
An open source grammar development environment and broad-coverage
English grammar using HPSG

Ann Copestake�, Dan Flickinger�

�CSLI, Ventura Hall, Stanford University
Stanford, CA 94305-4115, USA
faac, danfg@csli.stanford.edu

Abstract
The LinGO (Linguistic Grammars Online) project’s English Resource Grammar and the LKB grammar development environment are
language resources which are freely available for download for any purpose, including commercial use (see http://lingo.stanford.edu).
Executable programs and source code are both included. In this paper, we give an outline of the LinGO English grammar and LKB
system, and discuss the ways in which they are currently being used. The grammar and processing system can be used independently or
combined to give a central component which can be exploited in a variety of ways. Our intention in writing this paper is to encourage
more people to use the technology, which supports collaborative development on many levels.

1. Introduction
Despite the advances that have been made in automatic

grammar learning, there are many applications which re-
quire hand-built or partially hand-built grammars for ac-
ceptable precision. However, developing precise large-
coverage grammars and lexicons of natural languages is
a very time-consuming activity. In this paper we give
an overview of the LinGO (Linguistic Grammars Online)
project’s English Resource Grammar (ERG) and the LKB
grammar development environment which are freely avail-
able resources for use in research, teaching and commercial
applications. The LKB is a general-purpose system that can
process the ERG and other grammars written in a typed-
feature structure formalism. The ERG is a broad-coverage
grammar of English in the Head-Driven Phrase Structure
Grammar (HPSG) framework which can be used in a range
of applications. Besides the ERG, some smaller grammars
intended for teaching purposes are also distributed. We dis-
cuss the steps we are taking to make the ERG and LinGO
processing system as generally usable as possible, and de-
scribe some of the collaborative work which has been un-
dertaken.

There are a number of properties of the LinGO re-
sources which, taken in combination, make them unique
in terms of currently available NLP systems:

Availability The LKB system and the LinGO grammars
are freely available on the Web as open source
(http://lingo.stanford.edu): they may be used and
modified by both academic and commercial groups.
The LKB system is implemented in Common Lisp,1

but is also distributed as a standalone application for
Linux, Windows 98/NT and Sun Solaris platforms,
and can be installed and used by people with no spe-
cialist programming knowledge.

Explicit formalization and declarativity The formalism
assumed by the LKB system (Copestake, in press)

1Specifically, the current version runs on Macintosh Common
Lisp, Allegro and Lispworks and on CMU Common Lisp without
graphics.

is a typed feature structure logic similar to (Carpen-
ter, 1992). Because the LinGO ERG has been de-
veloped using a core subset of this logic and is com-
pletely declarative, it can be processed on a number
of systems (seex2.2. andx4. for more details). The
LKB system necessarily assumes a particular formal-
ism, but it follows the philosophy of PATR (Shieber,
1986) in aiming to be independent of a particular lin-
guistic framework. Although the LKB’s most exten-
sive use has been for HPSGs, it has also been used for
quite large categorial grammars (Sanfilippo, 1993).

Bidirectionality The LKB system includes a parser and a
generator and the LinGO ERG itself is bidirectional.

Linguistic motivation The ERG uses the HPSG frame-
work, which is quite popular among theoretical lin-
guists and for which numerous detailed analyses of
phenomena in many different languages exist. As we
discuss inx3.2., this is an important factor in success-
ful collaborative grammar development.

Scale and EfficiencyThe LinGO ERG is a broad coverage
grammar (seex2.2. for details). However, at least in
comparison with most previous typed feature structure
systems, processing is highly efficient (seex2.2. for
some details).

Semantic representationThe Minimal Recursion Seman-
tics (MRS) approach used in the ERG (Copestake
et al., 1999) is fully supported by a module associated
with the LKB system (see 3.3.).

Evaluation tools The LKB system can be used in conjunc-
tion with the [incr tsdb()] test-suite machinery (Oepen
et al., 1997; Oepen and Flickinger, 1998) which pro-
vides extensive fine-grained diagnosis and profiling
capabilities (see 3.1.).

The LinGO resources are somewhat comparable in
scope to systems developed by companies such as SRI
(Alshawi, 1992) and Xerox (the Xerox Linguistics Envi-
ronment, XLE, developed at PARC), which are not gener-
ally available. Although there are several constraint-based



grammar development systems for which source is freely
available, of which ALE (Carpenter and Penn, 1999) has
probably the widest distribution, the grammars distributed
with them are relatively small compared to the LinGO
ERG. The XTAG grammar (The XTAG Research Group,
1995) is of more comparable size to the LinGO ERG, but
does not include semantics and the XTAG parser is “not
for the casual user” according to the XTAG website. The
LinGO technology is perhaps more similar to the Alvey
Natural Language Tools (ANLT) (Briscoe et al., 1987),
which has been widely used in NLP. However a fee is
charged for the ANLT, the formalism is not as close to a
currently popular linguistic framework, and no generator is
available. Finally, a distinctive feature of the LinGO ef-
fort is the unusual degree of cross-center and international
collaboration (see the acknowledgments inx6.). In x3. we
will discuss various issues that arise when we attempt to fa-
cilitate collaborative development and common use of the
resources, but first we will give more details of their current
state.

