Scientific text processing	Natural and non-natural languages
	00 000000000 0000000	000000 00000 000	00 00 0000	

Early clustering: Spärck Jones (1967)

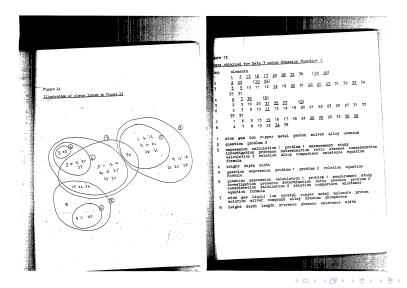
Harper (1965): cooccurrence data for 40 nouns from 120,000 words of Russian scientific text: adjective dependents, noun dependents, noun governors.

Harper clustered by:

$$\frac{|V_1 \cap V_2|}{|F_1 F_2|}$$

where V_1 , V_2 are cooccurring sets, F_1 , F_2 are the frequencies of the nouns in the corpus.

Spärck Jones (1967): Harper's similarity coefficient is 'of doubtful propriety'. Instead clustered ('clumped') by Jaccard:


$$\frac{|V_1 \cap V_2|}{|V_1 \cup V_2|}$$

Introduction	Compositional semantics
	00
	0000000

Lexical semantics 0000000

Scientific text processing Natural and non-natural languages

Spärck Jones (1967)

= 900

Introduction	Compositional semantics	Lexical semantics	Scientific text processing	Natural and non-natural languages
	00 000000000 0000000	000000 00000 000	00 00 0000	

IR (Robertson and Spärck Jones, 1976, 1994)

Term Frequency:

TF(i,j) = number of terms t(i) in document d(j)

Collection Frequency Weight (inverse document frequency):

CFW(i) = log N - log n where n is the number of documents t(i) occurs in, N is the total number of documents

Document length:

NDL = number of terms in d(j) / average number terms Combined weight:

CW(i,j) = [CFW(i) *TF(i,j) *(K+1)] / [K*NDL(j) +TF(i,j)]

Introduction	Compositional semantics	Lexical semantics	Scientific text processing	Natural and non-natural languages
	00 000000000 0000000	0000000 00000 000	00 00 0000	

Verbs in biomedical text (Korhonen et al, 2006)

Gold standard clusters:

1 Have an effect on activity (BIO/29)	4 Experimental Procedures (BIO/30)
1.1 Activate / Inactivate	4.1 Prepare
1.1.1 Change activity: activate, inhibit	4.1.1 Wash: wash, rinse
1.1.2 Suppress: suppress, repress	4.1.2 Mix: <i>mix</i>
1.1.3 Stimulate: stimulate	4.1.3 Label: stain, immunoblot
1.1.4 Inactivate: delay, diminish	4.1.4 Incubate: preincubate, incubate
1.2 Affect	4.1.5 Elute: elute
1.2.1 Modulate: stabilize, modulate	4.2 Precipitate: coprecipitate
1.2.2 Regulate: control, support	coimmunoprecipitate
1.3 Increase / decrease: increase,	4.3 Solubilize: solubilize,lyse
decrease	4.4 Dissolve: homogenize, dissolve
1.4 Modify: modify, catalyze	4.5 Place: load, mount

Verb clustering using a range of features derived via robust parsing (Briscoe and Carroll, 2002).

Introduction	Compositional semantics	Lexical semantics	Scientific text processing	Natural and non-natural languages
	00	000000	00	
	000000000	00000	00	
	0000000	000	0000	

Distributional differences (Copestake, 2005)

Magnitude adjectives and non-physical-solid nouns. Distributional data from the British National Corpus (100 million words)

	importance	success	majority	number	proportion	quality	role	problem	part	winds	support	rain
great	310	360	382	172	9	11	3	44	71	0	22	0
large	1	1	112	1790	404	0	13	10	533	0	1	0
high	8	0	0	92	501	799	1	0	3	90	2	0
major	62	60	0	0	7	0	272	356	408	1	8	0
big	0	40	5	11	1	0	3	79	79	3	1	1
strong	0	0	2	0	0	1	8	0	3	132	147	0
heavy	0	0	1	0	0	1	0	0	1	2	4	198

Andersen: evidence from error corpus that language learners overuse *big*.

