
Interfacing morphophonology and morphosyntax in
constraint-based processing

Ann Copestake
University of Cambridge

Thanks to Emily Bender and other colleagues on DELPH-IN for
many useful discussions and Ben Waldron for integration efforts.

1

Introduction

Morphology in constraint-based grammar-engineering systems

• Efficiency of processing and grammar development

• Range of languages

• Built-in morphology and external components

Overview:

1. Morphophonology, morphosyntax and syntax

2. Linguistic adequacy, efficiency and modularity

3. Three (or four) approaches to morphology

4. Morphology in the DELPH-IN LKB system

2

Components

• Morphophonology: what morphemes correspond to the input
token?

• Morphosyntax: what is the syntactic (and semantic) structure
corresponding to the morphemes?

Interface between morphophonology and morphosyntax:

• Nature of morpheme (e.g., +ed vs PAST)

• Nature of interaction between morphophonology and
morphosyntax: morphotactics (constraints on morpheme
sequences) etc

• Morphophonology and the lexicon

3

Morphology and syntax

Traditional discussions ignore tokenisation and morphology:

S -> NP VP
VP -> V
V -> sleep, sleeps, dream, dreams ...
NP -> Kim

1. Implicit assumption of separator (space) between daughters.

2. Morphology ignored or ‘simply’ to build full-form lexicon.

• Processing complexity but not complexity of learning.
• Identifying codes and abbreviations require analysis: DTDs,

401ks, N-ethoxycarbonylmethylation
• Indefinite application of affixation:

antidisestablishmentarianism,
antiantidisestablishmentarianism

4

Morphology and tokenisation in a CFG?

S -> NP sep VP
VP -> V
V -> Vstem
V -> Vstem 3PSG
Vstem -> "sleep", "dream", ...
3PSG -> "s"
sep -> " "

But not concatenative, even for English:

V -> Vstem-y 3PSG-y
Vstem-y -> "carr"
3PSG-y -> "ies"
V -> Vstem-y non3PSG-y
non3PSG-y -> "y"

5

Standard NLP parsing and morphology

1. Simple tokeniser splits input into tokens (t1 . . . tn).

2. Morphology module (e.g., finite state transducer, string
unification) produces morphemes from tokens
(morphophonology) and produces some representation(s) of the
whole token based on morphemes (morphosyntax).

3. Syntax operates on morphology output using a different
formalism (concatenative).

Morphotactics: in morphophonology or morphosyntax?
Two-level morphology: continuation lexicon.
FSA for affix sequences, but the (((en)joy)able) problem.

6

Considerations for NLP morphology

• Bidirectional

• Tokenisation must allow for ambiguity.

• Splitting the tokens into morphemes has to be done without
knowledge of the stem.

• Lexical rules with no morphological effect have to be allowed,
potentially in between affixation operations for derivational
effects.

• Multiword entries of various types have to be allowed for.

• Compounds without spaces (multi-stem tokens).

7

Assumptions for this talk

1. Constraint-based (feature structure) formalism for syntax (and
semantics).

2. Tokenisation is a preliminary step involving no lexical resources
(for written text in languages with appropriate conventions) or by
an external module (e.g., Chasen). Tokenisation may return a
lattice.

3. Morphophonology requires different formalisation from
morphosyntax.

4. Stems can (generally) be looked up in a lexicon.

5. Derivational morphology must be handled as well as inflectional.

6. Morphosyntax is more than specialisation.

7. Derivational and inflectional morphology use same formalism.

8

Options for morphology for a constraint-based approach

1. Standalone morphology: set of signs for each original token
(processor handles morphophonology and morphosyntax).

2. Word syntax: retokenisation, with one token/sign per morpheme
(possibly with some bracketing).

3. Rule-based: affixes correspond to rules. Morphophonology
specifies rule applications.

9

Standalone morphology

• Traditional NLP assumption.

• Highly modular solution from a processing perspective:
t1, t2 . . . tn to {FS1i . . . FS1m}, {FS2i . . . FS2m}
. . .{FSni . . . FSnm}

• Bad for grammar development in a constraint-based framework
because:

– complexity of signs makes interface difficult
– constraint-based approach desirable for morphosyntax
– similarity between morphologically marked operations and

unmarked ones (e.g. noun-verb conversion)

• Formally this can be treated as the full-form lexicon solution

10

Word syntax

• Tokenisation t1, t2 . . . tn is converted to t′1, t
′
2 . . . t′m where t′

tokens could be strings (to be looked up in a lexicon) or feature
structures.
‘I walk’ → ‘I’ ‘walk’ ‘+ed’

• Affixes are lexical items, morphosyntax like normal syntax.

• No inherent linkage between the original tokenisation and the
(re)construction of the structure.
‘transformational’ ‘grammar’ ‘+ian’ could be bracketed
(‘transformational’ ‘grammar’) ‘+ian’.

• No constraints on splitting possibilities (morphotactics) from
morphosyntax.