2. The LinGO resources
2.1. The LKB system: efficient technology for

grammar development
The LKB system was originally developed at Cam-

bridge University as part of the EU ACQUILEX projects
as a way of representing and validating highly structured
lexical information (Copestake, 1992). At this point, LKB
stood for Lexical Knowledge Base, and the LKB system
was a tool for construction of such knowledge bases. As
such, efficiency of parsing large grammars was not a pri-
mary consideration. When we decided to utilize the LKB
system at CSLI as a more general tool for grammar devel-
opment, several core components were reimplemented and
efficiency greatly improved (Malouf et al., 2000; Oepen
and Carroll, 2000).

A primary consideration in our efficiency work has been
to avoid any techniques which require lengthy grammar
compilation. Reasonable efficiency is essential for gram-
mar development systems, since it must be possible to
quickly validate changes made to the grammar on extensive
test suites (see 3.1.). But it is crucial that the edit-test-debug
cycle be kept as short as possible, which implies that the
time required to load and reload a grammar must be short.
The ERG currently loads in about 20 seconds with a cached
lexicon, with about another 30 seconds being necessary if
the database used for the lexicon has to be constructed from
scratch.2 Some indication of parsing times can be gathered
from Table 1.

The functionality of the LKB system has also been ex-
tended in several ways since its use on ACQUILEX, most
notably:

1. semantic processing using MRS (Copestake et al.,
1999), seex3.3.

2. addition of an efficient tactical generator (Carroll
et al., 1999),

2The figures we give here, and in the rest of this paper, are for
Franz Allegro Common Lisp 5.0 (Linux) on a 450MHz Pentium
PC with 512 megabytes of memory.

3. integration with the [incr tsdb()] test-suite machinery,
discussed briefly in 3.1.

4. order independent default unification (Lascarides and
Copestake, 1999; Malouf, 1999)

In addition, the LKB system incorporates extensive visu-
alization tools and various debugging aids in an integrated
graphical user interface, which can be customized for users
with different levels of experience. A small number of user-
settable parameters allow for different styles of grammar.

2.2. The LinGO English grammar

The LinGO ERG was originally developed and still runs
on the PAGE system (Kiefer et al., 1999). The central
part of the grammar is a type hierarchy, which is used to
structure the lexicon and the lexical and grammar rules.
The grammar currently contains over 15,000 lines of code
(excluding the lexicon, the hand-built portion of which is
roughly 30,000 lines) and has involved a total of around
eleven person-years of effort. Table 1 gives some indica-
tion of coverage. We have included some sentences that the
grammar will not accept or generate, since the grammar is
intended for applications where precision is required. The
particular examples here are all taken from the Verbmobil
test corpus (see 2.3.).

The hand-built core lexicon is supplemented by en-
tries automatically constructed from COMLEX informa-
tion (Grishman et al., 1994). Because the ERG lexicon
is structured by means of a detailed type hierarchy, such a
mapping is reasonably easy to construct. However, one ma-
jor source of problems is that COMLEX does not provide
subcategorization information for adjectives and nouns that
is adequate for the ERG. We are currently tackling this with
a mixture of hand-coding and semi-automatic acquisition
techniques. The lack of an adequate source of multi-word
entries is also proving to be a serious bottleneck, which we
hope to address in future work.

2.3. Current applications of the LinGO technology
developed at CSLI

The first application of the LinGO ERG was in the
Verbmobil spoken language machine translation project
(Wahlster, 1997). CSLI has been responsible for build-
ing the English grammar for the deep-processing compo-
nent of Verbmobil, which utilizes a semantic transfer ap-
proach. The grammar therefore contains good coverage of
the constructions most frequently found in the Verbmobil
data which concerns meeting scheduling and travel reser-
vations: it can currently produce semantic representations
for about 83 per cent of the utterances in a corpus of tran-
scriptions of some 10,000 utterances, which vary in length
from one word to more than thirty words. The hand-built
lexicon of around 5000 words is somewhat tuned to this do-
main. The other aspect of the grammar which is partially
domain-specific are the weights which are associated with
rules and lexical entries in order to guide the parser so that
it can order possible analyses. In this application, some
utterances are ungrammatical because of restarts etc, or be-
cause of errors in speech recognition. These are dealt with
in Verbmobil by a component which attempts to reconstruct



Sentence Processing time (secs) Number of Number of
First parse All parses parses edges

Would either Monday or Tuesday morning 0.3 0.6 2 671
of the next week work?
How did you say your Wednesday was, the twenty ninth? 0.6 0.8 11 658
Tuesday, the only time I would have 2.7 4.0 78 2964
would be at three in the afternoon.
So if we can not make it on Thursday afternoon, 0.5 4.2 96 3464
we will have to, you know, look for something.
Now that we have finished our last meeting, we need 0.4 17.4 128 8469
to arrange another one within the next two weeks.
*So actually next the whole of next week is gone. N/A 0.2 0 123
*And it is already been pushed off more than two weeks. N/A 1.1 0 650
*How does Wednesday the twenty fourth after one o’clock? N/A 2.7 0 1222

Table 1: Examples of LinGO grammar coverage. Processing times are with the current internal version of the LKB system.

a valid semantic representation from the fragments that the
parser produces (Kasper et al., 1999).

