
Semantics and generation

Ann Copestake

aac@cl.cam.ac.uk
Joint work with Stephan Oepen, Dan Flickinger, John Carroll

1

Generation from what?!

1. Meaning representation for generation

2. Chart generation and flat semantics

3. MRS and the LinGO generator

4. SEM-I

5. What next?

2

Some terminology

Content in knowledge base etc

?

STRATEGIC
GENERATION

Meaning Representation

?

TACTICAL
GENERATION (REALISATION)

string (plus markup)

STRATEGIC GENERATION Organizing knowledge to be conveyed
and constructing a meaning representation that corresponds to an
utterance. In principle, grammar independent.

TACTICAL GENERATION Meaning representation to string. In
principle, independent of domain knowledge.

Semantic transfer fills the same ‘box’ as strategic generation.

3

Tasks in generation

(adapted from Dale and Reiter)

Content determination deciding what information to convey.

Document structuring e.g., introduction, conclusion.

Aggregation deciding how information may be split into sentence-sized
chunks.

Referring expression generation deciding when to use pronouns, what
modifiers are needed, etc.

Lexical choice deciding which lexical items to use to convey a given
concept.

Surface realization mapping from a meaning representation for an
individual sentence to a string (or speech output).

4

Desiderata for a portable realization module

• Application independent

• Any well-formed input should be accepted

• No grammar-specific/conventional information should be essential
in the input

• Output should be idiomatic

5

Semantics or quasi-semantics?

• Meaning representation must discriminate sufficently between
realisations:

Kim likes Sandy
like(k, s)

t

Obviously not generating from truth values!

• Generation from models? Not for modular tactical generation.

• Generation from a logical form: directly or indirectly corresponding
to semantics in a grammar. Generate all and only the strings with
‘compatible’ semantics.

– bidirectionality

– information structure etc

6

Prime examples

A -> B x C
B -> prime-number
C -> prime-number

The intended semantics is that A corresponds to the product of B and C.
The semantics of B and C is stated to be the integers themselves.

Option 1: (B′.C ′) — e.g., (2.3)
Input of 2.3 results in the string ‘2 x 3’ but not ‘3 x 2’

Option 2: evaluation of B times C — e.g., 6
Input of 6 results in the string ‘2 x 3’ and ‘3 x 2’
Input of a 232 digit number results in a very long wait . . .
(around one year, assuming 215,000 500MHz Pentiums, each with 4Gb of RAM)

7

The representation quandary

• Representations must be expressive enough to correspond to
desirable strings only.

• Representation must be possible to construct by strategic generation,
so it shouldn’t implicitly encode grammar-specific/syntactic
information: 

pred and

arg1
[

pred warm
arg1 0

]

arg2


pred and

arg1
[

pred sunny
arg1 0

]
arg2

[
pred day
arg1 0

]



warm(x) ∧ (sunny(x) ∧ day(x))

Getting the conjunctions right would require syntax.

• BUT representation must allow efficient generation.

8

Logical form equivalence

Generate all and only the strings with ‘compatible’ semantics:

• If LF1 is generated by grammar G from string S, and LF2 is logically
equivalent to LF1, then a realiser working with grammar G should
accept LF2 and produce string S

• Unfortunately impossible for even first order predicate calculus
(pointed out by Shieber)

9

Canonical representation

• Involves modification of grammar

– prime example

A -> B x C

if B < C then (B′.C ′) else (C ′.B′)

Input must be 2.3, but will generate ‘2x3’ and ‘3x2’

– adjective example: alphabetical order, adjectives before nouns???

• No straightforward notion of canonical representation

• Requires complex composition rules in the grammar

10

Is full logical equivalence what we require for ‘compatibility’?

• Suppose input is:

not(every(x, black(x) ∧ dog(x), every(y, cat(y), likes(x, y))))

It is not the case that every black dog likes every cat.
There’s some black dog that does not like some cat.

• But classical quantifiers are very rare in applications:

this(x, path(x)∧ steep(x)∧ slippery(x), the(y, stream(y), follow(x, y))))

This steep slippery path follows the stream.
This slippery steep path follows the stream.
The stream is followed by this steep slippery path. . . .

