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Outline of today’s lecture

Lecture 1: Introduction
Overview of the course
Notes on lectures and lecture notes
What is compositional semantics?
Model-theoretic semantics and denotation
Natural language vs logical connectives
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Syllabus

1. Introduction

2. Introduction to compositional semantics

3. Typed lambda calculus

4. Constraint-based semantics

5. More on scope and quantifiers

6. Building underspecified semantics

7. Extreme underspecification
(Notes will be provided later)



Module 1B: Semantics

Lecture 1: Introduction

Overview of the course

Syllabus

1. Introduction

2. Introduction to compositional semantics

3. Typed lambda calculus

4. Constraint-based semantics

5. More on scope and quantifiers

6. Building underspecified semantics

7. Extreme underspecification
(Notes will be provided later)



Module 1B: Semantics

Lecture 1: Introduction

Notes on lectures and lecture notes

Notes and intro exercises

◮ optional sections
◮ revision sections
◮ introductory exercises
◮ exercises in notes
◮ past papers
◮ reading
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Lecture 1: Introduction

Notes on lectures and lecture notes

Natural language interfaces and limited domains

◮ Natural language interfaces: interpret a query with respect
to a very limited domain (microworld).

◮ CHAT-80 (http://www.lpa.co.uk/pws_dem5.htm)

What is the population of India?

Domain-dependent grammar gives meaning
representation:

which(X:exists(X:(isa(X,population)
and of(X,india))))

Inference and match on Prolog database:

have(india,(population=900)).

◮ But such techniques do not scale up to larger domains.

http://www.lpa.co.uk/pws_dem5.htm
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Lecture 1: Introduction

Notes on lectures and lecture notes

Semantics in information management?

◮ Enables abstraction:
◮ Paper 1: The synthesis of 2,8-dimethyl-6H,12H-5,11

methanodibenzo[b,f][1,5]diazocine (Troger’s base) from
p-toluidine and of two Troger’s base analogs from other
anilines

◮ Paper 2: . . . Tröger’s base (TB) . . . The TBs are usually
prepared from para-substituted anilines

◮ Robust inference: e.g., search for papers describing
Tröger’s base syntheses which don’t involve anilines?

◮ Aiming for domain and application independence.
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Lecture 1: Introduction

Notes on lectures and lecture notes

Syntactic variability.

◮ Hoffman synthesized/synthesised aspirin (verb+ed NP)
◮ aspirin was synthesised by Hoffman (NP be verb+ed)
◮ synthesising aspirin is easy (verb+ing NP) (vs ‘attacking

Vogons are annoying’ and ‘spelling contests are boring’)
◮ the synthesised aspirin (verb+ed/adj noun)
◮ the synthesis of aspirin (noun of noun)

(vs ‘the attack of the Vogons’)
◮ aspirin’s synthesis (noun+pos noun)

(vs ‘the Vogons’ attack’)
◮ aspirin synthesis (noun noun)

Common semantics (ideally) or appropriate entailment patterns.
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Lecture 1: Introduction

Notes on lectures and lecture notes

Semantics in NLP applications

1. Various applications need meaning representations: if
possible, we want to use the same sort of meaning
representation in as many applications as possible, so we
can build modular parsers and generators.

2. Inference, of different sorts, is important in many
applications.

3. Formal specification, so meaning representations can be
understood and reused.

4. All this argues for some form of logic as a meaning
representation.
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Lecture 1: Introduction

What is compositional semantics?

Compositional semantics

◮ Compositional semantics: building up the meaning of an
utterance in a predicatable way from the meaning of the
parts.
Roughly: semantics from syntax, closed class words and
inflectional morphology.

◮ Lexical semantics.
◮ Real world knowledge (or micro-world knowledge).
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Lecture 1: Introduction

What is compositional semantics?

Contradictions

Compositional semantics should account for logical
contradiction:

(1) Kim is an aardvark.
Kim is not an aardvark.

(2) If Kim can play chess then Kim can ride a motorbike.
Kim can play chess but Kim cannot ride a motorbike.

(3) Every dog has a tail.
Some dogs do not have tails.
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Lecture 1: Introduction

What is compositional semantics?

An aardvark
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Lecture 1: Introduction

What is compositional semantics?

Entailment

Also account for entailment:

(4) Every dog has a tail. Kim is a dog. =⇒ Kim has a tail.

But not:

(5) Kim is a bachelor. =⇒ Kim is not married.

(6) Sandy is a tiger. =⇒ Sandy is an animal.
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Lecture 1: Introduction

Model-theoretic semantics and denotation

Model-theoretic semantics

Kitty sleeps is true in a particular model if the individual
denoted by Kitty (say k ) in that model is a member of the set
denoted by sleep (S):

k ∈ S

Two models where Kitty sleeps is true:
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Lecture 1: Introduction

Model-theoretic semantics and denotation

Model-theoretic semantics
A model where Kitty sleeps is false:
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Only showing relevant entities:
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Lecture 1: Introduction

Model-theoretic semantics and denotation

Ordered pairs

◮ The denotation of chase is a set of ordered pairs.
◮ For instance, if Kitty chases Rover and Lynx chases Rover

and no other chasing occurs then chase denotes
{〈k , r〉, 〈l , r〉}.

◮ Ordered pairs are not the same as sets.
◮ Repeated elements: if chase denotes {〈r , r〉} then Rover

chased himself.
◮ Order is significant, 〈k , r〉 is not the same as 〈r , k〉 ‘Kitty

chased Rover’ vs ‘Rover chased Kitty’
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Lecture 1: Introduction

Model-theoretic semantics and denotation

every, some and no
The sentence every cat sleeps is true just in case the set of all
cats is a subset of the set of all things that sleep.
If the set of cats is {k , l} then every cat sleeps is equivalent to:

{k , l} ⊆ S

Or, if we name the set of cats C:

C ⊆ S

'
&
$
%

S����C
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Lecture 1: Introduction

Model-theoretic semantics and denotation

every, some and no

The following sentence has two possible interpretations:

(7) every cat does not sleep

It can be interpreted in the same way as either of:

(8) No cat sleeps

(9) It is not the case that every cat sleeps
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Lecture 1: Introduction

Model-theoretic semantics and denotation

Logic and model theory

◮ Model theory: meaning can be expressed set theoretically
with respect to a model.

◮ But set theoretic representation is messy: we want to
abstract away from individual models.

◮ Instead, think in terms of logic: truth-conditions for and, or
etc. e.g., if Kitty sleeps is true, then Kitty sleeps or Rover
barks will necessarily also be true.
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Lecture 1: Introduction

Natural language vs logical connectives

Natural language vs logical connectives

The correspondence between English and, or, if . . . then and
not and the logical ∧, ∨, =⇒ and ¬ is not straightforward.

(10) a. The Lone Ranger jumped on his horse and rode
away.

b. ? The Lone Ranger rode away and jumped on his
horse.

(11) The price of the meal includes a glass of wine or a glass
of beer.

(12) If Kitty is invisible then everyone will see Kitty.
(If we assume that Kitty is not invisible, then this
sentence would be true if we used =⇒ to translate it.)
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Lecture 1: Introduction

Natural language vs logical connectives

Other connectives

English has other connectives whose meaning partially
corresponds to the logical connectives, such as but:

(14) Lynx growled but Kitty purred.

This is true in the same models as:

(15) Lynx growled and Kitty purred.

However, but indicates a contrast, as we can see if we try and
use it to conjoin two sentences which intuitively don’t contrast:

(16) a. ? Lynx growled but Kitty growled.
b. Lynx growled and Kitty growled.
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Lecture 1: Introduction

Natural language vs logical connectives

Next lecture

Building up logical representations (logical forms)
compositionally from syntax.

Lecture 2: Introduction to semantic composition
Semantic composition with propositional logic
General principles of semantic composition
Semantic composition with quantifier-free predicate logic
Quantifiers
The semantics of some nominal modifiers
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Outline of Lecture 2

Lecture 2: Introduction to semantic composition
Semantic composition with propositional logic
General principles of semantic composition
Semantic composition with quantifier-free predicate logic
Quantifiers
The semantics of some nominal modifiers
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Lecture 2: Introduction to semantic composition

Semantic composition with propositional logic

Semantic composition with propositional logic

◮ Propositional logic: ignore the internal structure of
sentences entirely.
Kitty sleeps and Rover barks
P ∧ Q
Interpretation depends on truth values of P and of Q in the
model.