Our second major application effort is to adapt the LKB
and the ERG for use in a speech prosthesis system, to be
used by people with disabilities to speed up their language
production so they can carry on more natural conversations
in a highly flexible manner. We are investigating an ap-
proach to generation which combines the grammar with
corpus-based word-frequency data and conversational tem-
plates. Applied to speech prostheses, it enables the produc-
tion of full sentences from minimal user input in a context-
sensitive way (Copestake, 1997). We expect that this ap-
proach can also be applied more generally for efficient pro-
duction of formulaic text like the structured reports used
widely in business and government. It may also have utility
in computer-aided language learning, both for people who
are not fully literate, and those for whom English is not
their first language. The main difference from the Verbmo-
bil project, as far as grammar development is concerned, is
that this system requires an open-ended lexicon.

2.4. Teaching

While the LinGO ERG aims for broad, precise cover-
age in realistic applications, the LKB platform is also being
used with smaller grammars more relevant for educational
purposes. Courses using the LKB have already been taught
for (undergraduate and graduate) students at Stanford, Ohio
State, North Carolina, SUNY Buffalo and Essex, and also
at the European Summer School for Logic, Linguistics and
Information (ESSLLI-98, ESSLLI-00). Undergraduate stu-
dents at CSLI3 have also implemented the grammar devel-
oped in an introductory syntax textbook (Sag and Wasow,
1999) in the LKB system, and we are distributing this with
the aim that it be used as a basis for hands-on exercises and
experimentation.

The requirements for a teaching system are in some
ways more stringent than those for research. Although ef-
ficiency is generally less important (since teaching gram-
mars tend to be small and to involve relatively little am-

3Chiefly Matt Kodama, Ryan Ginstrom, Christopher Callison-
Burch and Scott Guffey.

biguity), software reliability, debugging tools and ease of
use are more important, especially since beginning students
will typically be unsure of the formalism and are easily dis-
couraged if a system behaves in an unexpected or unintu-
itive manner. This means that detailed and extensive test-
ing is required on versions of the system which are used for
teaching. Primarily because of this, improvements in the in-
ternal version of the LKB are typically not reflected in the
public versions for some months, although we may move to
an approach where all releases are available, but some are
flagged as tested/major revisions suitable for general use.

3. Issues in collaborative development of
grammars

There has been a large amount of discussion recently
about the advantages of an open source model of software
development and the ways in which this is facilitated by
the increase in use of the Internet, so we will not repeat
any of those general points here. Instead we will concen-
trate on issues specific to the collaborative development of
grammars and the extent to which they can be genuinely
multi-purpose.

3.1. Evaluation technology

Evaluation methodology as it pertains to the LinGO re-
sources has been discussed at some length in previous pa-
pers (Oepen and Flickinger, 1998; Oepen and Callmeier,
2000), so here we just highlight a few points. Obviously a
grammar must be tested in a manner which is realistic for
any application for which it is being used. This generally
involves collecting a testbed of inputs (utterances for pars-
ing, semantic representations for conventional generation)
and checking that the grammar produces acceptable output
in a reasonable time. Although efficiency is partly the re-
sponsibility of the developer of the platform on which the
grammar is run, it is also partly the responsibility of the
grammar developer, since even the most efficient system
can be made unacceptably slow. Regression testing ensures
that coverage is not lost.

However, for development of a grammar that is intended
for use in multiple applications, it is crucial to ensure that



coverage is not unduly domain- or application- specific.
This means that the application-specific test suite has to
be supplemented by one which contains (hand-constructed)
examples which illustrate particular grammatical phenom-
ena. For instance, the test sentence shown below would in-
dicate whether the grammar could handle extraction from
prepositional phrases:

Which office does Jones sleep in?

The sentences are not supposed to be realistic but must
minimize ambiguity and use standardized vocabulary and
phrases in order to make the results as clearcut as possible.
This test suite should also contain negative examples, to
ensure that the grammar does not overgenerate. The CSLI
test suite (which is largely drawn from the HP test suite)
contains around 1350 sentences (about 400 of which are
ungrammatical). Again, this is used both as a target and for
regression testing.

The issue of evaluating the results of parsing a test suite
is complex, since hand-checking each result is too time-
consuming. We use derivation trees as one way of summa-
rizing the results of a parse which is useful for regression
checking on the grammar, and especially for ensuring that
revisions to the parser have not created bugs. The MRS
representation allows a flexible way of checking semantic
structures for equivalence: ensuring that the underspecified
semantics is well-formed by constructing a scoped repre-
sentation is also detects some grammar bugs.

Currently, the only way of checking generation in the
absence of an application which constructs input represen-
tations is to analyze a test sentence and then attempt to gen-
erate from the results. We are actively investigating more
satisfactory methods, but discussion of this leads into is-
sues of defining interfaces for generation, which we cannot
explore adequately in this paper.

3.2. Collaborative grammar coding

Any grammar development environment should provide
explicit support for collaborative development. At a very
basic level, the LKB facilitates code manipulation by al-
lowing the grammar source to be split into multiple files,
on the basis of functionality, for instance. We maintain
source files for grammars using the standard CVS source
control system, which allows multiple people to work on
the same file and automatically merges different versions if
the edits do not overlap. Although there is a possibility of
introducing errors in this way, we have found the process
works well if developers check in and update their source
reasonably frequently.