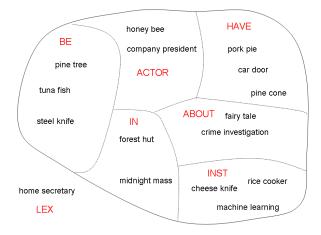
Introduction	Compositional semantics	Lexical semantics	Scientific text processing	Natural and non-natural languages
	00	000000 00000	00	
	0000000	000	0000	

Compound noun relations

- cheese knife: knife for cutting cheese
- steel knife: knife made of steel
- kitchen knife: knife characteristically used in the kitchen

(Spärck Jones (1983) on compound nouns: implications for overall processing architecture.)

- Syntactic parsers can't distinguish: N1(x), N2(y), compound(x,y)
- One approach: human annotation of compounds, machine learning of unseen examples.


In	tre	bd	1.17	oti	0
	uv	Ju	u	JU	

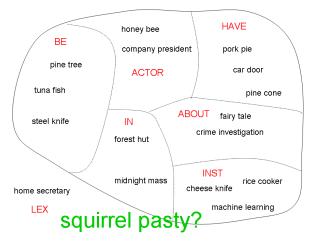
Lexical semantics

Scientific text processing

Natural and non-natural languages

Compound noun relation learning (Ó Séaghdha, 2007)

Inti	nd	uct	ion
	ou	uci	1011


Compositional semant

Lexical semantics

Scientific text processing

Natural and non-natural languages

Compound noun relation learning (Ó Séaghdha)

Introduction	Compositional semanti		
	00		
	000000000		
	000000		

Lexical semantics

Scientific text processing

Natural and non-natural languages

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Compound noun relation learning (Ó Séaghdha)

- Treat compounds as single words: doesn't work!
- Constituent similarity: compounds x1 x2 and y1 y2, compare x1 vs y1 and x2 vs y2. squirrel vs pork, pasty vs pie
- Relational similarity: sentences with x1 and x2 vs sentences with y1 and y2.
 squirrel is very tasty, especially in a pasty vs pies are filled with tasty pork

Introduction	Compositional semantics	Lexical semantics	Scientific text processing oo oo oooo	Natural and non-natural languages

Human annotation

- Preliminary to supervised machine learning, evaluation of unsupervised techniques.
- Methodology: define categories, develop guidelines, multiple annotators, measure annotator agreement, refine categories and guidelines ...
- Agreement of 70% quite usual in semantic annotation.
- What's going on?

Sometimes, local effects: *sponsorship cash*. Cash gained through sponsorship (INST) or sponsorship in form of cash (BE)?

Introduction	Compositional semantics	Lexical semantics	Scientific text processing	Natural and non-natural languages

Human annotation

- Preliminary to supervised machine learning, evaluation of unsupervised techniques.
- Methodology: define categories, develop guidelines, multiple annotators, measure annotator agreement, refine categories and guidelines ...
- Agreement of 70% quite usual in semantic annotation.
- What's going on?

Sometimes, local effects: *sponsorship cash*. Cash gained through sponsorship (INST) or sponsorship in form of cash (BE)?

Introduction	Compositional semantics		
	00 000000000 0000000		

Lexical semantics

Scientific text processing

Natural and non-natural languages

Ontology extraction

Introduction	Compositional semantics	Lexical semantics	Scientific text processing	Natural and non-natural languages
	00 000000000 0000000	000000 00000 0000	00 00 0000	

Ontology extraction (Herbelot, 2007, 2008)

• Improving recall by extracting complex examples with robust semantic patterns:

Opah (also known colloquially as moonfish, sunfish, kingfish, and Jerusalem haddock) are large, colourful, deep-bodied pelagic Lampriform fish comprising the small family Lampridae (also spelt Lamprididae).

- Learning difference between generic and individual uses:
 - A whale is a mammal.
 - A whale escaped from a zoo yesterday.

Introduction	Compositional semantics	Lexical semantics	Scientific text processing	Natural and non-natural languages
	00 000000000 0000000	000000 00000 000	00 00 0000	

Computational lexical semantics

- Karen was a pioneer of many of the basic methods.
- Research really took off in the 1990s with the availability of corpora (and disk space).
- Many linguistic phenomena involved: generics, compounds, polysemy, metonymy.
- Semantic annotation requires considerable thought about phenomenon and experimentation to be successful: even then, quite low agreement.
- Unsupervised methods, such as clustering, are very attractive, but evaluation can be a problem (especially soft clustering).

Introducti	on C	ompositional sem	antics	Lexical sema	ntics	Scientifi
	C	0 000000000 000000		0000000 00000 000		00 00 0000

Natural and non-natural languages

Outline.