Module 1B: Semantics

Lecture 2: Introduction to semantic composition

Semantic composition with propositional logic

Logic and grammar: Grammar Fragment 1

S -> S1 and S2
(S1′ ∧ S2′)

S -> S1 or S2
(S1′ ∨ S2′)

S -> if S1 then S2
(S1′ =⇒ S2′)

S -> it-is-not-the-case-that S1
(¬S1′)

Base sentences:
S -> ‘Kitty sleeps’ (true)

S -> ‘Lynx sleeps’ (false)

S -> ‘Lynx chases Rover’ (false)
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Lecture 2: Introduction to semantic composition

Semantic composition with propositional logic

Grammar Fragment 1: Interpretation

Interpretation of English sentences with this grammar and
model:

(18) ‘Lynx sleeps’ or ‘Lynx chases Rover’
([Lynx sleeps]′ ∨ [Lynx chases Rover]′)
(false ∨ false)
false

(19) it-is-not-the-case-that ‘Lynx sleeps’
(¬ [Lynx sleeps]′)
¬ false
true
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Lecture 2: Introduction to semantic composition

Semantic composition with propositional logic

Grammar Fragment 1: Ambiguous examples

(20) ‘Kitty sleeps’ or ‘Lynx chases Rover’ and ‘Lynx sleeps’
(‘Kitty sleeps’ or ‘Lynx chases Rover’) and ‘Lynx sleeps’
(( [Kitty sleeps]′ ∨ [Lynx chases Rover]′) ∧ [Lynx
sleeps]′)
((true ∨ false) ∧ false)
false

(21) Kitty sleeps or Lynx chases Rover and Lynx sleeps
(other bracketing)
Kitty sleeps or (Lynx chases Rover and Lynx sleeps)
( [Kitty sleeps]′ ∨ ([Lynx chases Rover]′ ∧ [Lynx
sleeps]′))
(true ∨ (false ∧ false))
true
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Lecture 2: Introduction to semantic composition

General principles of semantic composition

Semantic composition

◮ Semantic rules parallel syntax rules.
◮ Semantics is build up compositionally: meaning of the

whole is determined from the meaning of the parts.
◮ Semantic derivation: constructing the semantics for a

sentence.
◮ Interpretation with respect to a model (true or false).
◮ The logical expressions constructed (logical form) could (in

principle) be dispensed with.
Maybe . . .



Module 1B: Semantics

Lecture 2: Introduction to semantic composition

General principles of semantic composition

Semantic composition

◮ Semantic rules parallel syntax rules.
◮ Semantics is build up compositionally: meaning of the

whole is determined from the meaning of the parts.
◮ Semantic derivation: constructing the semantics for a

sentence.
◮ Interpretation with respect to a model (true or false).
◮ The logical expressions constructed (logical form) could (in

principle) be dispensed with.
Maybe . . .



Module 1B: Semantics

Lecture 2: Introduction to semantic composition

Semantic composition with quantifier-free predicate logic

Predicates in grammar

S -> NP Vintrans
V ′(NP ′)

Vintrans -> barks
bark′

Vintrans -> sleeps
sleep′

NP -> Kitty
k

NP -> Lynx
l

NP -> Rover
r

Conventions: term in italics refers to the word itself (e.g., sleep)
apostrophe symbol indicates the denotation (e.g., sleep′)
k , r and l are constants here.
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Lecture 2: Introduction to semantic composition

Semantic composition with quantifier-free predicate logic

A first account of transitive verbs

For instance: chase′(k , r) — Kitty chases Rover

S -> NP1 Vtrans NP2
V ′(NP1′, NP2′)

Vtrans -> chases
chase′

But the syntax is wrong. We want:

S -> NP VP
VP -> Vtrans NP
Vtrans -> chases

Solution later . . .
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Lecture 2: Introduction to semantic composition

Semantic composition with quantifier-free predicate logic

Grammar Fragment 2

S -> it-is-not-the-case-that S1
(¬S1′)

S -> S1 and S2
(S1′ ∧ S2′)

S -> S1 or S2
(S1′ ∨ S2′)

S -> if S1 then S2
(S1′ =⇒ S2′)

S -> NP Vintrans
V ′(NP ′)

S -> NP1 Vtrans NP2
V ′(NP1′, NP2′)

Vintrans -> barks
bark′

Vintrans -> sleeps
sleep′

Vtrans -> chases
chase′

NP -> Kitty
k

NP -> Lynx
l

NP -> Rover
r



Module 1B: Semantics

Lecture 2: Introduction to semantic composition

Semantic composition with quantifier-free predicate logic

Example with Grammar Fragment 2

Kitty chases Rover and Rover barks
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Lecture 2: Introduction to semantic composition

Quantifiers

Quantifiers

(22) ∃x [sleep′(x)]
Something sleeps

(23) ∀x [sleep′(x)]
Everything sleeps

(24) ∃x [cat′(x) ∧ sleep′(x)]
Some cat sleeps

(25) ∀x [cat′(x) =⇒ sleep′(x)]
Every cat sleeps

(26) ∀x [cat′(x) =⇒ ∃y [chase′(x , y)]]
Every cat chases something

(27) ∀x [cat′(x) =⇒ ∃y [dog′(y) ∧ chase′(x , y)]]
Every cat chases some dog



Module 1B: Semantics

Lecture 2: Introduction to semantic composition

Quantifiers

Variables

◮ x , y , z pick out entities in model according to variable
assignment function: e.g., sleeps′(x) may be true or false
in a particular model, depending on the function.

◮ Constants and variables:
(29) ∀x [cat′(x) =⇒ chase′(x , r)]

Every cat chases Rover.
◮ No explicit representation of variable assignment function:

we just care about bound variables for now (i.e., variables
in the scope of a quantifier).
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Lecture 2: Introduction to semantic composition

Quantifiers

Quantifier scope ambiguity

◮ The truth conditions of formulae with quantifiers depend on
the relative scope of the quantifiers

◮ Natural languages sentences can be ambiguous wrt FOPC
without being syntactically ambiguous

◮ Everybody in the room speaks two languages
same two languages or not?
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Lecture 2: Introduction to semantic composition

The semantics of some nominal modifiers

The semantics of some nominal modifiers
(33) every big cat sleeps

∀x [(cat′(x) ∧ big′(x)) =⇒ sleep′(x)]

(34) every cat on some mat sleeps
wide scope every:

∀x [(cat′(x) ∧ ∃y [mat′(y) ∧ on′(x , y)]) =⇒ sleep′(x)]

wide scope some (i.e., single mat):

∃y [mat′(y) ∧ ∀x [(cat′(x) ∧ on′(x , y)) =⇒ sleep′(x)]]

on′(x , y) must be in the scope of both quantifiers.

Adjectives and prepositional phrases (in this use) are
syntactically modifiers.
Semantically: intersective modifiers: combine using ∧, modified
phrase denotes a subset of what’s denoted by the noun.
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Lecture 2: Introduction to semantic composition

The semantics of some nominal modifiers

Going from FOPC to natural language

Well-formed FOPC expressions, don’t always correspond to
natural NL utterances. For instance:

(35) ∀x [cat′(x) ∧ ∃y [bark′(y)]]

This best paraphrase of this I can come up with is:

(36) Everything is a cat and there is something which barks.
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Lecture 2: Introduction to semantic composition

The semantics of some nominal modifiers

Next lecture

Typed lambda calculus and composition.

Lecture 3: Composition with typed lambda calculus
Typing in compositional semantics
Lambda expressions
Example grammar with lambda calculus
Quantifiers again
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Lecture 3: Composition with typed lambda calculus

Outline of Lecture 3

Composition using typed lambda calculus (in a nutshell . . . )

Lecture 3: Composition with typed lambda calculus
Typing in compositional semantics
Lambda expressions
Example grammar with lambda calculus
Quantifiers again
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Lecture 3: Composition with typed lambda calculus

Overview

◮ We have developed grammar fragments for quantifier-free
predicate calculus but transitive verbs were given a
syntactically weird analysis. The rule-to-rule hypothesis is
that one semantic rule can be given per syntactic rule —
but we must assume plausible syntax.

◮ We have seen that FOPC can be used to represent
sentences, but we have not seen how to compose
sentences with quantifiers

In this lecture, we’ll introduce:
◮ typing, which enforces well-formedness (i.e., specifies

what expressions can go together)
◮ lambda calculus is a more powerful notation for semantic

composition
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Lecture 3: Composition with typed lambda calculus

Typing in compositional semantics

Typing

◮ Semantic typing ensures that semantic expressions are
consistent.
e.g., chase′(dog′(k)) is ill-formed.