We have successfully taught many students how to use
the LKB system and develop small grammars, but the learn-
ing curve required to understand the LinGO ERG well
enough to collaborate on it is very steep. Several peo-
ple have contributed substantially to the LinGO grammar
(seex6.), but only four of them have been in a position to
do large-scale work on the core grammar, though several
more people have been involved in more peripheral activi-
ties, such as adding lexicon.

We believe that our experience is reasonably representa-

tive. 4 It is often suggested that the problem with grammar
engineering is that there is a lack of modularity, but it is
not clear to us that this is correct. In software engineering
generally, there are two conflicting goals: it is desirable to
divide a task into components with hidden internal struc-
ture which can be developed independently of each other,
but it is also desirable to avoid duplication of functional-
ity. Different programming languages emphasize different
paradigms: for instance, Modula-2 provided strong sup-
port for hiding data and functions but the object-oriented
programming language C++ emphasizes commonality in-
stead (Stroustrup, 1991). Information-hiding is often re-
ferred to as modularity in the software engineering litera-
ture: this is a much stronger sense than the idea of simply
dividing up code. Some paradigms are more appropriate
than others for specific application areas: e.g., Stroustrup
argues that object-oriented programming (OOP) is more
suited to graphics than to classical arithmetic.

In our experience with the LinGO ERG and previous
grammar design work, commonality completely eclipses
information-hiding in grammar design. While generaliza-
tion in software engineering is motivated by practical con-
siderations of avoiding errors and time-wasting due to re-
dundancy, in grammar engineering there is an additional
theoretical reason since a primary research aim in linguis-
tics is capturing generalizations. Information-hiding is al-
most the antithesis of this, since it inherently involves hav-
ing some parts of the representation which are only used
in specified subsystems of the grammar. Consider the dis-
covery that a feature which is used in the description of
long-distance dependencies correlates with a phenomenon
in morphology. This would be regarded as good news
by a grammar developer and not as a failure of modular-
ity, because it is a generalization that enhances the predic-
tive power of the system. Furthermore, information-hiding
modules are only useful in software development if they
can be defined in the initial design, but they are inher-
ently inflexible and therefore do not work well for more
exploratory programming.

Because we cannot isolate individual linguistic phe-
nomena, we cannot expect someone to work on an analysis
without some knowledge of the rest of the grammar. But
there are other notions of modularity. As with OOP, the in-
heritance hierarchy allows developers to work on expand-
ing leaves without affecting the more general nodes. Some
developers’ tasks primarily involve classification. For in-
stance, a lexicon can be extended by someone with lit-
tle knowledge of the grammar because they can copy the
classes allocated to words they know are similar. Simi-
larly, a relatively untrained developer can add morpholog-
ical rules, even though the morphology component can-
not be a module in the information-hiding sense, because
HPSG is a monostratal theory.

The LKB system has extensive tools for developing
inheritance hierarchies. Unlike any other feature struc-
ture based system, it incorporates a fully order-independent
version of default unification (Lascarides and Copestake,

4Although there is not all that much published work on gram-
mar development: (Butt et al., 1999) is an exception.



1999). Currently the main LinGO ERG does not use de-
faults but Malouf has developed a version that does (Mal-
ouf, 1999), which demonstrates that it is possible to con-
siderably simplify the type hierarchy. There is a trade-off
since the use of defaults means the formalism is more com-
plex and less like HPSG as it is standardly presented. How-
ever, we believe that overall defaults make the grammar
much easier to understand. In fact, extensive use is made of
the default formalism in recent theoretical work on HPSG
(Ginzburg and Sag, to appear).

Despite the many aids to grammar engineering that have
been developed, we think that to some extent it just has
to be accepted that it really is inherently difficult. Gram-
mar developers are attempting to construct a model which
mirrors (some aspects of) a real-world phenomenon which
is not at all well understood. Thus grammar development
is much more of a research enterprise than conventional
software engineering is. It necessarily involves frequent
redesign and recoding of large components of the gram-
mar (within the boundaries imposed by the initial linguistic
framework).

As a first step to being able to work on the LinGO ERG,
any potential grammar developer needs to have a good un-
derstanding of linguistics in general and HPSG in particu-
lar. This imposes a high initial barrier, especially because
the HPSG framework changes rapidly: knowledge of the
standard references (Pollard and Sag, 1987; Pollard and
Sag, 1994) is only of limited use. Furthermore, even though
the formalism implemented in the LKB system is relatively
close to the formalism assumed in most theoretical work on
HPSG, there is still a considerable element of design nec-
essary in order to actually get an analysis to work. How-
ever, the most time-consuming part of grammar develop-
ment is not implementing the well-worked out phenom-
ena described in existing work on HPSG, but extending the
analysis to deal with the constructions which are needed to
handle real text or speech. This involves considerable lin-
guistic research, before any attempt at coding can be made.
It is also necessary to ensure that the result can be integrated
with the rest of the framework, which may involve non-
trivial modification to the core component. The positive
side of this is that people who have sufficient understand-
ing of linguistics to be good grammar developers find the
research component interesting and motivating. Similarly,
this is a good reason to develop a grammar using a frame-
work that is relatively popular among linguists. In fact, to
the extent that the ERG is an embodiment of research on
HPSG, it is a desirable goal for students to gain detailed
understanding of a substantial portion of it, rather than be-
ing limited to a small module. Several linguistics papers
which have resulted from work on the LinGO ERG (Ben-
der and Flickinger, 1999; Bender and Flickinger, in press;
Smith, 1999).