Language and language processing

Compositional semantics

Language as an interface to a microworld Broad coverage compositional semantics Question answering

Lexical semantics

Clustering Compound nouns Ontology extraction

Scientific text processing

Flyslip Hedge terms and citations Chemistry Information Extraction

Natural and non-natural languages

Introduction	Compositional semantics	Lexical semantic
	0000000	000

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○○

FlySlip: aiding manual curation

- FlyBase: database for Drosophila genetics, manually constructed from literature.
- FlySlip: using NLP to improve the process: NLIP group and Dept of Genetics (Karamanis, Seal, Lewin, McQuilton, Vlachos, Gasperin, Drysdale, Briscoe)

Introduction

Compositional ser

Lexical semantics

Scientific text processing

Natural and non-natural languages

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

FlySlip: PaperBrowser

00

	Manufiss offyalossa	
) () () () 🖄 🖄 fik///tep/f8r81192483.resuk.Bom/548248tm8451 🔹 📼	fite Edit Highlighting	
pp Represses auch and ind Expression in a Threshold-Dependent	Pagettines Criticity's	
All the second s	Compared Register (M. 4), 40, 40, 40, 40, 40, 40, 40, 40, 40, 40	

- Entity view: anaphorically-linked gene references highlighted (focus determined by curator).
- Base NPs identified: more useful than just gene names.

Compositional semant

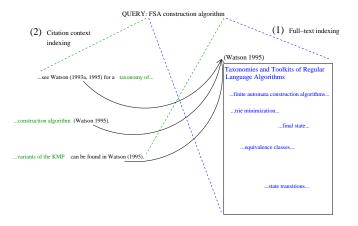
Hedge terms: Medlock and Briscoe (2007)

Hedge: a word or phrase used to allow for additional possibilities or to avoid over-precise commitment. (OED)

Hedge classification is the task of identifying and labeling the use of speculative language in written text.

Speculative: This unusual substrate specificity may explain why Dronc is resistant to inhibition by the pan-caspase inhibitor.

Non-speculative: These results demonstrate that ADGF-A overexpression can partially rescue the effects of constitutively active Toll signaling in larvae


Weakly-supervised machine learning technique.

Introduction	Compositional semantics	Lexical semantics	Scier
	00	0000000	00
	000000000	00000	00
	0000000	000	0000

Natural and non-natural languages

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Citations in IR: Ritchie (2008)

Compositional sema

Lexical semantics

Scientific text processing

SciBorg: extracting the science from scientific publications

ē000

- Use RMRS language as semantic annotation on chemistry papers (standoff annotation on SciXML).
- Support ontology extraction, discourse markup and information extraction.
- NLIP group, Chemistry dept, CeSC (Copestake, Teufel, Murray-Rust, Parker, Corbett, Rupp, Siddharthan, Waldron) with IUCr, Nature, Royal Society of Chemistry (Batchelor).

Introduction	Compositional semantics	Lexical semantics
	00 000000000 0000000	0000000 00000 000

Natural and non-natural languages

SciBorg: information extraction

Paper 1: The synthesis of 2,8-dimethyl-6H,12H-5,11 methanodibenzo[b,f][1,5]diazocine (Troger's base) from p-toluidine and of two Troger's base analogs from other anilines

Paper 2: ... Tröger's base (TB) ... The TBs are usually prepared from para-substituted anilines

Eventually, robust inference: e.g., search for papers describing Tröger's base syntheses which don't involve anilines?

Introduction	Compositional semantics	Lexical semanti
	00	0000000
	000000000	00000
	0000000	000

OSCAR: chemistry terms (Corbett, Murray-Rust)

