Is there any logic in logical forms?

Ann Copestake

Computer Laboratory, University of Cambridge

April 16, 2015

Acknowledgments: DELPH-IN, FLoSS, WeSearch, Aurelie Herbelot, Alex Lascarides, Dan Flickinger, Emily Bender, Francis Bond, Stephan Oepen, Eva von Redecker

Compositional semantics for grammar engineering

■ Criteria for semantics for broad-coverage grammars:
■ Meaning representation (logical form?) for every utterance.

- Capture all and only information from syntax and morphology.
- Underspecify when that information is absent.
- No hidden syntactic assumptions.

■ Other desiderata: logically-sound; cross-linguistically adequate; realization and parsing; incremental processing; shallow parsing; support applications (robust inference); statistical ranking; lexical semantics ...

Computational compositional semantics

Computational compositional semantics

Computational compositional semantics

Outline

1 Semantics in DELPH-IN

- Engineering
- MRS and variants

2 Lexical semantics

- Lexicalized compositionality

3 Shopping for philosophy?

Outline.

1 Semantics in DELPH-IN
Engineering
MRS and variants

2 Lexical semantics
Lexicalized compositionality

3 Shopping for philosophy?

Broad-coverage processing and computational semantics

■ Several high-to-medium-throughput broad-coverage grammars with semantic output: e.g., C\&C/Boxer, XLE, DELPH-IN.

■ Effective statistical techniques for syntactic parse ranking.
■ DELPH-IN (www. delph-in.net)
■ in this talk: Minimal Recursion Semantics (MRS: Copestake et al, 2005); English Resource Grammar (Flickinger 2000); English Resource Semantics (ERS: e.g., Bender et al, 2015/in about two hours ...)

- tools (Oepen, Packard, Callmeier, Carroll, Copestake ...)

■ Other resource grammars: Jacy (Japanese), GG (German), SRG (Spanish), also varying size grammars for Norwegian, Portuguese, Korean, Chinese ...
■ Grammar Matrix: Bender et al (2002).

A real example

Very few of the Chinese construction companies consulted were even remotely interested in entering into such an arrangement with a local partner.

A real example

Very few of the Chinese construction companies consulted were even remotely interested in entering into such an arrangement with a local partner.

modified quantifier

A real example

Very few of the Chinese construction companies consulted were even remotely interested in entering into such an arrangement with a local partner.

partitive

A real example

Very few of the Chinese construction companies consulted were even remotely interested in entering into such an arrangement with a local partner.
compound nominal

A real example

Very few of the Chinese construction companies consulted were even remotely interested in entering into such an arrangement with a local partner.

reduced relative

A real example

Very few of the Chinese construction companies consulted were even remotely interested in entering into such an arrangement with a local partner.

modified modifier

A real example

Very few of the Chinese construction companies consulted were even remotely interested in entering into such an arrangement with a local partner.
predeterminer

[LOGON (2014-08-09) - ERG (1214)]