3.3. MRS representation
The MRS representation is used in the LinGO ERG and,

in a simplified form, in several teaching grammars.5 MRS
is discussed in detail in (Copestake et al., 1999). Its most

5A similar underspecified representation for use with typed
feature structures known (a bit misleadingly) as Underspecified

salient feature from the current perspective is that it is a
flat representation which uses explicit pointers to encode
scope effects which are represented by recursive structures
in more conventional formal semantic representations. The
use of pointers, calledhandlesin MRS, gives us an easy
way of underspecifying quantifier scope. We have tried to
give an intuitive idea of this in Figure 1, although space
limitations preclude a detailed discussion. The LKB sys-
tem contains a separate module for MRS processing, which
is independent of the rest of the LKB and has also been
used with PAGE. This module allows extraction of MRS
structures from a feature structure representation, scoping,
comparison, display etc. It also forms part of the LKB gen-
erator which accepts MRS structures as input.

We believe that MRS is a particularly suitable seman-
tic representation for a general-purpose grammar because,
while it allows encoding of a full predicate logic representa-
tion with generalized quantifiers, it is trivial to ignore scope
representations and work with a subpart of the MRS which
is more like propositional logic. This is very useful for ma-
chine translation because it simplifies the specification of
the vast majority of transfer rules, while allowing for the
explicit representation of scope, if that should be necessary.
MRS thus offers the advantages of the forms of flat seman-
tics advocated in (Phillips, 1993) and (Trujillo, 1995) with-
out their loss of expressive power.

The way in which we use MRS in the ERG is designed
to be as uncommitted to specific semantic theories as pos-
sible, giving a very surface-oriented form of semantics. A
general-purpose grammar should encode enough informa-
tion in the semantics to ensure that an application never
needs to see the syntactic representation. In our case, the
interface to an application is defined purely on the level of
the MRS representation.6 In other respects, the semantic
representation should be as neutral as is consistent with the
demands of the syntax-semantics interface.

MRS allows other forms of underspecification besides
scopal relationships, since the MRS relations are in a type
hierarchy. A concrete use of this is that in MRS one can
specify a relation which is general between various tempo-
ral uses of prepositions, such ason and in as they occur
in on Saturday morning, in the morningetc. Preposition
choice here appears to be conventionalized, especially since
Saturday morningand the morningcould actually denote
the same thing.

One advantage of underspecification in general is that it
allows a more robust approach to generation. For instance,
the module which constructs the MRS representation need
not make a choice about the preposition in the case dis-
cussed above. This avoids the possibility it will make the

MRS (UMRS) was developed for a German grammar at IBM Hei-
delberg. UMRS is described in (Egg and Lebeth, 1995; Egg,
1998). (Abb et al., 1996) discuss the use of UMRS in semantic
transfer (also see (Copestake et al., 1995) for semantic transfer
using MRS).

6We actually relax this slightly in order to treat fragments of
sentences since we currently regard an atomic abbreviation of the
syntax of the phrase, such as NP, PP etc, as part of the interface.
In the future, we will also need to consider discourse information
and information structure more carefully.



every dog probably chased some white cat

Full notation:2
66664

TOPh1

LZT<

�
prpstn rel
HNL h1
SOAh21

�
;

2
4

every rel
HNL h3
BV x4
RESTRh5
BODY h6

3
5;
�

dog rel
HNL h8
INST x4

�
;

�
probably rel

HNL h9
ARGh10

�
;

2
664

chasev rel
HNL h12

EVENTe2
h

TENSEpast
MOOD indic

i
ARG1x4
ARG2x13

3
775;
2
4

somerel
HNL h14
BV x13
RESTRh15
BODY h16

3
5;
�

white rel
HNL h18
ARGx13

�
;

�
cat rel

HNL h18
INST x13

�
>

H-CONS< h5 qeq h8; h10 qeq h12; h15 qeq h18; h21 qeq h9>

3
77775

Unscoped form, abbreviated notation:
hh1; fh1: prpstn(h21); h3: every(x4; h5; h6); h8: dog(x4); h9: probably(h10); h12: chase(e2; x4; x13);
h14: some(x13; h15; h16); h18:white(x13); h18: cat(x13)g;
fh5 =q h8; h10 =q h12; h15 =q h18; h21 =q h9gi

Scoped forms:
prpstn(probably(every(x; dog(x); some(y;white(y) ^ cat(y); chase(x; y)))))
prpstn(every(x; dog(x); probably(some(y;white(y) ^ cat(y); chase(x; y)))))
prpstn(every(x; dog(x); some(y;white(y) ^ cat(y); probably(chase(x; y)))))
prpstn(probably(some(y;white(y) ^ cat(y); every(x; dog(x); chase(x; y)))))
prpstn(some(y;white(y) ^ cat(y); probably(every(x; dog(x); chase(x; y)))))
prpstn(some(y;white(y) ^ cat(y); every(x; dog(x); probably(chase(x; y)))))

Figure 1: Example of MRS representation produced by the ERG

‘wrong’ choice (i.e., one not licensed by the grammar). One
danger with this is that the input might be too underspeci-
fied, but the approach we are taking to this is to let corpus
data act as an oracle to guide a generator. Specifically, in
the context of the speech prosthesis project mentioned in
x2.3., the input to the generator may underspecify closed-
class words, such as determiners. Although the grammar
provides some constraints (e.g.muchmay not occur with
plural nouns), a totally underspecified determiner would
generally result in generation of far more strings than the
application could plausibly require. Frequency information
from corpora can be used to make a best guess in an ap-
plication such as this, where complete precision is not a
requirement.