	otal synthesis of (=)+histrionicotoxin, (+)-histrio 🚊 🍵
Ele Edit View Higtory Bookmarks Iools Help del,kio.us	
• 🔶 • 🥑 📀 🏠 🛃 嵗 🕒 http://localhost:8181/viewPaper/tmp/b200328g	
😑 del icio.us 🚖 Connotea 🚔 Bookmarklets 🚍 OSCAR3 🕒 up 📑 JS Shell 📄 partial source 🗦 Entrez PubMed 💭 The PubCherr	
😭 Google Rea 📄 BioNLP 200 🚯 Calendar 💊 Friends 🔤 🖓 Chemical E 🔤 Digital Arch 🔯 http:/ss=1	2 Ghept-S-ynyl 📄 Nitrone dip 📄 Nitrone 📓
Results and discussion	-
Nodel cyclisation studies	
We first examined the model cyclication of the non-terminal alkynes, hept-5-ynyllydroxylamite 7, prepared by oldum cynaborchydride reduction of the corresponding oxime 6. Formation of the nitrose 8 occurred in 49 varall yidu after the reaction mixture had been heated in refluxing toluene for 2 hours (<u>Scheme 2</u>). This is somistant with our general observation that hydroxylamina-alkyne cyclications on to terminal and alkyl-substituted acetylenes are much faster than cyclications on to ethic non-terminal alkynes; ^{19,22} This beervation is analogous to those of Ciganek ²] and Black ²² in the Cope-House cyclication ²³ of alkenyl ydroxylamines.	
An enanticelective synthesis of HTX 1 would require the (S)-hydroxylamino-alkyne derivative ($a, 4.01$ from which all other streeocentres could then be induced distereosalectively. Whils a number of methods for the manifosalective synthesis of hydroxylamines exist (e_g , oxidation of amines, $\frac{34}{2}$ nucleophilic displacement of riflates, $\frac{36}{2}$ addition of organometallics to nitrones $\frac{34}{2}$ and oximes $\frac{54}{2}$ it was decided to mimic the enolate vidoxylamination protocol of Opcoher. J but using an Evans oxazolidnone auxiliary, The terminally sighteen and was then coupled to the Evans benzyl oxazolidinone auxiliary. The terminality sighteen discorphilic hydroxylamination of the sodium enolate of the Aracyloxazolidinone 13 using -chloro-1-nitrosocylohexame followed by acid hydrolysis of the nitrone intermediate, base extraction (to elease the intermediate hydroxylamine 14) and stiming at 25 ° Co Ir hour to induce the Coge-House systillar to mastifisteory, giving the required nitrone 15 in poor yield, along with the by-product 16, excling the natice A mit the order of the more demanding cyclisation considering required or a nor-terminal singlytee would be incomediate with the more demanding cyclisation conditions required for a nor-terminal singlytee would be incomediate with regression.	a, • Reaction

😰 Find: cance

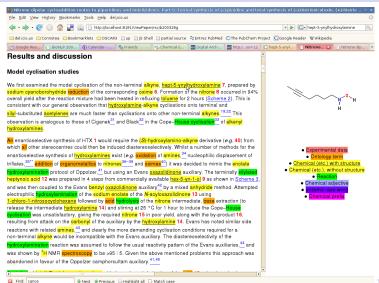
2

Introduction	Compositional semantics	Lexical semantics
	00	0000000
	000000000	00000
	0000000	000

OSCAR: chemistry terms (Corbett, Murray-Rust)

😺 Nitrone dipolar cycloaddition routes to piperidines and indolizidines. Part 9. Formal synthesis of (-)-pinidine and tota	l synthesis of (–)-histrionicotoxin,	(+)-histrio 💷 = 🗙
Ele Edit View Higtory Bookmarks Iools Help deljkio.us			0
💠 • 📚 🛞 🏠 🔚 🎆 🗋 http://localhost:8181/ViewPaper/rsc/b200328g		C • hept-5-ynylhydr	roxylamine 🔍
🗋 del icio.us 📄 Connotea 📄 Bookmarklets 📄 OSCAR3 📄 up 📄 JS Shell 🕒 partial source 🗧 Entrez PubMed 💭 The PubChern Pro			
😰 Google Rea 📄 BioNLP 200 🚯 Calendar 📎 Friends 🔤 🖓 Chemical E 🔤 Digital Arch 🔤 http:/ss=12	G hept-5-ynyl	📄 Nitrone 🖬	Nitrone dip
Results and discussion	•		
Model cyclisation studies			
We first examined the model cyclisation of the non-terminal alkyne, hept-5-ynylhydroxylamine 7, prepared by			
sodium cyanoborohydride reduction of the corresponding oxime 6. Formation of the nitrone 8 occurred in 94% overall yield after the reaction mixture had been heated in refluxing toluene for 2 hours (<u>Scheme 2</u>). This is			
consistent with our general observation that <u>hydroxylamine-alkyne</u> cyclisations onto terminal and silyl-substituted <u>acetylenes</u> are much faster than cyclisations onto other non-terminal <mark>alkynes</mark> . ^{19,22} This			
observation is analogous to those of Ciganek ³¹ and Black ³² in the Cope-House cyclisation ³³ of alkenvi			
hydroxylamines.			
An enantioselective synthesis of HTX 1 would require the (S)-hydroxylamino-alkyne derivative (e.g. 40) from which all other stereocentres could then be induced diastereoselectively. Whilst a number of methods for the		_	
enantioselective synthesis of hydroxylamines exist (e.g. oxidation of amines, 34 nucleophilic displacement of		 Experimental Ontology te 	
triflates, ^{35**} addition of organometallics to nitrones ³⁶⁻³⁹ and oximes ⁴⁰) it was decided to mimic the enolate		hemical (etc.) wit	th structure
nydroxylamination heptynoic acid 12 was prepared in 4 steps from commercially available <u>hex-5-yn-1-ol</u> 9 as shown in Scheme 3.	• Che	emical (etc.), with Reaction	
and was then coupled to the Evans benzyl oxazolidinone auxiliary42 by a mixed anhydride method. Attempted		 Chemical adj enzyme -ase 	
electrophilic hydroxylamination of the sodium enolate of the N-acyloxazolidinone 13 using		 Chemical pr 	
1-chloro-1-nitrosocyclohexane followed by acid hydrolysis of the nitrone intermediate, base extraction (to release the intermediate hydroxylamine 14) and stirring at 25 °C for 1 hour to induce the Cope-House			
cyclisation was unsatisfactory, giving the required nitrone 15 in poor yield, along with the by-product 16,			
resulting from attack on the carbonyl of the auxiliary by the hydroxylamine 14. Evans has noted similar side			
reactions with related amines, ⁴³ and clearly the more demanding cyclisation conditions required for a			
non-terminal alkyne would be incompatible with the Evans auxiliary. The diastereoselectivity of the			
hydroxylamination reaction was assumed to follow the usual reactivity pattern of the Evans auxiliaries, ⁴⁴ and			
was shown by ¹ H NMR spectroscopy to be >95 : 5. Given the above mentioned problems this approach was abandoned in favour of the Oppolzer camphorsultam auxiliary. ^{41,45}			
apandoned in lavour of the Oppoizer campnorsultam auxillary.			