h_{4} :part_of $\langle 0: 8\rangle\left(x_{5}\left\{\right.\right.$ PERS 3, NUM p/\}, $x_{6}\{$ PERS 3, NUM p/ $\left.\}\right)$,
$h_{7}:$ udef_q $\langle 0: 8\rangle\left(x_{5}, h_{8}, h_{9}\right), h_{4}:$ very_x_deg $\langle 0: 4\rangle\left(e_{10}, e_{11}\{\right.$ SF prop $\left.\}\right)$,
$h_{4}:$ little-few_a $\langle 5: 8\rangle\left(e_{11}, x_{5}\right), h_{12}$:_the_q $\langle 12: 15\rangle\left(x_{6}, h_{14}, h_{13}\right)$,
h_{15} :_chinese_a_1 $\langle 16: 23\rangle\left(e_{16}, x_{6}\right), h_{15}:$ compound $\langle 24: 46\rangle\left(e_{18}, x_{6}, x_{17}\right)$,
$h_{19}:$ udef_q $\langle 24: 36\rangle\left(x_{17}, h_{20}, h_{21}\right), h_{22}$:_construction_n_of $\langle 24: 36\rangle\left(x_{17}, i_{23}\right)$,
h_{15} :_company_n_of $\langle 37: 46\rangle\left(x_{6}, i_{24}\right), \bar{h}_{15}$:_consult_v_1 $\langle 47: 56\rangle\left(e_{25}, i_{26}, x_{6}\right)$,
h_{2} :_even_x_deg $\langle 62: 66\rangle\left(e_{28}, e_{29}\right), h_{2}$:_remotely_x_deg $\langle 67: 75\rangle\left(e_{29}, e_{3}\right)$,
h_{2} : interested_a_in $\langle 76: 86\rangle\left(e_{3}, x_{5}, x_{30}\{\right.$ PERS 3 , NUM $s g$, GEND $\left.n\}\right)$,
h_{31} :udef_q $\langle 90: 145\rangle\left(x_{30}, h_{32}, h_{33}\right), h_{34}:$ nominalization $\langle 90: 145\rangle\left(x_{30}, h_{35}\right)$,
h_{35} :_enter_v_1 $\langle 90: 98\rangle$ (
$e_{36}\{$ SF prop, TENSE untensed, MOOD indicative, PROG + , PERF - $\}, i_{37}$),
h_{35} :_into_p $\langle 99: 103\rangle\left(e_{38}, e_{36}, x_{39}\{\right.$ PERS 3, NUM $\left.s g\}\right)$,
h_{40} :_such+a_q $\langle 104: 111\rangle\left(x_{39}, h_{42}, h_{41}\right)$,
h_{43} :_arrangement_n_1 $\langle 112: 123\rangle\left(x_{39}\right)$,
h_{35} :_with_p $\langle 124: 128\rangle\left(e_{44}, e_{36}, x_{45}\{\right.$ PERS 3 , NUM $s g$, IND +$\left.\}\right)$,
$h_{46}: _a _q\langle 129: 130\rangle\left(x_{45}, h_{48}, h_{47}\right), h_{49}:$ local_a_1 $\langle 131: 136\rangle\left(e_{50}, x_{45}\right)$,
$h_{49}:$ partner_n_1 $\langle 137: 145\rangle\left(x_{45}\right)$
$h_{48}={ }_{q} I_{49}, h_{42}={ }_{q} I_{43}, h_{32}={ }_{q} I_{34}, h_{20}={ }_{q} I_{22}, h_{14}=q I_{15}$,
$h_{8}=q l_{4}, h_{1}=q l_{2}$

ERG: some practicalities

■ ERG: hand-written, domain-independent grammar.
■ Maxent parse selection models based on manual choice of analyses (Redwoods Treebanks).
■ ERG has about $80 \pm 10 \%$ coverage on edited text (various strategies for remainder).

- Open Source.

■ Downloadable corpora:
■ Manually selected/checked (Redwoods Treebank): DeepBank (PTB/WSJ data), WeScience etc
■ Automatically processed: Wikiwoods.

- Various output formats for syntax and semantics.

■ Used on many projects since 1990s, including large-scale end-user applications.

Quantifier scope ambiguity

Some dog chased every cat
$\exists x\left[\operatorname{big}^{\prime}(x) \wedge \operatorname{dog}^{\prime}(x) \wedge \forall y\left[\operatorname{cat}^{\prime}(y) \Longrightarrow \operatorname{chase}^{\prime}(x, y)\right]\right]$ $\forall y\left[\operatorname{cat}^{\prime}(y) \Longrightarrow \exists x\left[\operatorname{big}^{\prime}(x) \wedge \operatorname{dog}^{\prime}(x) \wedge \operatorname{chase}^{\prime}(x, y)\right]\right]$