We need to do more work to define appropriate general-
purpose interfaces to the semantics, especially for applica-
tions that use the grammar for generation. However, we
believe MRS will eventually be highly suitable as a repre-
sentation for a shared resource grammar.

4. Efficiency improvements via shared
resources

The LinGO ERG has been central in a collaborative ef-
fort to improve technology for processing HPSG (and sim-
ilar formalisms). Until recently, it has been argued that
high-level grammar formalisms are too slow for real-world
applications. Groups from the DFKI, Saarland University,
the University of Tokyo and CSLI have collaborated on im-
proving efficiency by using the LinGO grammar as a com-
mon reference point. All the sites used the [incr tsdb()]
system to measure various parameters in parsing with the
ERG on common test-suites. The LKB system was used
as a baseline to validate correctness. It was also used to
preprocess the type hierarchy and lexicon to avoid the ne-
cessity for each group to write a parser for the syntax used
in the ERG. Practically speaking, this is much faster than
attempting to get groups to agree on a common syntax for

the grammar definition files. Similarly, the other systems
have made use of various expanded forms of the grammar
that can be output by the LKB, enabling them to bypass
processing stages which are irrelevant for core parser com-
parison, such as expansion of the type hierarchy to form a
semi-lattice and morphological processing.

Some small changes to the ERG were made to allow this
comparison: for instance, there were a few places where the
LKB’s assumption that feature structures may not contain
cycles was used in order to rule out otherwise valid unifi-
cations. However, it was not difficult to remove these cases
and the ERG itself is now neutral with respect to cyclicity
assumptions in that it does not generate cyclic structures
(modulo bugs).

The combination of the LinGO ERG and the [incr
tsdb()] test-suite machinery has enabled much more de-
tailed cross-platform performance evaluation on realistic
grammars than has previously been possible. The result
has been a combining of processing techniques developed
by the various groups to mutual benefit. (Kiefer et al.,
1999) is a partial report on some of this work; (Flickinger
et al., 2000) contains detailed discussions by most of the
participants in this collaboration. The LKB now incorpo-
rates techniques that were adapted from other systems, es-
pecially PAGE and PET (Callmeier, 2000).

5. Other collaborations and future work
In addition to the work on processing efficiency and per-

formance profiling described above, the ERG and the LKB
also form the basis of well-established collaborations on ex-
traction of stochastic lexicalized tree grammars (Neumann,
1997) and the integration with discourse models and prag-
matics (Copestake and Lascarides, 1998). Emerging joint
projects include the adaptation of the ERG lexical type hi-
erarchy to large English and Japanese lexicons developed
for MT in collaboration with Francis Bond and other re-
searchers from NTT. We are actively investigating possible



uses of the LinGO resources with other CSLI industrial af-
filiate companies.

Both the LinGO grammar and the LKB continue to be
actively developed. Besides work described above, our cur-
rent and planned research is focused in the following areas:

� extending the lexicon through adaptation of existing
lexical resources and through acquisition from corpora

� using corpora as an additional information source in
language generation

� incorporating statistical data derived from corpora to
cope with the ambiguity inherent in wide-coverage
grammars

� building exploratory grammars for other languages
and investigating the extent to which grammars can
be shared

� representing dialect variation in both the lexicon and
the grammar

� developing discourse models which interact with the
grammar in particular to allow treatment of fragments

6. Acknowledgments
Development of the LKB system was originally sup-

ported by ACQUILEX projects BRA-3030 and 7315 under
the Esprit program (grant to Cambridge University). More
recent research has been supported by the National Sci-
ence Foundation under grant number IRI-9612682 (grant
to Stanford University). Development of the LinGO ERG
was supported by NSF IRI-9612682 and by German Fed-
eral Ministry of Education, Science, Research and Tech-
nology (BMBF) in the framework of the Verbmobil Project
under Grant FKZ:01iV401.

The main developers of the LKB system are Ann
Copestake, John Carroll (University of Sussex), Rob Mal-
ouf (University of Groningen) and Stephan Oepen (Saar-
land University). The distributed system also incorpo-
rates code written by Bernie Jones (while at Cambridge),
Dan Flickinger and John Bowler. Ted Briscoe and An-
tonio Sanfilippo had a great deal of influence on the de-
sign of the original system for ACQUILEX, Dan Flickinger
played a similar role for the new version. Ulrich Callmeier
(DFKI and Saarland University) has done extensive test-
ing and uncovered numerous bugs and infelicities. Victor
Poznanski (Sharp Laboratories of Europe) helped develop
the generation algorithm, Guido Minnen (Sussex) and Ste-
fan Thater (Saarland University) have investigated corpus-
derived constraints on generation.