😰 Find: cance 🛛 🖗 Next 伦 Previous 📄 Highlight all 🗆 Match case

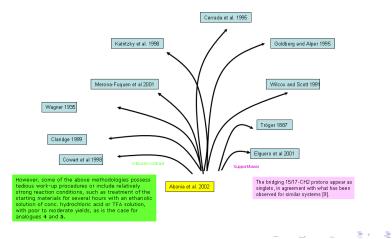

5 m

Introduction	Compositional semantics	Lexical semant
	00	0000000
	000000000	00000
	0000000	000

Natural and non-natural languages

OSCAR: chemistry terms (Corbett, Murray-Rust)

0000



Find: cance Vext @ Previo

Done

Introduction	Compositional semantics	Lexical semantics	Scientific text processing	Natural and non-natural languages
	00	000000	00	
	000000000	00000	00	

Citation classification (Teufel, Siddharthan, Batchelor)

Introduction	Compositional semantics	Lexical semantics	Scientific text processing	Natural and non-natural languages
	00 0000000000 0000000	0000000	00 00 0000	

Outline.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Language and language processing

Compositional semantics

Language as an interface to a microworld Broad coverage compositional semantics Question answering

Lexical semantics

- Clustering
- Compound nouns
- Ontology extraction

Scientific text processing

Flyslip Hedge terms and citations Chemistry Information Extraction

Natural and non-natural languages

Introduction	Compositional semantics	Lexical semantics	Scientific text processing	Natural and non-natural languages
	00 000000000 0000000	0000000 00000 000	00 00 0000	

Semantic web, scientific text and language processing

- Description logics, OWL etc.
- Ontologies/terminology resources.
- Chemistry Markup Language (CML: Murray-Rust).
- Availability of texts in XML for language processing.
- Publishing as mixture of texts and structured output (e.g., spectra).

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○○

Introduction	Compositional semantics	Lexical semantics	Scientific text processing	Natural and non-natural languages
	00	0000000	00	
	000000000	00000	00	
	0000000	000	0000	

- Claim: Language processing will soon just be needed for legacy texts. All new scientific publication will use semantic markup.
- Scientific publishing is not simply about facts slotting into an agreed framework.
- Counter-claim 1: where we understand what's going on in scientific text, we can learn to annotate it automatically. But most aspects cannot currently be formalised.
- Counter-claim 2: we need language processing experiments and methodology to work out how to do semantic markup.