• Intuition about the most strict notion of compatibility: same
predications, equivalence of ‘grammatical’ conjunction. Broaden this
by underspecification, not inference.

• Semantics or quasi-semantics?

11

What is required?

1. A realisation algorithm that is efficient with minimal guidance from
the logical form syntax.

2. A formalism that allows sufficient abstraction over syntax that
constructing the input to the realiser is doable.

3. An interface layer expressing those constraints imposed by the
grammar that have to be known to construct the input.

4. A fluency component that ranks realisations.

12

The LinGO approach

1. Realisation algorithm: chart generation.

2. Formalism: MRS (and RMRS)

• flatness

• algebra that guarantees composition properties

• underspecifiability

3. Interface layer: SEM-I (in progress).

4. Fluency: different statistical models.

13

Naive lexicalist generation

1. From the LF, construct a bag of instantiated lexical signs.

2. List the signs in all possible orders.

3. Parse each order.

• Highly independent of syntax

• Requires lexical entries to be efficiently recoverable directly from LF
(easiest with flat semantics)

• Not exactly efficient . . .

• Shake and Bake generation was part of an approach to MT in which
transfer operates across instantiated lexical signs (Whitelock et al)

• Shake and Bake isn’t as bad as the totally naive approach, but still
worst-case exponential

14

Lexical lookup for lexicalist generation

a′(y), consultant′(y), german′(y), every′(x), manager′(x), interview′(e, x, y)

(ignoring scope for the moment)

1. For each elementary predication, find the corresponding lexical sign
(i.e., TFS for HPSG)

2. Set the argument positions in the lexical sign to constant values - e.g.,
interview’(c2,c1,c3), manager’(c1), consultant’(c3), german’(c3),
a’(c3), every’(c1)
This means that unification ensures that the predicate-argument
structure is correct.

15

Chart generation (Kay, 1996 — and others)

Lexical signs are used to instantiate the chart.
Generation as chart parsing:

Lexical edges

index sem cat string
x manager(x) N manager
x the(x) Det the
e work(e,x) VP worked

Edges constructed

x manager(x), the(x) NP the manager
e work(e,x), the(x), manager(x) S the manager worked

16

Chart generation, continued

1. indexing of the chart can be done by semantic indices

2. no overlap: check as the edges are constructed that semantics is only
used once

3. completeness check at the end

4. some restrictions on the grammar:

• daughters may not overlap — e.g., cannot have semantics
constructed by means of multiple inheritance between types
contributed from two sources

• monotonicity: none of the components may be removed when
constructing a phrase

5. still worst case exponential (because of adjectives etc)

17

MRS and chart generation

• MRS involves lists of elementary predications (EPs).

• Mostly, one EP corresponds to one lexical sign — ‘surfacy’
representation (attempt to capture syntax and productive
morphology, but not lexical semantics).

• Every EP has a label. Scope is represented by relationship between
‘hole’ and label: qeq (equality modulo quantifiers).

l1 : a(y, h2, h3), l4 : consultant(y), l4 : german(y),

l6 : every(x, h7, h8), l9 : manager(x), l10 : interview(e, x, y)

h2 =q l4, h7 =q l9

• Lexical lookup corresponds to finding lexical entries that correspond
to EP (indexed by predicate).

• Algebra which guarantees non-overlap and monotonicity: EPs are
accumulated by append.

18

Complications for the lookup phase

• Hierarchy of relations: e.g., open v subsumes open v 1, open v 2,
etc

• Multiple lexical entries (cf lexical ambiguity).

• Multiple EPs in a lexical entry: e.g., who — which q rel, person rel
Note possible overlaps: where — which q rel, place rel

• Lexical entries without relations (null semantics): e.g., infinitival to.
Currently, hand-written rules triggered by MRS are required to
license introduction.

• EPs contributed by constructions: e.g., prpstn m rel

• EPs contributed by lexical rules.

19

Null semantics introduction rule

there_expl_rule := generator_rule &
[CONTEXT [RELS <! [LBL handle,

PRED _be_v_there_rel] !>],
OUTPUT "there_expl"].

which_rel_rule := generator_rule &
[CONTEXT [RELS <! [LBL #hand,

ARG0 ref-ind],
[LBL #hand,

PRED prpstn_m_rel] !>],
OUTPUT "which_r"].