◮ Two basic types:
◮ e is the type for entities in the model (such as k)
◮ t is the type for truth values (i.e., either ‘true’ or ‘false’)

All other types are composites of the basic types.
◮ Complex types are written 〈type1, type2〉, where type1 is

the argument type and type2 is the result type and either
type1 or type2 can be basic or complex.
〈e, 〈e, t〉〉, 〈t , 〈t , t〉〉
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Lecture 3: Composition with typed lambda calculus

Typing in compositional semantics

Types of lexical entities

First approximation: predicates corresponding to:
◮ intransitive verbs (e.g. bark′) — 〈e, t〉

take an entity and return a truth value
◮ (simple) nouns (e.g., dog′, cat′) — 〈e, t〉
◮ transitive verbs (e.g., chase′) — 〈e, 〈e, t〉〉

take an entity and return something of the same type as an
intransitive verb
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Lecture 3: Composition with typed lambda calculus

Lambda expressions

Lambda expressions

Lambda calculus is a logical notation to express the way that
predicates ‘look’ for arguments. e.g.,

λx [bark′(x)]

◮ Syntactically, λ is like a quantifier in FOPC:
the lambda variable (x above) is said to be within the
scope of the lambda operator

◮ lambda expressions correspond to functions: they denote
sets (e.g., {x : x barks})

◮ the lambda variable indicates a variable that will be bound
by function application.
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Lambda expressions

Lambda conversion

Applying a lambda expression to a term will yield a new term,
with the lambda variable replaced by the term
(lambda-conversion).
For instance:

λx [bark′(x)](k) = bark′(k)
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Lambda expressions

Lambda conversion and typing

Lambda conversion must respect typing, for example:

λx [bark′(x)] k bark′(k)
〈e, t〉 e t

λx [bark′(x)](k) = bark′(k)

We cannot combine expressions of incompatible types.
e.g.,

λx [bark′(x)](λy [snore′(y)])

is not well-formed
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Lambda expressions

Multiple variables

If the lambda variable is repeated, both instances are
instantiated:

λx [bark′(x) ∧ sleep′(x)] r bark′(r) ∧ sleep′(r)
〈e, t〉 e t

λx [bark′(x) ∧ sleep′(x)] denotes the set of things that bark and
sleep

λx [bark′(x) ∧ sleep′(x)](r) = bark′(r) ∧ sleep′(r)
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Lambda expressions

Transitive and intransitive verbs

A partially instantiated transitive verb predicate is of the same
type as an intransitive verb:

λx [chase′(x , r)] k chase′(k , r)
〈e, t〉 e t

λx [chase′(x , r)] is the set of things that chase Rover.

λx [chase′(x , r)](k) = chase′(k , r)
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Lambda expressions

Transitive verbs
Lambdas can be nested: transitive verbs can be represented
so they apply to only one argument at once.
For instance:

λx [λy [chase′(y , x)]]

often written
λxλy [chase′(y , x)]

λx [λy [chase′(y , x)]](r) = λy [chase′(y , r)]

Bracketing shows the order of application in the conventional
way:

(λx [λy [chase′(y , x)]](r))(k) = λy [chase′(y , r)](k)
= chase′(k , r)
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Example grammar with lambda calculus

Grammar 2, revised
S -> NP VP
VP′(NP′)

VP -> Vtrans NP
Vtrans′(NP′)

VP -> Vintrans
Vintrans′

Vtrans -> chases
λxλy [chase′(y , x)]

Vintrans -> barks
λz[bark′(z)]

Vintrans -> sleeps
λw [sleep′(w)]

NP -> Kitty
k

NP -> Lynx
l

NP -> Rover
r
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Example grammar with lambda calculus

Example 1: lambda calculus with transitive verbs

1. Vtrans -> chases
λxλy [chase′(y , x)] (type: 〈e, 〈e, t〉〉)

2. NP -> Rover
r (type: e)

3. VP -> Vtrans NP
Vtrans′(NP′)
λxλy [chase′(y , x)](r)
= λy [chase′(y , r)] (type: 〈e, t〉)

4. NP -> Lynx
l (type: e)

5. S -> NP VP
VP′(NP′)
λy [chase′(y , r)](l)
= chase′(l , r) (type: t)
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Example grammar with lambda calculus

Ditransitive verbs

The semantics of give can be represented as
λxλyλz[give′(z, y , x)]. The ditransitive rule is:

VP -> Vditrans NP1 NP2
(Vditrans′(NP1′))(NP2′)

Two lambda applications in one rule:

(λx [λy [λz[give′(z, y , x)]]](l))(r)
= λy [λz[give′(z, y , l)]](r)

= λz[give′(z, r , l)]

Here, indirect object is picked up first (arbitrary decision in
rule/semantics for give)
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Example grammar with lambda calculus

Ditransitive verbs with PP

PP form of the ditransitive uses the same lexical entry for give,
but combines the arguments in a different order:

VP -> Vditrans NP1 PP
(Vditrans′(PP′))(NP1′)
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Example grammar with lambda calculus

Example 2

Rover gives Lynx Kitty

1. Vditrans -> gives
λx [λy [λz[give′(z, y , x)]]] type: 〈e, 〈e, 〈e, t〉〉〉

2. NP -> Lynx
l type: e

3. NP -> Kitty
k type: e

4. VP -> Vditrans NP1 NP2
(Vditrans′(NP1′))(NP2′)
(λx [λy [λz[give′(z, y , x)]]](l))(k)
= λy [λz[give′(z, y , l)]](k) type: 〈e, 〈e, t〉〉
= λz[give′(z, k , l)] type: 〈e, t〉



Module 1B: Semantics

Lecture 3: Composition with typed lambda calculus

Example grammar with lambda calculus

Example 2, continued

5 NP -> Rover
r type: e

6 S -> NP VP
VP′(NP′)
= λz[give′(z, k , l)](r)
= give′(r , k , l) type: t
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Example grammar with lambda calculus

PP ditransitive: Exercise

Rover gives Kitty to Lynx

Assumptions:
◮ has the same semantics as

Rover gives Lynx Kitty

◮ No semantics associated with to
◮ Same lexical entry for give as for the NP case
◮ So difference has to be in the VP rule
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Example grammar with lambda calculus

Coordination
Before we introduced and etc syncategorematically (i.e., we
wrote ‘and’ in the grammar rule).
Alternative using lambdas:

S[conj=yes] -> CONJ S1[conj=no]
CONJ′(S1′)

S[conj=no] -> S1[conj=no] S2[conj=yes]
S2′(S1′)

CONJ -> and
λP[λQ[P ∧ Q]] type: 〈t , 〈t , t〉〉

CONJ -> or
λP[λQ[P ∨ Q]] type: 〈t , 〈t , t〉〉

Why aren’t we using Kleene +?
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Example grammar with lambda calculus

Coordination
Before we introduced and etc syncategorematically (i.e., we
wrote ‘and’ in the grammar rule).
Alternative using lambdas:

S[conj=yes] -> CONJ S1[conj=no]
CONJ′(S1′)

S[conj=no] -> S1[conj=no] S2[conj=yes]
S2′(S1′)

CONJ -> and
λP[λQ[P ∧ Q]] type: 〈t , 〈t , t〉〉

CONJ -> or
λP[λQ[P ∨ Q]] type: 〈t , 〈t , t〉〉

Why aren’t we using Kleene +?



Module 1B: Semantics

Lecture 3: Composition with typed lambda calculus

Example grammar with lambda calculus

Example 3: lambda calculus and coordination

Lynx chases Rover or Kitty sleeps

1. CONJ -> or
λP[λQ[P ∨ Q]]

2. S[conj=yes] -> CONJ S1[conj=no]
CONJ′(S1′)
λP[λQ[P ∨ Q]](sleep′(k)) = λQ[sleep′(k) ∨ Q]

3. S[conj=no] -> S1[conj=no] S2[conj=yes]
S2′(S1′)
λQ[sleep′(k) ∨ Q](chase′(l , r)) = sleep′(k) ∨ chase′(l , r)



Module 1B: Semantics

Lecture 3: Composition with typed lambda calculus

Example grammar with lambda calculus

VP coordination

◮ sentential conjunctions are of the type 〈t , 〈t , t〉〉
◮ conjunctions can also combine VPs, so

〈〈e, t〉, 〈〈e, t〉, 〈e, t〉〉〉: conjunctions are of polymorphic type
◮ general schema for conjunctions is 〈type, 〈type, type〉〉.