The LinGO ERG was mainly developed by Dan
Flickinger, Rob Malouf, Emily Bender and Jeff Smith (San
Jose State University). Several Stanford students (Brady
Clark, Judith Tonhauser, Kathryn Campbell-Kibler, Mar-
tina Faller, Ash Asudeh, Susanne Riehemann) and visit-
ing students (Jesse Tseng, Edinburgh; Ken Bame, Ohio
State; Judith Eckle-Kohler, Stuttgart; Martine Smets, cur-
rently at Sussex) have also done detailed work, includ-
ing building the lexicon, developing test suites, isolat-
ing phenomena found in corpora and developing analy-
ses in the HPSG formalism. Ivan Sag, Tom Wasow and

Carl Pollard provided theoretical insights. Ana Quirino
Simoes (Bielefeld), Chris Callison-Burch, Aline Villavi-
cencio (Cambridge) and Judith Baur (Saarland University)
have developed other grammars which have led to improve-
ments in the LKB system and alternative analyses for the
ERG. See http://lingo.stanford.edu/members.html for a full
list of LinGO project affiliates.

Invaluable input has of course also been provided by
the individuals mentioned or cited in the text and by other
people too numerous to thank individually, including re-
searchers on the ACQUILEX and LinGO projects, at the
Copenhagen Business School, Saarland University, Univer-
sity of Essex, Edinburgh University, University of Cam-
bridge and Stanford University and students on a course
taught by Copestake, Flickinger and Oepen at ESSLLI-98.

7. References
Abb, Bernd, Bianka Buschbeck-Wolf, and Christel Tscher-

nitschek, 1996. Abstraction and underspecification in se-
mantic transfer. InProceedings of the Second Confer-
ence of the Association for Machine Translation in the
Americas (AMTA-96). Montreal.

Alshawi, Hiyan (ed.), 1992.The Core Language Engine.
Cambridge, MA: MIT Press.

Bender, Emily and Dan Flickinger, 1999. Peripheral con-
structions and core phenomena. In Andreas Kathol,
Jean-Pierre Koenig, and Gert Webelhuth (eds.),Lexical
and Constructional Aspects of Linguistic Explanation.
CSLI Publications, pages 199–214.

Bender, Emily and Dan Flickinger, in press. Diachronic
evidence for extended argument structure. In Gosse
Bouma, Erhard Hinrichs, Geert-Jan Kruijff, and Richard
Oehrle (eds.),Constraints and Resources in Natural Lan-
guage Syntax and Semantics. CSLI Publications.

Briscoe, Ted, Claire Grover, Bran Boguraev, and John Car-
roll, 1987. A formalism and environment for the devel-
opment of a large grammar of english. InProceedings
of the 10th International Joint Conference on Artificial
Intelligence (IJCAI-87). Milan, Italy.

Butt, Miriam, Tracy Holloway King, Mar´ıa-Eugenia Ni˜no,
and Frédérique Segond, 1999.A Grammar Writer’s
Cookbook. Stanford: CSLI Publications.

Callmeier, Ulrich, 2000. PET — A platform for experi-
mentation with efficient HPSG processing techniques. In
(Flickinger et al., 2000).

Carpenter, Bob, 1992.The Logic of Typed Feature Struc-
tures. Cambridge, UK: Cambridge University Press.

Carpenter, Bob and Gerald Penn, 1999. ALE: The
Attribute Logic Engine / user’s guide version 3.2.
University of Tübingen, <http://whorf.sfs.nphil.uni-
tuebingen.de/˜gpenn/ale/files/guide.tex>.

Carroll, John, Ann Copestake, Dan Flickinger, and Vic-
tor Poznanski, 1999. An efficient chart generator for
(semi-)lexicalist grammars. InProceedings of the 7th
European Workshop on Natural Language Generation
(EWNLG’99). Toulouse, France.

Copestake, Ann, 1992. The acquilex lkb: representation
issues in semi-automatic acquisition of large lexicons.
Proceedings of the 3rd Conference on Applied Natural
Language Processing, Trento, Italy:88–96.



Copestake, Ann, 1997. Augmented and alternative nlp
techniques for augmentative and alternative communica-
tion. In Proceedings of the ACL workshop on Natural
Language Processing for Communication Aids. Madrid.

Copestake, Ann, in press.Implementing typed feature
structure grammars. CSLI Publications, Stanford.

Copestake, Ann, Dan Flickinger, Rob Malouf, Susanne
Riehemann, and Ivan Sag, 1995. Translation using mini-
mal recursion semantics. InProceedings of the Sixth In-
ternational Conference on Theoretical and Methodolog-
ical Issues in Machine Translation (TMI-95). Leuven,
Belgium.

Copestake, Ann, Dan Flickinger, and Ivan Sag, 1999. Min-
imal recursion semantics: An introduction. Ms., CSLI,
Stanford University.

Copestake, Ann and Alex Lascarides, 1998. Resolving un-
derspecified values with discourse information. Paper
presented at the workshop on models of underspecifi-
cation and the representation of meaning, Bad Teinach,
Germany.

Egg, Marcus, 1998.Wh-questions in underspecified mini-
mal recursion semantics.Journal of Semantics, 15:1:37–
82.