• Formally: tokenisation T ′ corresponds to input T iff there is some
valid transduction from T to T ′ etc. Syntax defined in terms of T ′

11

Affixes as constraints on rule application

• Range of possible approaches including the Pollard and Sag
sketch and all variants of the LKB built-in morphology.

• Formally, morphophonology constrains application of
rules/constraints.

• Morphotactics mostly arises from morphosyntax rules.

base
PHON 1
3RDSNG 2

SYN
[

LOC
[

SUBCAT 3

]]
SEM

[
CONT 4

]

7→

3rdsng
PHON f3rdsng(1 , 2)

SYN
[

LOC
[

SUBCAT 3

]]
SEM

[
CONT 4

]

Third Singular Verb Formation, from Pollard & Sag, 1987:210-213

• output PHON/ORTH cannot always be determined from
PHON/ORTH of stem: lie/lay/lied

12

• not a function (at least in practical parsing systems):
dreamed/dreamt

13

Affixes as constraints in the LKB

• Morphophonology associated with morphosyntax rules.

• Implementation of interaction: morphophonology specifying
partial derivation trees. Schematically: (past-rule ... ‘tango’)
Morphosyntax rules (i.e., rules with morphophonological effects)
only applied as licenced by a partial tree.

• Partial tree to allow for zero-morph rules: (past-rule
(noun-to-verb-rule ‘tango’))

• Tree representation allows for compounding.

14

Current LKB morphophonology

Built-in LKB morphophonology is a simple variant of string
unification (e.g., Calder, 1987), originally developed and
implemented by Bernie Jones (1991), reimplemented by AAC 2005.

%(letter-set (!t bcdfghjklmnpqrstvwxz))

past-v_irule :=
%suffix (* ed) (!ty !tied) (e ed)
past-verb.

Patterns specified as affix type, followed by series of subpatterns
(underlying surface).

* matches anything

!char is a letter set / bound value

15

Alternative: various forms of external morphophonology are
supported, including standalone and word syntax approaches. Emily
Bender and students have experimented with interface to XFST.

16

LKB approach: Implementation details

Pre-2005: morphophonology produces whole partial tree in one go.
But then morphosyntax doesn’t constrain morphophonology
possibilities.

Current: morphophonology interleaved with morphosyntax rule
filter. e.g., exclude (3sg ... (-er ... if there is no
noun-to-verb rule applying to output of -er rule.

• Many times faster than old approach for Norwegian and similar
languages, since constraints in morphosyntax rules immediately
constrain morphophonology.

• Pre-computed rule filter table: can morphosyntax rule A feed rule
B via 0 or more zero-morph rules?

• Extension of the syntax rule filter originally in PAGE.

17

• Possible extension: allow lexical types to be plugged in, to filter
partial trees immediately a stem is discovered.

18

Interaction of morphophonology and the lexicon/orthography

Option 1: Morphophonology depends on the rule and the spelling of
input entirely.

Option 1A: Morphophonology directly specified by rules, e.g. LKB
% mechanism.

past-v_irule :=
%suffix (* ed) (!ty !tied) (e ed)
past-verb.

% specification

But this leads to redundancy: e.g., same pattern for 3sg and plural.

19

Interaction of morphophonology and the lexicon/orthography: 2

Option 1B: Morphophonology patterns reified as types which are
specified in rules (see morph-example grammar)

+ed := suffix &
[PATTERN "(* ed) (!ty !tied) (e ed)"].
past-v_irule := past-verb &
[AFFIXATION +ed].

Allows rules to share patterns, avoiding redundancy.

Gives a level of indirection for multiple affixation possibilities.

Just implemented in LKB.

20

Interaction of morphophonology and the lexicon/orthography: 3

Morphophonology depends on rule, spelling and the sign
(lie/lay/lied)
Allows for lexically-specified paradigms directly (rather than via
subcases of rules).

past-v_irule := past-verb &
[AFFIXATION #1,
ARGS < [PARADIGMS.PAST #1] >].

verb-paradigms := *top* &
[PAST /l +ed,
PSP /l +ed,
3PSG /l +s,
PRES-PART /l +ing].

21

lie_1 := trans-verb &
[ORTH.LIST.FIRST "lie",
KEY.PRED "lie_1_rel",
PARADIGMS.PAST "lay"].

lie_2 := trans-verb &
[ORTH.LIST.FIRST "lie",
KEY.PRED "lie_2_rel"].

Not yet implemented in LKB (requires precompilation step to
associate rules with possible affixation patterns).

22

Irregular spellings

• In current LKB, formally (almost) equivalent to additional
subpatterns, but specified in a separate file.

• Paradigm approach: lexically specified morphophonology
overriding inherited morphophonology.
Everything is in TDL, with special interpretation for patterns etc.

23

Alternatives

Bender and Good (2005):

• Morphophonology component maps token into new token with
regular morphemes (e.g., ‘carries’ to ‘carry+s’)

• Then trivial morphophonology plus morphosyntax as LKB

• Might be implemented by XFST

• Doesn’t allow morphosyntax to constrain morphophonology, so
(presumably) separate morphotactics

24