VP conjunction rule uses the same lexical entries for and and
or as sentential conjunction:
VP[conj=yes] -> CONJ VP1[conj=no]
λR[λx [(CONJ′(R(x)))(VP1′(x))]]

VP[conj=no] -> VP1[conj=no] VP2[conj=yes]
VP2′(VP1′)
This looks complicated, but doesn’t use any new formal
devices.
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Example grammar with lambda calculus

Example 4

1. chases Rover
λy [chase′(y , r)]

2. CONJ -> and
λPλQ[P ∧ Q]

3. and chases Rover
VP[conj=yes] -> CONJ VP1[conj=no]
λRλx [(CONJ′(R(x)))(VP1′(x))] (grammar rule)
λRλx [(λP[λQ[P ∧ Q]](R(x)))(λy [chase′(y , r)](x))]
(substituted CONJ and VP1)
= λRλx [(λP[λQ[P ∧ Q]](R(x)))(chase′(x , r))] (lambda y)
= λRλx [λQ[R(x) ∧ Q](chase′(x , r))] (applied lambda P)
= λRλx [R(x) ∧ chase′(x , r) ] (applied lambda Q)
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Example grammar with lambda calculus

Example 4, continued

4 Vintrans -> barks
λz[bark′(z)]

5 barks and chases Rover

VP[conj=no] ->
VP1[conj=no] VP2[conj=yes]

VP2′(VP1′) (grammar rule)
λRλx [R(x) ∧ chase′(x , r)](λz[bark′(z)]) (sub. VP1, VP2)
= λx [λz[bark′(z)](x) ∧ chase′(x , r)] (applied lambda R)
= λx [bark′(x) ∧ chase′(x , r)] (applied lambda z)

6 Kitty barks and chases Rover
S -> NP VP
VP′(NP′)
λx [bark′(x) ∧ chase′(x , r)](k)
= bark′(k) ∧ chase′(k , r)
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Quantifiers again

Denotation and type of quantifiers
every dog denotes the set of all sets of which dog′ is a subset.
i.e., a function which takes a function from entities to truth
values and returns a truth value.
For instance, every dog might denote the set
{bark′, run′, snore′}:
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D= dog′, B= bark′, S= snore′, R= run′

What does some dog denote?



Module 1B: Semantics

Lecture 3: Composition with typed lambda calculus

Quantifiers again

Denotation and type of quantifiers
every dog denotes the set of all sets of which dog′ is a subset.
i.e., a function which takes a function from entities to truth
values and returns a truth value.
For instance, every dog might denote the set
{bark′, run′, snore′}:

����
'

&

$

%

'
&

$
%

�
�

�
�DBS

R

D= dog′, B= bark′, S= snore′, R= run′

What does some dog denote?



Module 1B: Semantics

Lecture 3: Composition with typed lambda calculus

Quantifiers again

Denotation and type of quantifiers, continued

The type of every dog is 〈〈e, t〉, t〉 (its argument has to be of the
same type as an intransitive verb).
every dog:

λP[∀x [dog′(x) =⇒ P(x)]]

Semantically, every dog acts as a functor, with the intransitive
verb as the argument:

λP[∀x [dog′(x) =⇒ P(x)]](λy [sleep(y)])
= ∀x [dog′(x) =⇒ λy [sleep(y)](x)]
= ∀x [dog′(x) =⇒ sleep(x)]

This is higher-order: we need higher-order logic to express the
FOPC composition rules. Problem: every dog acts as a functor,
Kitty doesn’t, so different semantics for S -> NP VP,
depending on whether NP is a proper name or quantified NP.



Module 1B: Semantics

Lecture 3: Composition with typed lambda calculus

Quantifiers again

Denotation and type of quantifiers, continued

The type of every dog is 〈〈e, t〉, t〉 (its argument has to be of the
same type as an intransitive verb).
every dog:

λP[∀x [dog′(x) =⇒ P(x)]]

Semantically, every dog acts as a functor, with the intransitive
verb as the argument:

λP[∀x [dog′(x) =⇒ P(x)]](λy [sleep(y)])
= ∀x [dog′(x) =⇒ λy [sleep(y)](x)]
= ∀x [dog′(x) =⇒ sleep(x)]

This is higher-order: we need higher-order logic to express the
FOPC composition rules. Problem: every dog acts as a functor,
Kitty doesn’t, so different semantics for S -> NP VP,
depending on whether NP is a proper name or quantified NP.
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Quantifiers again

Type raising

Change the type of the proper name NP: instead of the simple
expression of type e, we make it a function of type 〈〈e, t〉, t〉
So instead of k we have λP[P(k)] for the semantics of Kitty.
But, what about transitive verbs? We’ve raised the type of NPs,
so now transitive verbs won’t work.
Type raise them too . . .
chases:
λR[λy [R(λx [chase(y , x)])]]

Executive Summary:
◮ this gets complicated,
◮ and every cat chased some dog only produces one scope!
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Type raising

Change the type of the proper name NP: instead of the simple
expression of type e, we make it a function of type 〈〈e, t〉, t〉
So instead of k we have λP[P(k)] for the semantics of Kitty.
But, what about transitive verbs? We’ve raised the type of NPs,
so now transitive verbs won’t work.
Type raise them too . . .
chases:
λR[λy [R(λx [chase(y , x)])]]

Executive Summary:
◮ this gets complicated,
◮ and every cat chased some dog only produces one scope!
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Quantifiers again

Semantics in computational grammars

◮ Underspecified representations preferred
◮ Complexity of type raising should be avoided
◮ Integrated approach to syntax and semantics
◮ Composition using typed feature structures
◮ Preliminary step: event-based semantics
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Quantifiers again

Next lecture

Lecture 4: Introduction to constraint-based semantics
Events
Semantics in typed feature structures
Semantics in the lexicon
Composition
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Semantics in the lexicon
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Events

Why events?

(42) A dog barked loudly
∃x [dog′(x) ∧ loud′(bark′(x))]

(43) A dog barked in a park
∃x∃y [dog′(x) ∧ park′(y) ∧ in′(bark′(x), y)]

Problematic because:
◮ Indefinite number of higher-order predicates
◮ a loud bark gets very different semantics from bark loudly
◮ Unwarranted ambiguity in scopes
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Events

Event semantics

(44) A dog barks
∃x∃e[dog′(x) ∧ bark′(e, x))]
i.e., There is a dog and there is an event of that dog
barking

(45) A dog barks loudly
∃x∃e[dog′(x) ∧ loud′(e) ∧ bark′(e, x))]
i.e., There is a dog and there is an event of that dog
barking and that event is loud.

(46) A dog barks in a park
∃x∃y∃e[dog′(x) ∧ park′(y) ∧ bark′(e, x) ∧ in′(e, y)]
i.e., There is a dog and there is an event of that dog
barking and that event is in a park.
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Events

Event semantics in general

reify events (i.e., make them into things)
◮ most nouns don’t denote physical objects anyway
◮ events are spatio-temporally located, so have some

physical attributes
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Events

Scopal modifiers versus events

probably expresses something about the truth-conditions of a
sentence and its semantics interacts with quantifiers.

∀x [dog′(x) =⇒ probably′(bark′(e, x))]

means something different from:

probably′([∀x [dog′(x) =⇒ bark′(e, x)]])

Example: Suppose probably′ means ‘with a probability of more
than 0.5’, r and s are the only dogs in our model,
P(bark′(r)) = 0.6, P(bark′(s)) = 0.6 and probabilities are
independent.
∀x [dog′(x) =⇒ probably′(bark′(e, x))] is true
probably′([∀x [dog′(x) =⇒ bark′(e, x)]]) is false



Module 1B: Semantics

Lecture 4: Introduction to constraint-based semantics

Events

More examples

Notation — use of e is a convention to show the sort. The
following are essentially equivalent:

(47) A dog barks
∃x∃y [dog′(x) ∧ event′(y) ∧ bark′(y , x))]
∃x∃yev [dog′(x) ∧ bark′(yev , x))]
∃x∃e[dog′(x) ∧ bark′(e, x))]

(48) A dog knows a cat
∃x∃y∃e[dog′(x) ∧ cat′(y) ∧ know′(e, x , y))]
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Semantics in typed feature structures

Semantics in typed feature structures: a simple
grammar

◮ Practical session 4
◮ Event semantics
◮ Quantifier-free predicate calculus

this dog will correspond to [this(c) ∧ dog(c)]
(underspecified quantifier scope in next lecture)

◮ Only connective is conjunction: represented implicitly
◮ Variant of semantics in Sag and Wasow (1999), modified

slightly so underspecification works
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Semantics in typed feature structures

Flat semantics
2
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HEAD pos
SPR *list*
COMPS *list*
SEM semantics
ARGS *list*

3

7

7

7

7

7

7

7

7

7

5

◮ semantics has two appropriate features, HOOK and RELS

◮ HOOK contains INDEX (more later)
◮ INDEX takes a sement
◮ INDEX is for composition (very very roughly like lambda

variable) — it can be ignored in semantics of full sentences
◮ a sement has subtypes object and event
◮ RELS takes a difference list of elementary predications
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Semantics in typed feature structures

Flat semantics, example
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[this(c) ∧ dog(c) ∧ bark(e, c)]



Module 1B: Semantics

Lecture 4: Introduction to constraint-based semantics

Semantics in typed feature structures

Elementary predications

◮ relation has the appropriate feature PRED: string value
corresponding to the predicate symbol

◮ ARG0: event for verbs (e.g., e in bark(e, c)), argument for
ordinary nouns (e.g., the c in dog(c))

◮ ARG1, ARG2 and ARG3, as required.
◮ equivalence of arguments is implemented by coindexation
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semantics
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[this(c) ∧ dog(c) ∧ bark(e, c)]
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Semantics in the lexicon

Semantics in the lexicon

dog := noun-lxm &
[ ORTH.LIST.FIRST "dog",
SEM.RELS.LIST.FIRST.PRED "dog_rel" ].