Introduction	Compositional semantics	Lexical semantics	Scientific text processing	Natural and non-natural languages
	00	0000000	00	
	000000000	00000	00	
	0000000	000	0000	

- Claim: Language processing will soon just be needed for legacy texts. All new scientific publication will use semantic markup.
- Scientific publishing is not simply about facts slotting into an agreed framework.
- Counter-claim 1: where we understand what's going on in scientific text, we can learn to annotate it automatically. But most aspects cannot currently be formalised.
- Counter-claim 2: we need language processing experiments and methodology to work out how to do semantic markup.

Introduction	Compositional semantics	Lexical semantics	Scientific text processing	Natural and non-natural languages
	00	0000000	00	
	000000000	00000	00	
	0000000	000	0000	

- Claim: Language processing will soon just be needed for legacy texts. All new scientific publication will use semantic markup.
- Scientific publishing is not simply about facts slotting into an agreed framework.
- Counter-claim 1: where we understand what's going on in scientific text, we can learn to annotate it automatically. But most aspects cannot currently be formalised.
- Counter-claim 2: we need language processing experiments and methodology to work out how to do semantic markup.

Introduction	Compositional semantics	Lexical semantics	Scientific text processing	Natural and non-natural languages
	00	0000000	00	
	000000000	00000	00	
	0000000	000	0000	

- Claim: Language processing will soon just be needed for legacy texts. All new scientific publication will use semantic markup.
- Scientific publishing is not simply about facts slotting into an agreed framework.
- Counter-claim 1: where we understand what's going on in scientific text, we can learn to annotate it automatically. But most aspects cannot currently be formalised.
- Counter-claim 2: we need language processing experiments and methodology to work out how to do semantic markup.

Introduction C	Compositional semantics	Lexical semantics	Scientific text processing	Natural and non-natural languages
C	000000000	0000000 00000 000	00 00 00 00 00 00 00 00 00 00 00 00 00	

Information Layer and scientific publishing

- 'Information Layer' (Spärck Jones 2007): connection via words may be good enough for many computing system tasks.
- Semantic publishing best seen as an addition to natural language, not a replacement. One objective should be to make scientific publications more accessible to humans.
- Natural language is flexible and adaptable: can this be emulated in formal languages?

(日) (日) (日) (日) (日) (日) (日)

Introduction	Compositional semantics	Lexical semantics	Scientific text processing	Natural and non-natural languages
	00	0000000	00	
	000000000	00000	00	
	0000000	000	0000	

Maths texts and natural languages (Ganesalingam)

Then $\underline{V = U \cap H}$ for some U in \mathcal{T} , by definition of \mathcal{T}_H , and $U \cap H = i^{-1}(U)$, so $g^{-1}(V) = g^{-1}(i^{-1}(U)) = (i \circ g)^{-1}(U)$.

Sutherland, W. A., Introduction to Metric and Topological Spaces, OUP 1975, p. 52.

Analogous to 'donkey sentence' in linguistics.

Every farmer who owns a donkey beats it.

 $\forall x[farmer(x) \land \exists y[donkey(y) \land own(x, y)]] \implies beat(x, y)]$

(日) (日) (日) (日) (日) (日) (日)

Introduction	Compositional semantics	Lexical semantics	Scientific text processing	Natural and non-natural languages
	00	0000000	00	
	000000000	00000	00	
	0000000	000	0000	

Maths texts and natural languages (Ganesalingam)

Then $\underline{V = U \cap H}$ for some U in \mathcal{T} , by definition of \mathcal{T}_H , and $U \cap H = i^{-1}(U)$, so $g^{-1}(V) = g^{-1}(i^{-1}(U)) = (i \circ g)^{-1}(U)$.

Sutherland, W. A., Introduction to Metric and Topological Spaces, OUP 1975, p. 52.

Analogous to 'donkey sentence' in linguistics.

Every farmer who owns a donkey beats it.

 $\forall x[farmer(x) \land \exists y[donkey(y) \land own(x, y)]] \implies beat(x, y)]$

Introduction	Compositional semantics	Lexical semantics	Scientific text processing	Natural and non-natural languages
	00	0000000	00	
	000000000	00000	00	
	0000000	000	0000	

Concluding comments

- Computational semantics: enrich texts to make aspects of meaning more accessible to subsequent processing.
- Underspecifiable, 'surfacy' representations of compositional semantics: logically defined, but robustness, reasonable processing speed.
- Lexical semantics by distributional methods can (partially) model ambiguity/synonymy behaviour (though evaluation still a problem).
- Practical applications to scientific text processing.
- Karen's 'Information Layer' challenges us to take natural language's properties seriously.