Using generalized quantifiers and event variables:
some $(x, \operatorname{big}(x) \wedge \operatorname{dog}(x)$, every $(y, \operatorname{cat}(y)$, chase $(e, x, y)))$ $\exists x\left[\operatorname{big}^{\prime}(x) \wedge \operatorname{dog}^{\prime}(x) \wedge \forall y\left[\operatorname{cat}^{\prime}(y) \Longrightarrow \operatorname{chase}^{\prime}(x, y)\right]\right]$
every $(y, \operatorname{cat}(y), \operatorname{some}(x, \operatorname{big}(x) \wedge \operatorname{dog}(x)$, chase $(e, x, y)))$ $\forall y\left[\operatorname{cat}^{\prime}(y) \Longrightarrow \exists x\left[\operatorname{big}^{\prime}(x) \wedge \operatorname{dog}^{\prime}(x) \wedge \operatorname{chase}^{\prime}(x, y)\right]\right]$

Quantifier scope ambiguity

Some dog chased every cat

$\exists x\left[\operatorname{big}^{\prime}(x) \wedge \operatorname{dog}^{\prime}(x) \wedge \forall y\left[\operatorname{cat}^{\prime}(y) \Longrightarrow \operatorname{chase}^{\prime}(x, y)\right]\right]$
$\forall y\left[\operatorname{cat}^{\prime}(y) \Longrightarrow \exists x\left[\operatorname{big}^{\prime}(x) \wedge \operatorname{dog}^{\prime}(x) \wedge \operatorname{chase}^{\prime}(x, y)\right]\right]$
Using generalized quantifiers and event variables:
$\operatorname{some}(x, \operatorname{big}(x) \wedge \operatorname{dog}(x)$, every $(y, \operatorname{cat}(y)$, chase $(e, x, y)))$ $\exists x\left[\operatorname{big}^{\prime}(x) \wedge \operatorname{dog}^{\prime}(x) \wedge \forall y\left[\operatorname{cat}^{\prime}(y) \Longrightarrow \operatorname{chase}^{\prime}(x, y)\right]\right]$
every $(\mathrm{y}, \operatorname{cat}(\mathrm{y})$, some $(\mathrm{x}, \operatorname{big}(\mathrm{x}) \wedge \operatorname{dog}(\mathrm{x})$, chase(e,x,y))) $\forall y\left[\operatorname{cat}^{\prime}(y) \Longrightarrow \exists x\left[\operatorname{big}^{\prime}(x) \wedge \operatorname{dog}^{\prime}(x) \wedge \operatorname{chase}^{\prime}(x, y)\right]\right]$

MRS underspecifies scope ambiguity

Some big dog chased every cat

I1:some(x,h1,h2), h1 qeq I2, l2:big(e', x), I2:dog(x), 14:chase(e,x,y), I5:every(y,h3,h4), h3 qeq I6, I6:cat(y)

Elementary predications (EPs) and scope constraints (qeqs)
some $\left(x, \operatorname{big}\left(e^{\prime}, x\right) \wedge \operatorname{dog}(x)\right.$, every $(y, \operatorname{cat}(y)$, chase $\left.(e, x, y))\right)$
every $\left(y, \operatorname{cat}(y), \operatorname{some}\left(x, \operatorname{big}\left(e^{\prime}, x\right) \wedge \operatorname{dog}(x)\right.\right.$, chase $\left.\left.(e, x, y)\right)\right)$
h1=|2, h3=16, h2=14, h4=11

MRS underspecifies scope ambiguity

Some big dog chased every cat
I1:some(x,h1,h2), h1 qeq I2, l2:big(e', x), I2:dog(x), 14:chase(e,x,y), I5:every(y,h3,h4), h3 qeq I6, I6:cat(y)

Elementary predications (EPs) and scope constraints (qeqs)
some $\left(x, \operatorname{big}\left(e^{\prime}, x\right) \wedge \operatorname{dog}(x)\right.$, every $(y, \operatorname{cat}(y)$, chase $\left.(e, x, y))\right)$ h1=l2, h3=I6, h2=|5, h4=I4
every $\left(y, \operatorname{cat}(y), \operatorname{some}\left(x, \operatorname{big}\left(e^{\prime}, x\right) \wedge \operatorname{dog}(x)\right.\right.$, chase $\left.\left.(e, x, y)\right)\right)$