◮ lexical entries are a triple consisting of orthography,
semantic predicate symbol and lexical type (e.g., "dog",
"dog_rel" and noun-lxm )

◮ the lexical type (e.g., noun-lxm ) encodes both syntax and
a skeleton semantic structure

◮ for the practical, predicate values are string-valued, so they
don’t have to be explicitly declared as types

◮ one predicate per lexeme (simplifying assumption): dog
and dogs will both be "dog_rel"
full-scale grammars relate sg and pl forms of regular nouns
by rule
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Semantics in the lexicon

Linking in lexical entries
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Semantics in the lexicon

Linking in lexical entries

◮ semantic argument positions are coindexed with the
appropriate part of the syntax

In this approach:
◮ access to the semantics of a phrase is always via its HOOK

slot
◮ RELS list is never accessed directly (only function is to

accumulate list of EPs)
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Composition

Composition 1

Schematically, three types of information in the semantics:

Accumulators — RELS. Implemented as difference lists, only
for accumulating values, only operation during
parsing is difference list append

Hooks — INDEX. Hooks give arguments for predicates,
only way of accessing parts of the semantics of a
sign. Lexically set up, pointers into RELS.

Slots e.g., SPR.SEM.HOOK.INDEX. Syntactic features
which also specify how the semantics is
combined. A syntax ‘slot’ will be coindexed with a
hook in another sign.
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Composition

Composition constraints

1. The RELS of the mother of the phrase is the difference list
append of the RELS of the daughters.

2. One phrase has one or more syntactic slots (MOD, SPR or
COMPS) filled by the other daughters.
The phrase with the slot is the semantic head (not always
same as syntactic head — e.g. modifier is semantic head
in head-modifier-phrase)
The semantic head coindexes its argument positions with
the HOOKs of the other daughters.

3. The HOOK on the phrase as a whole is coindexed with the
HOOK of the semantic head daughter.

4. Unsaturated slots are passed up to the mother.
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Composition
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chase′(e4, x3, y5) ∧ the′(y5) ∧ cat′(y5)
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Composition

Next lecture

Lecture 5: More on scope and quantifiers
FOPC ‘issues’.
An introduction to generalized quantifiers.
Scope ambiguity expressed with generalized quantifiers
LFs as trees
Underspecification as partial description of trees
Constraints on underspecified forms
Intersective modification and implicit conjunction
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FOPC ‘issues’.

FOPC deficiencies and solutions

1. adverbial modification: events (last lecture)

2. scopal modification: higher order predicates

3. determiners other than every and some: generalised
quantifiers

4. multiple representations for different quantifier scopes (and
no syntactic ambiguity): underspecified representations

At end of Lecture 5, new representation: underspecified
predicate calculus with generalised quantifiers and (limited)
higher-order scopal modifiers.
Lecture 6: compositional semantics with this representation
using typed feature structure grammars.
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FOPC ‘issues’.

Scopal modification
FOPC works for some types of modification:
every big dog barks
∀x [big′(x) ∧ dog′(x) =⇒ bark′(e, x)]
every dog barks loudly
∀x [dog′(x) =⇒ bark′(e, x) ∧ loud′(e)]
But: non-first-order predicates:
kitty probably sleeps

probably′(sleep′(k))

L believes it is not the case that K sleeps
L believes K doesn’t sleep

believe′(l , not′(sleep′(k)))
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FOPC ‘issues’.

Determiners other than every and some

some A is a B
∃x [A(x) ∧ B(x)]

every A is a B
∀x [A(x) =⇒ B(x)]

two As are Bs

∃x [∃y [x 6= y ∧ A(x) ∧ A(y) ∧ B(x) ∧ B(y)]]

most As are Bs
?
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An introduction to generalized quantifiers.

An introduction to generalized quantifiers.
Generalized quantifiers involve the relationship between two
sets of individuals, A and B, within a domain of discourse E.

E

&%
'$

&%
'$

A B

DEAB.

True quantifiers depend only on the cardinality of the sets A and
A ∩ B (i.e., |A| and |A ∩ B|).
every: |A| = |A ∩ B|
some: |A ∩ B| ≥ 1
at least two: |A ∩ B| ≥ 2
most (interpreted as more than half): |A ∩ B| > |A|/2
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An introduction to generalized quantifiers.

Terminology and notation

A: restriction of the quantifier
B: body (or scope)
every white cat likes Kim
white cat: restriction of the quantifier
likes Kim: body
Notation: quantifier(bound-variable,restriction,body)
every white cat likes Kim
every′(x , white′(x) ∧ cat′(x), like′(x , k))
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Scope ambiguity expressed with generalized quantifiers

Ambiguity

(52) most white cats like some squeaky toys
most′(x , white′(x) ∧ cat′(x),

some′(y , toy′(y) ∧ squeaky′(y),
like′(x , y))

(preferred reading)
some′(y , toy′(y) ∧ squeaky′(y),

most′(x , white′(x) ∧ cat′(x),
like′(x , y))

(dispreferred reading)
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Scope ambiguity expressed with generalized quantifiers

Ambiguity

(53) most mothers of two white cats like Kim
most′(x , two′(y , white′(y) ∧ cat′(y),

mother′(x , y)), like′(x , Kim′))
(preferred reading)
two′(y , white′(y) ∧ cat′(y),

most′(x , mother′(x , y), like′(x , Kim′)))
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Scope ambiguity expressed with generalized quantifiers

Scope ambiguity

(58) Every person in the room speaks two languages.

every person is bilingual OR two languages every person
shares

every dog did not sleep

every dog was awake OR some dog was awake

All the people who were polled by our researchers
thought that every politician lies to some journalists in
at least some interviews.

Number of readings is (roughly) 120 (5!)
Underspecification of quantifier scope allows us to avoid an
unmotivated ambiguity in tree structures, while preserving the
possibility of representing scope distinctions.
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Scope ambiguity expressed with generalized quantifiers

Underspecification and Sudoku solving

7 8
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5 3 9
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Scope ambiguity expressed with generalized quantifiers

Solving.
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3 9 6
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Scope ambiguity expressed with generalized quantifiers

Possibility 1.
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Scope ambiguity expressed with generalized quantifiers

Possibility 2.
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Scope ambiguity expressed with generalized quantifiers

Underspecification.
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Scope ambiguity expressed with generalized quantifiers

Inference on underspecified form.
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Scope ambiguity expressed with generalized quantifiers

Inference on underspecified form.
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LFs as trees

LFs as trees

◮ Every conventional logical formula can be represented as
a tree (syntactically).
(63) every dog did not sleep
(64) not(every(x,dog(x),sleep(x)))
(65) every(x,dog(x),not(sleep(x)))

◮ nodes correspond to predicates and variables
◮ branches correspond to predicate argument relationships
◮ trees for different scopes normally share some part of their

structure.
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LFs as trees

LFs as trees

not

?every

?

�
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�	

@
@

@R
x dog

?

sleep

?
x x

not(every(x,dog(x),sleep(x)))

every

?

�
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�	

@
@

@R
x dog

?

not

?
sleep

?

x

x

every(x,dog(x),not(sleep(x)))
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Underspecification as partial description of trees

Underspecification as partial description of trees
One structure captures the commonalities between scopes and
can be specialized to produce exactly the required scopes.

∨
not

?

∨every

?

�
�

�
��	

@
@

@
@@R

x dog

?
x

∨
sleep

?
x

◮ arrows pointing to nothing — arguments are missing
◮ ∨ on upper node — structure can fill argument position
◮ Exactly two ways the pieces can be completely

recombined to give trees as before.
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Underspecification as partial description of trees

Holes and labels
◮ Distinguish the different arguments and fragments (to

make it easier to manipulate)
◮ argument position identifier is a hole
◮ fragment identifier is a label

l1
not

?
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l3
every

?