20

Chart generation in the LKB (July 2004 version!)

1. constant values contained in the INSTLOC feature

2. quick check vector (this makes indexing chart by semantic indices
redundant)

3. packing

4. accessibility conditions

5. matching qeqs option

6. stochastic ordering constraints

21

Packing in generation (Oepen and Carroll)

• Packing in parsing: combining edges which are compatible. In
constraint-based grammar: exclude parts of semantics that don’t
restrict (list of EPs, qeqs), combine edges when there’s subsumption.
e.g., PPs.

• Packing in generation: same thing! Works because:

– indices are in valence features etc, so they still constrain
unification

– overlap conditions can be checked without looking at the feature
structure, because strict accumulation of EPs

22

Accessibility conditions

• Generating with intersective modifiers:

l1 : a(y, h2, h3), l4 : consultant′(y), l4 : german′(y),

l6 : every′(x, h7, h8), l9 : manager′(x), l10 : interview′(e, x, y)

Want to avoid partial structure:

every manager interviewed a consultant

• Two phase generation (Carroll et al, 1999). Intersective modifiers
added by adjunction — but this requires conditions on the
intersective modifier rules.

• Accessibility: check in non-semantic part of the feature structure to
make sure indices still needed are available.

23

qeqs

• ordinary index equality is guaranteed by INSTLOC constants

• qeqs look as though they need a separate check

• BUT, pretend that qeqs are equalities and equate INSTLOCs between
qeq HARG and LARG in grammar and in input to generator

• if indices were actually equated, these structures wouldn’t scope, but
this doesn’t matter if it’s only INSTLOCs

24

Constructing the input MRS

• In effect, assumes that lexical choice for open class words and most
closed class words has been done.

• Underspecification possible (but reduces efficiency, although
packing helps).

• Also requires knowledge of ‘grammar predicates’: i.e., predicates
that don’t correspond to lexical items but are introduced by
morphology, constructions and some closed class words (where
there’s decomposition).

• SEM-I (semantic interface) is intended as the interface definition
(API in programming terms).

25

SEM-I

• Object-level SEM-I. Contains information for the EPs corresponding
to words in the language (especially open-class). Automatically
constructed from the lexicon. For example:
lexeme string relation ARG0 ARG1 ARG2 eg doc
act v1 act act v rel event oblig index oblig

• Meta-level SEM-I. A semi-manually-constructed fully-documented
database of all the relations introduced via constructions and via
lexical types, and of all the values which may appear on semantic
features that occur in the (R)MRSs. For example:
relation ARG0 ARG1 ARG2 doc eg
appos rel event oblig index oblig index oblig < link > < eg num >

26

Guaranteed generation?

Given well-formed input, with all elementary predications found in
SEM-I, can we generate a string?

• Semantically bleached lexical items: some uses of which, one, piece,
make etc are just about making the syntax ‘work’. For instance:

every(x, dog(x) ∧ sleep(epast, x), bark(e′pres, x))

every dog which slept is barking
every dog which was asleep is barking

• Defective paradigms, negative polarity, anti-collocations etc?

• with input fix up?

• negotiation?

27

Conclusions

• Semantics for generation is about form as much as content.

• Meaning representation is an interface layer, hence need to consider
the issues in constructing it as well as using it.

• Goal of realisation cannot be stated in terms of logical equivalence.

• MRS is an attempt to find a good balance between expressivity and
efficiency.

• In general, we make use of general MRS algebra properties for
efficiency.

• Efficiency is now reasonable, but we need to make the input MRS
easier to construct.

• SEM-I should provide stability/documentation.

28

Next steps for semantics and generation in the LKB

• Further work on the SEM-I

• Generation from RMRS

• Hierarchies outside the grammar

• Lexical semantic classes

• Semi-automatic techniques for creating ‘null semantic’ rules

• Relax requirements for input MRS:

– allow MRSs with more underspecification

– underspecified quantifiers, integrating determiner prediction
component

– ‘fix up’ of MRSs that won’t generate because of missing
grammatical predicates

29