Egg, Marcus and Kai Lebeth, 1995. Semantic underspeci-
fication and modifier attachment. Intergrative Ans¨atze in
der Computerlinguistik. Beitr¨age zur 5. Fachtagung f¨ur
Computerlinguistik der DGfS.

Flickinger, Daniel, Stephan Oepen, Hans Uszkoreit, and
Jun’ichi Tsujii (eds.), 2000.Journal of Natural Lan-
guage Engineering. Special Issue on Efficient Processing
with HPSG: Methods, Systems, Evaluation. Cambridge,
UK: Cambridge University Press. In preparation.

Ginzburg, Jonathan and Ivan A. Sag, to appear.English
Interrogative Constructions. CSLI Publications.

Grishman, Ralph, Catherine Macleod, and Adam Meyers,
1994. Comlex syntax: building a computational lexicon.
In Proceedings of International Conference on Compu-
tational Linguistics, COLING-94. Kyoto, Japan.

Kasper, Walter, Bernd Kiefer, Hans-Ulrich Krieger, C.J.
Rupp, and Karsten Worm, 1999. Charting the depths of
robust speech parsing. InProceedings of the 37th An-
nual Meeting of the Association for Computational Lin-
guistics (ACL-99). University of Maryland, USA.

Kiefer, Bernd, Hans-Ulrich Krieger, John Carroll, and
Robert Malouf, 1999. A bag of useful techniques for ef-
ficient and robust parsing. InProceedings of the 37th An-
nual Meeting of the Association for Computational Lin-
guistics. University of Maryland, USA.

Lascarides, Alex and Ann Copestake, 1999. Default rep-
resentation in constraint-based frameworks.Computa-
tional Linguistics, 25:55–106.

Malouf, Robert, 1999. Practical default inheritance in
constraint-based grammars. Paper presented at Ohio
State University.

Malouf, Robert, John Carroll, and Ann Copestake, 2000.
Efficient feature structure operations without compila-
tion. In (Flickinger et al., 2000).

Neumann, G¨unter, 1997. Applying explanation-based
learning to control and speeding-up natural language

generation. InProceedings of the 35th Annual Meeting
of the Association for Computational Linguistics and 8th
Conference of the European Chapter of the Association
for Computational Linguistics (ACL-EACL 97). Madrid.

Oepen, Stephan and Ulrich Callmeier, 2000. Measure for
measure: Parser cross-fertilization. Towards increased
component comparability and exchange. InProceedings
of the 6th International Workshop on Parsing Technolo-
gies. Trento, Italy.

Oepen, Stephan and John Carroll, 2000. Ambiguity pack-
ing in constraint-based parsing. Practical results. InPro-
ceedings of the 1st Conference of the North American
Chapter of the ACL. Seattle, WA.

Oepen, Stephan and Daniel P. Flickinger, 1998. Towards
systematic grammar profiling. Test suite technology ten
years after.Journal of Computer Speech and Language:
Special Issue on Evaluation, 12 (4):411–437.

Oepen, Stephan, Klaus Netter, and Judith Klein, 1997.
TSNLP — Test Suites for Natural Language Processing.
In John Nerbonne (ed.),Linguistic Databases. Stanford:
CSLI Lecture Notes 77, CSLI Publications, pages 13–36.

Phillips, J.D., 1993. Generation of text from logical formu-
lae. Machine Translation, 8 (4):209–235.

Pollard, Carl and Ivan A. Sag, 1987.An information-based
approach to syntax and semantics: Volume 1 fundamen-
tals. Stanford: CSLI Lecture Notes 13, CSLI Publica-
tions.

Pollard, Carl and Ivan A. Sag, 1994.Head-Driven Phrase
Structure Grammar. Chicago and Stanford: University
of Chicago Press and CSLI Publications.

Sag, Ivan A. and Thomas Wasow, 1999.Syntactic Theory:
A Formal Introduction. CSLI Publications, Stanford.

Sanfilippo, Antonio, 1993. Lkb encoding of lexical knowl-
edge from machine-readable dictionaries. In Edward J.
Briscoe, Ann Copestake, and Valeria de Paiva (eds.),In-
heritance, defaults and the lexicon. Cambridge Univer-
sity Press, Cambridge, England.

Shieber, Stuart, 1986.An introduction to unification-based
approaches to grammar. CSLI Lecture Notes 4, Stan-
ford.

Smith, Jeffrey D., 1999. English number names in HPSG.
In Gert Webelhuth, Andreas Kathol, and Jean-Pierre
Koenig (eds.),Lexical and Constructional Aspects of
Linguistic Explanation. Stanford: CSLI Publications.

Stroustrup, Bjarne, 1991.The C++ programming lan-
guage — second edition. Addison Wesley.

The XTAG Research Group, 1995. A lexicalized tree ad-
joining grammar for English. Technical report, IRCS
Report 95-03, University of Pennsylvania.

Trujillo, Arturo, 1995. Lexicalist machine translation of
spatial prepositions. PhD dissertation, University of
Cambridge.

Wahlster, Wolfgang, 1997. VerbMobil — Erkennung,
Analyse, Transfer, Generierung und Synthese von
Spontansprache. VerbMobil Report 198, Deutsches
Forschungszentrum f¨ur Künstliche Intelligenz GmbH,
Saarbr¨ucken, Germany.