�
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h4x dog

?
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l5
sleep
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x
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Underspecification as partial description of trees

Elementary predications
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Underspecification as partial description of trees

Elementary predications
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Underspecification as partial description of trees

Elementary predications

l1
not

?
h2

l3
every
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�
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@
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h4x h7

h7=l6

l6
dog

?
x

l5
sleep

?
x

◮ Underspecified representation is broken up into
elementary predications (EPs): i.e., combinations of a
predicate with its arguments.

◮ Each EP has one label, one predicate and one or more
arguments.
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Underspecification as partial description of trees

Linear notation

l1
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h4x h7

h7=l6

l6
dog

?
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x

l1:not(h2), l5:sleep(x), l3:every(x,h7,h4), l6:dog(x), h7=l6
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Underspecification as partial description of trees

Underspecification specialisation

To reconstruct the scoped structures, equate holes and labels
(like putting the trees back together).
Two valid possible sets of equations:

(66) l1:not(h2), l5:sleep(x), l3:every(x,h7,h4), l6:dog(x),
h7=l6, h4=l1, h2=l5
every(x,dog(x),not(sleep(x)))
top label is l3

(67) l1:not(h2), l5:sleep(x), l3:every(x,h7,h4), l6:dog(x),
h7=l6, h4=l5, h2=l3
not(every(x,dog(x),sleep(x)))
top label is l1
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Underspecification as partial description of trees

Full scoping

In a fully scoped structure:
◮ every hole is filled by a label.
◮ every label apart from one is equated with a hole
◮ the unique label which isn’t the value of a hole is the top of

the tree: i.e., the outermost thing in the scoped structure

Order of the elementary predications and the name of the
variables are not significant:
l1:not(h2), l5:sleep(x), l3:every(x,h7,h4), l6:dog(x), h7=l6
l6:dog(x), l5:sleep(x), l1:not(h2), l3:every(x,h7,h4), h7=l6
l0:dog(x), l11:not(h2), l3:every(x,h7,h4), h7=l0, l5:sleep(x)
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Underspecification as partial description of trees

Full scoping

In a fully scoped structure:
◮ every hole is filled by a label.
◮ every label apart from one is equated with a hole
◮ the unique label which isn’t the value of a hole is the top of

the tree: i.e., the outermost thing in the scoped structure

Order of the elementary predications and the name of the
variables are not significant:
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Constraints on underspecified forms

Constraints on underspecified forms

Implicit constraints on how the EPs can be combined:

1. all scoped structures must be singly rooted trees
(therefore, no cycles etc)

2. variables must be bound by a quantifier



Module 1B: Semantics

Lecture 5: More on scope and quantifiers

Constraints on underspecified forms

Constraints on underspecified forms

Explicit constraints are needed for more complicated examples.

(68) every nephew of a dragon snores

(69) every(x, a(y, dragon(y), nephew(x,y)) snore(x))
i.e., the arbitrary dragon reading

(70) a(y, dragon(y), every(x, nephew(x,y), snore(x)))
i.e., the specific dragon reading

Underspecification?:
l1:every(x,h2,h3), l4:nephew(x,y), l5:a(y,h6,h7), l8:dragon(y),
l9:snore(x), h6=l8
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Constraints on underspecified forms

Need for more constraints
l1:every(x,h2,h3), l4:nephew(x,y), l5:a(y,h6,h7), l8:dragon(y),
l9:snore(x), h6=l8
has invalid solutions besides the valid ones in 69 and 70:

(72) l1:every(x,h2,h3), l4:nephew(x,y), l5:a(y,h6,h7),
l8:dragon(y), l9:snore(x), h2=l9, h3=l5, h6=l8, h7=l4
every(x,snore(x),a(y,dragon(y),nephew(x,y)))
(which means roughly — every snorer is the nephew of
a dragon)

(73) l1:every(x,h2,h3), l4:nephew(x,y), l5:a(y,h6,h7),
l8:dragon(y), l9:snore(x), h2=l9, h3=l5, h6=l8, h7=l4
a(y,dragon(y),every(x,snore(x),nephew(x,y)))

Problem is that the verb has been able to instantiate the
restriction of every, which should be restricted to the
corresponding Nbar.
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Constraints on underspecified forms

qeq constraints

=q (qeq) constraints (equality modulo quantifiers).
If a hole h is =q a label l , then one of the following must be true:

◮ h = l
◮ there is an intervening quantifier, quant, such that quant

has a label l ′ where l ′ = h and the body of quant is h′ (i.e.,
quant(var,hr ,h′)) and h′ = l

◮ there is a chain of such intervening quantifiers, all linked
via their bodies.
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Constraints on underspecified forms

qeq constraints

Revised example:

(74) every nephew of a dragon snores

(75) l1:every(x,h2,h3), l4:nephew(x,y), l5:a(y,h6,h7),
l8:dragon(y), l9:snore(x), h6=l8, h2 =q l4

In general, every quantifier corresponding to a determiner will
have a restrictor hole which is qeq the top label of its Nbar.

(77) l1:every(x,h2,h3), l4:nephew(x,y), l5:a(y,h6,h7),
l8:dragon(y), l9:snore(x), h6 =q l8, h2 =q l4
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Intersective modification and implicit conjunction

Intersective modification and implicit conjunction
◮ Assume young black cat can be represented in

conventional logic as young(x) ∧ black(x) ∧ cat(x).
◮ maybe: h1:and(h2,h3), h2:young(x), h3:and(h4,h5),

h4:black(x), h5:cat(x)
◮ or: h1:and(h2,h3), h2:and(h4,h5), h4:young(x), h4:black(x),

h5:cat(x)
◮ Equivalent logical forms but syntactically very different.
◮ so maybe: h1:and(h2,h3,h4), h2:young(x), h3:black(x),

h4:cat(x)
◮ But no real need for the explicit ‘and’, so:

h1:young(x), h1:black(x), h1:cat(x)
Equal labels indicate implicit conjunction.
Use the predicate ‘and’ for the actual lexeme and

◮ This corresponds to the typed feature structure
representation we want to use . . .
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Intersective modification and implicit conjunction

Next lecture

Lecture 6: Building underspecified representations
MRS in TFSs
Semantic composition in constraint-based grammars
Composition rules for phrases
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MRS in TFSs

Objectives

1. Develop composition principles for underspecified
representations

2. Extend TFS grammars to allow scope (with underspecified
quantifiers)

Expressing MRS in TFS:
◮ labels and holes in the structures have to be unifiable (i.e.,

of the same type): handles
◮ distinguish between RELS, for the elementary predications

and HCONS (handle constraints: qeqs)
◮ Every EP has a LBL (MRS label)
◮ Quantifiers have features ARG0, RSTR and BODY (for

bound variable, restriction and body)
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MRS in TFSs

An example MRS in TFSs

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

semantics
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RSTR 4 handle
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{h2 : every(x , h4, h5), h6 : dog(x), h7 : not(h8), h9 : sleep(e, x)}
{h4 =q h6, h8 =q h9}

l1:not(h2), l5:sleep(x), l3:every(x,h7,h4), l6:dog(x), h7=l6
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Semantic composition in constraint-based grammars

Semantic composition

Accumulators — RELS (as before) and HCONS (qeqs). Both
implemented with difference-list append.

Hooks — INDEX (as before) and LTOP. LTOP is the handle
of the EP with highest scope in the phrase. Scopal
EPs (e.g., probably, believe and not) have an
argument hole which is qeq the LTOP of the phrase
they combine with. Also RSTR of quantifiers.

Slots as before
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Semantic composition in constraint-based grammars

Scopal relationships

◮ All EPs have LBL features which correspond to their label.
◮ LTOP is the label of the EP in an MRS which has highest

scope, except that the labels of quantifiers are not equated
with the LTOP, so they can float

◮ All scopal relationships are stated via qeqs: qeqs are
accumulated in HCONS
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Semantic composition in constraint-based grammars

Notation: e.g., probably

[hp, e] [hv , e]mod [hp : probably(hu)] {hu =q hv}
hook syntax slot EP qeqs
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Semantic composition in constraint-based grammars

Rules for linking EPs to hooks in the lexicon
Each lexical item has a single key EP

1. If the key is non-scopal or fixed scopal EP (i.e., not a
quantifier), LTOP of the MRS is equal to LBL of key.
e.g., hd is the LTOP of dog and hp is the LTOP of probably:

dog:
[hd , x ] [hd : dog(x)] {}
probably:
[hp, e] [hl , e]mod [hp : probably(hu)] {}

2. If the key is a quantifier EP, LTOP is not related to a handle.

every:
[hf , xv ] [hn, xv ]spec [hv : every(xv , hr , hb)] {}

This allows the quantifier to float.
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Composition rules for phrases

Semantic head and SPEC feature

◮ The determiner has to be the semantic head to get the
correct semantic effect.

◮ SPEC is a syntactic feature that allows the determiner to
select for the noun.

◮ The noun still syntactically selects for the determiner via
SPR, but for the semantic rules we ignore SPR in this case.

◮ There are other ways one could do this, but use this in the
practical.
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Composition rules for phrases

General rules for phrases

1. The RELS of the mother is constructed by appending the
RELS of the daughters.

2. The HCONS of daughters are all preserved (may be added
to, see below).

3. One slot of the semantic head is equated with the hook in
the other daughter (where the semantic head and the
particular slot involved are determined by the grammar
rule).

4. The hook features of the mother are the hook features of
the semantic head.

5. Unsaturated slots are passed up to the mother.
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Composition rules for phrases

Rules for combining hooks and slots, 1

1. Intersective combination. The LTOP of the daughters are
equated with each other and with the LTOP of the phrase.

white:
[hw , xw ] [hw , xw ]mod [hw : white(xw )] {}

cat:
[hc , xc] [hc : cat(xc)] {}

white cat:
[hw , xw ] [hw : white(xw ), hw : cat(xw )] {}
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Composition rules for phrases

Rules for combining hooks and slots, 2

2. Scopal combination (i.e., one daughter, always the semantic
head, contains a scopal EP which scopes over the other
daughter). The handle-taking argument of the scopal EP is qeq
the LTOP of the scoped-over phrase.

sleep:
[hs, es] [hz , xz ]spr [hs : sleep(es, xz)] {}

probably:
[hp, e] [hl , e]mod [hp : probably(hu)] {}

probably sleeps:
[hp, es] [hz , xz ]spr [hp : prob(hu), hs : sleep(es, xz)] {hu =q hs}
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Composition rules for phrases

Rules for combining hooks and slots, 3

3. Quantifiers. The restriction of the quantifier is scopal, as
above, and the body is left unconstrained.

every:
[hf , xv ] [hn, xv ]spec [hv : every(xv , hr , hb)] {}

dog:
[hd , xd ] [hd : dog(xd)] {}

every dog:
[hf , xv ] [hv : every(xv , hr , hb),

hd : dog(xv )] {hr =q hd}
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Composition rules for phrases

Composition shown with feature structures
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Composition rules for phrases

Composition shown with feature structures
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Composition rules for phrases

Composition shown with feature structures
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Composition rules for phrases

Lambda calculus vs CBG semantics
Final representations may be equivalent, what differs is
composition
Base entries:
cat λx [cat′(x)]
big λPλy [big′(y) ∧ P(y)]

The predicates big′ and cat′ are the same but the adjective big
has to act as a semantic functor, hence the P(y).
In MRS:
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SEM part is equivalent, except that semantic functor has a
connection to the syntactic slot.
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Composition rules for phrases

Lambda calculus vs CBG semantics
Final representations may be equivalent, what differs is
composition
Base entries:
cat λx [cat′(x)]
big λPλy [big′(y) ∧ P(y)]

The predicates big′ and cat′ are the same but the adjective big
has to act as a semantic functor, hence the P(y).
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Composition rules for phrases

Lambda calculus vs CBG semantics: rules
N1 -> Adj N2
Adj ′(N2′)

λP in big needed for this to work, ∧P(y) is required to get the
semantics for the noun in the result.
head-modifier-rule specifies that the MOD of the modifier is
the value of the (syntactic) head.

head-modifier-rule := binary-phrase &
[ SEM.HOOK #hook,
ARGS < #mod,

[ HEAD.MOD < #mod >,
SEM.HOOK #hook ] > ].

Function application is not directly reflected in SEM.
General principle of concatenation of RELS instead of ∧P(y)
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Lecture 6: Building underspecified representations

Composition rules for phrases

Lambda calculus vs CBG semantics: rules
N1 -> Adj N2
Adj ′(N2′)

λP in big needed for this to work, ∧P(y) is required to get the
semantics for the noun in the result.
head-modifier-rule specifies that the MOD of the modifier is
the value of the (syntactic) head.

head-modifier-rule := binary-phrase &
[ SEM.HOOK #hook,
ARGS < #mod,

[ HEAD.MOD < #mod >,
SEM.HOOK #hook ] > ].

Function application is not directly reflected in SEM.
General principle of concatenation of RELS instead of ∧P(y)
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Outline of Lecture 7

Lecture 7: Robust underspecification
Extreme underspecification: semantics from shallow processing.
RMRS
Operations on RMRS
Question Answering
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Lecture 7: Robust underspecification

Extreme underspecification: semantics from shallow processing.

◮ Deep processing: big hand-built grammars.
Good things:

◮ Can produce detailed semantics
◮ Bidirectional: generate and parse

Bad things:
◮ Relatively slow (around 30 words per second)
◮ Lexical requirements, robustness
◮ Parse selection

◮ Shallow and intermediate processing: e.g., POS taggers,
noun phrase chunkers, RASP.
Good things:

◮ Faster (POS taggers: 10,000 w/sec; RASP: 100 w/sec)
◮ More robust, less resource needed
◮ Integrated parse ranking

Bad things:
◮ No conventional semantics
◮ Not precise, no generation
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Extreme underspecification: semantics from shallow processing.

Semantic representation: MRS

The mixture was allowed to warm to room temperature.
〈 l3:_the_q(x5,h6,h4), l7:_mixture_n(x5),
l9:_allow_v_1(e2,u11,x5,h10), l13:_warm_v_1(e14,x5),
l13:_to_p(e15,e14,x16), l17:udef_q(x16,h18,h19),
l20:compound(e22,x16,x21), l23:udef_q(x21,h24,h25),
l26:_room_n(x21), l20:_temperature_n(x16) 〉
〈 qeq(h6,l7), qeq(h18,l20), qeq(h24,l26), qeq(h10,l13) 〉
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Lecture 7: Robust underspecification

Extreme underspecification: semantics from shallow processing.

DELPH-IN MRS: main features

◮ Flat: list of EPs (each with label), list of qeqs.
◮ Underspecified quantifier scope: labels and holes, linked

with qeqs.
◮ Conjunction from modification etc indicated by shared

labels: l13:_warm_v_1(e14,x5), l13:_to_p(e15,e14,x16)
◮ Lexical predicates (leading underscore): lexeme, coarse

sense (POS), fine sense.
◮ Construction predicates (e.g., compound).
◮ Sorted variables: tense, etc (and simple information

structure).
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RMRS

Semantic representation: RMRS

The mixture was allowed to warm to room temperature.
〈 l3:a1:_the_q(x5), l7:a2:_mixture_n(x5), l9:a3:_allow_v_1(e2),
l13:a5:_warm_v_1(e14), l13:a6:_to_p(e15), l17:a7:udef_q(x16),
l20:a8:compound(e22), l23:a9:udef_q(x21),
l26:a10:_room_n(x21), l20:a11:_temperature_n(x16)〉
〈 a1:RSTR(h6), a1:BODY(h4), a3:ARG2(x5), a3:ARG3(h10),
a5:ARG1(x5), a6:ARG1(e14), a6:ARG2(x16), a7:RSTR(h18),
a7:BODY(h19), a8:ARG1(x16), a8:ARG2(x21), a9:RSTR(h24),
a9:BODY(h25) 〉
〈 qeq(h6,l7), qeq(h18,l20), qeq(h24,l26), qeq(h10,l13) 〉
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RMRS

MRS vs RMRS

◮ l9:_allow_v_1(e2,u11,x5,h10) in MRS
l9:a3:_allow_v_1(e2), a3:ARG2(x5), a3:ARG3(h10) in
RMRS.

◮ Further factorization: separation of arguments.
◮ All EPs have an anchor which relates args to EPs.
◮ RMRS can omit or underspecify ARGs: robust to missing

lexical information.
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RMRS

Character positions

The mixture was allowed to warm to room temperature.
〈 l3:a1:_the_q(x5)〈0, 3〉, l7:a2:_mixture_n(x5)〈4, 11〉,
l9:a3:_allow_v_1(e2)〈16, 23〉, l13:a5:_warm_v_1(e14)〈27, 31〉,
l13:a6:_to_p(e15)〈32, 34〉, l17:a7:udef_q(x16)〈35, 52〉,
l20:a8:compound(e22)〈35, 52〉, l23:a9:udef_q(x21)〈35, 52〉,
l26:a10:_room_n(x21)〈35, 39〉, l20:a11:_temperature_n(x16)〈40, 52〉〉
〈 a1:RSTR(h6), a1:BODY(h4), a3:ARG2(x5), a3:ARG3(h10),
a5:ARG1(x5), a6:ARG1(e14), a6:ARG2(x16), a7:RSTR(h18),
a7:BODY(h19), a8:ARG1(x16), a8:ARG2(x21), a9:RSTR(h24),
a9:BODY(h25) 〉
〈 qeq(h6,l7), qeq(h18,l20), qeq(h24,l26), qeq(h10,l13) 〉
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RMRS

RMRS from POS tagger

The mixture was allowed to warm to room temperature.
〈 l1:a2:_the_q(x3), l4:a5:_mixture_n(x6), l7:a8:_allow_v(e9),
l10:a11:_warm_v(e12), l13:a14:_to_p(e15),
l16:a17:_room_n(x18), l19:a20:_temperature_n(x21)〉
〈〉
〈〉

All variables distinct, no ARGs, no qeqs.
Chunker: equate nominal indices, etc.
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RMRS
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RMRS

RMRS as semantic annotation of lexeme sequence.

◮ Annotate most lexemes with unique label, anchor, arg0.
Note: null semantics for some words, e.g., infinitival to.

◮ Partially disambiguate lexeme with n, v, q, p etc.
◮ Add sortal information to arg0.
◮ Implicit conjunction: add equalities between labels.
◮ Ordinary arguments: add ARGs (possibly underspecified)

between anchors and arg0.
◮ Scopal arguments: add ARG plus qeq between anchors

and labels.

Standoff annotation on original text via character positions.
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RMRS

RMRS Elementary Predication

An RMRS EP contains:

1. the label of the EP: this is shared by other EPs to indicate
implicit conjunction.

2. an anchor, not shared by any other EPs.

3. a relation

4. up to one argument of the relation (the arg0)

This is written as label:anchor:relation(arg0).
l13:a5:_warm_v_1(e14)
l13:a6:_to_p(e15)



Module 1B: Semantics

Lecture 7: Robust underspecification

RMRS

RMRS ARGs

An RMRS ARG relation contains:

1. an anchor, which must also be the anchor of an EP.

2. an ARG relation, taken from a fixed set (here: ARG1,
ARG2, ARG3, RSTR, BODY, plus the underspecified
relations: ARG1-2, ARG1-3, ARG1-2, ARG2-3, ARGN).

3. exactly one argument. This must be ‘grounded’ by an EP:
i.e., if it is a normal variable it must be the ARG0 of an EP,
or if it is a hole, it must be related to the label of an EP by a
qeq constraint.

a5:ARG1(x5), l13:a5:_warm_v_1(e14), l7:a2:_mixture_n(x5)
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Operations on RMRS

RMRS Matching

lb1:every_q(x),
lb1:RSTR(h9),
lb1:BODY(h6),
lb2:cat_n(x),
lb4:some_q(y),
lb1:RSTR(h8),
lb1:BODY(h7),
lb5:dog_n_1(y),
lb3:chase_v(e),
lb3:ARG1(x),
lb3:ARG2(y)

lb1:every_q(x),
lb1:RSTR(h9),
lb1:BODY(h6),
lb2:cat_n(x),
lb4:some_q(y),
lb1:RSTR(h8),
lb1:BODY(h7),
lb5:dog_n_1(y),
lb3:chase_v(e),
lb3:ARG1(x),
lb3:ARG2(y)
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Operations on RMRS

RMRS Matching

lb1:every_q(x),
lb1:RSTR(h9),
lb1:BODY(h6),
lb2:cat_n(x),
lb4:some_q(y),
lb1:RSTR(h8),
lb1:BODY(h7),
lb5:dog_n_1(y),
lb3:chase_v(e),
lb3:ARG1(x),
lb3:ARG2(y)

lb1:every_q(x),
lb1:RSTR(h9),
lb1:BODY(h6),
lb2:cat_n(x),
lb4:some_q(y),
lb1:RSTR(h8),
lb1:BODY(h7),
lb5:dog_n(y),
lb3:chase_v(e),
lb3:ARG1-2(x),



Module 1B: Semantics

Lecture 7: Robust underspecification

Operations on RMRS

RMRS Matching

lb1:every_q(x),
lb1:RSTR(h9),
lb1:BODY(h6),
lb2:cat_n(x),
lb4:some_q(y),
lb1:RSTR(h8),
lb1:BODY(h7),
lb5:dog_n_1(y),
lb3:chase_v(e),
lb3:ARG1(x),
lb3:ARG2(y)

lb1:every_q(x),

lb2:cat_n(x),
lb4:some_q(y),

lb5:dog_n(y),
lb3:chase_v(e)
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Question Answering

QA with parsed corpus

PARSED CORPUS

�����*

query match
6

PARSING
6

MORPHOLOGY
6

INPUT PROCESSING
6

user input

HHHHHj
response selection

?
output
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Question Answering

Questions and answers: QA, NLID etc

A valid answer should entail the query (with suitable
interpretation of wh-terms etc).
Is a dog barking?
∃x [dog′(x) ∧ bark′(x)]

A dog is barking entails A dog is barking

Rover is barking and Rover is a dog entails A dog is barking.
bark′(Rover) ∧ dog′(Rover) entails ∃x [dog′(x) ∧ bark′(x)]

which dog is barking?
bark′(Rover) ∧ dog′(Rover) entails ∃x [dog′(x) ∧ bark′(x)]
Bind query term to answer.



Module 1B: Semantics

Lecture 7: Robust underspecification

Question Answering

QA example 1

Example
What eats jellyfish?

Simplified semantics:
[ a:eat(e), ARG1(a,x), ARG2(a,y), jellyfish(y) ]
So won’t match on jellyfish eat fish.
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Question Answering

What eats jellyfish?

Example
Turtles eat jellyfish and they have special hooks in their throats
to help them swallow these slimy animals.



Module 1B: Semantics

Lecture 7: Robust underspecification

Question Answering

What eats jellyfish?

Example
Turtles eat jellyfish and they have special hooks in their throats
to help them swallow these slimy animals.

Match on [ a:eat(e), ARG1(a,x), ARG2(a,y), jellyfish(y) ]

A logically valid answer which entails the query since the
conjunct can be ignored.
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Question Answering

What eats jellyfish?

Example
Sea turtles, ocean sunfish (Mola mola) and blue rockfish all are
able to eat large jellyfish, seemingly without being affected by
the nematocysts.
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Question Answering

What eats jellyfish?

Example
Sea turtles, ocean sunfish (Mola mola) and blue rockfish all are
able to eat large jellyfish, seemingly without being affected by
the nematocysts.

Pattern matching on semantics:
[ a:eat(e), ARG1(a,x), ARG2(a,y), large(y), jellyfish(y) ]

eat large jellyfish entails eat jellyfish (because large is
intersective)
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Question Answering

What eats jellyfish?

Example
Also, open ocean-dwelling snails called Janthina and even
some seabirds have been known to eat jellyfish.
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Question Answering

What eats jellyfish?

Example
Also, open ocean-dwelling snails called Janthina and even
some seabirds have been known to eat jellyfish.

[ a1:know(e), ARG2(a1,h1), qeq(h1,lb), lb:a:eat(e), ARG1(a,x),
ARG2(a,y), jellyfish(y) ]

Logically valid if know is taken as truth preserving.

∀P∀y [know(y , P) =⇒ P]

Axioms like this required for logically valid entailment: missing
axiom would cause failure to match.



Module 1B: Semantics

Lecture 7: Robust underspecification

Question Answering

What eats jellyfish?

Example
Also, open ocean-dwelling snails called Janthina and even
some seabirds have been known to eat jellyfish.

[ a1:know(e), ARG2(a1,h1), qeq(h1,lb), lb:a:eat(e), ARG1(a,x),
ARG2(a,y), jellyfish(y) ]

Logically valid if know is taken as truth preserving.

∀P∀y [know(y , P) =⇒ P]

Axioms like this required for logically valid entailment: missing
axiom would cause failure to match.
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Question Answering

Take a question:
What debts did Qintex group leave?
Find a short piece of text (a sentence for the practical) from a
large collection of documents which answers the question:
Qintex’s failure left corporate debts of around ADollars 1.5bn
(Pounds 680m) and additional personal debts.
Deep parse the question, RASP parse the answer texts,
produce RMRS in both cases, find the best matches.
Evaluate on large set of questions.
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