MRS underspecifies scope ambiguity

Some big dog chased every cat
I1:some(x,h1,h2), h1 qeq I2, l2:big(e',x), l2:dog(x), 14:chase(e,x,y), I5:every(y,h3,h4), h3 qeq I6, I6:cat(y)

Elementary predications (EPs) and scope constraints (qeqs)
some $\left(x, \operatorname{big}\left(e^{\prime}, x\right) \wedge \operatorname{dog}(x)\right.$, every $(y, \operatorname{cat}(y)$, chase(e, $\left.\left.x, y)\right)\right)$ h1=l2, h3=l6, h2=I5, h4=I4
every $\left(y, \operatorname{cat}(y), \operatorname{some}\left(x, \operatorname{big}\left(e^{\prime}, x\right) \wedge \operatorname{dog}(x)\right.\right.$, chase $\left.\left.(e, x, y)\right)\right)$

MRS underspecifies scope ambiguity

Some big dog chased every cat
I1:some(x,h1,h2), h1 qeq I2, I2:big(e', x), I2:dog(x),
14:chase(e,x,y), I5:every(y,h3,h4), h3 qeq I6, I6:cat(y)

Elementary predications (EPs) and scope constraints (qeqs)
some $\left(x, \operatorname{big}\left(e^{\prime}, x\right) \wedge \operatorname{dog}(x)\right.$, every $(y, \operatorname{cat}(y)$, chase $\left.(e, x, y))\right)$ h1=l2, h3=I6, h2=I5, h4=I4
every $\left(y, \operatorname{cat}(y), \operatorname{some}\left(x, \operatorname{big}\left(e^{\prime}, x\right) \wedge \operatorname{dog}(x), \operatorname{chase}(e, x, y)\right)\right)$

MRS underspecifies scope ambiguity

Some big dog chased every cat
I1:some(x,h1,h2), h1 qeq I2, l2:big(e', x), I2:dog(x), 14:chase(e,x,y), I5:every(y,h3,h4), h3 qeq I6, I6:cat(y)

Elementary predications (EPs) and scope constraints (qeqs)
some $\left(x, \operatorname{big}\left(e^{\prime}, x\right) \wedge \operatorname{dog}(x)\right.$, every $(y, \operatorname{cat}(y)$, chase $\left.(e, x, y))\right)$ h1=l2, h3=I6, h2=|5, h4=I4
every $\left(y, \operatorname{cat}(y), \operatorname{some}\left(x, \operatorname{big}\left(e^{\prime}, x\right) \wedge \operatorname{dog}(x)\right.\right.$, chase $\left.\left.(e, x, y)\right)\right)$ h1=l2, h3=16

MRS underspecifies scope ambiguity

Some big dog chased every cat
I1:some(x,h1,h2), h1 qeq I2, I2:big(e',x), l2:dog(x), 14:chase(e,x,y), I5:every(y,h3,h4), h3 qeq I6, I6:cat(y)

Elementary predications (EPs) and scope constraints (qeqs)
some $\left(x, \operatorname{big}\left(e^{\prime}, x\right) \wedge \operatorname{dog}(x)\right.$, every $(y, \operatorname{cat}(y)$, chase $\left.(e, x, y))\right)$ h1=l2, h3=I6, h2=I5, h4=I4
every (y, cat(y), some $\left(x, \operatorname{big}\left(e^{\prime}, x\right) \wedge \operatorname{dog}(x)\right.$, chase $\left.\left.(e, x, y)\right)\right)$ h1=l2, h3=I6, h2=I4, h4=I1

MRS underspecifies scope ambiguity

Some big dog chased every cat

I1:some(x,h1,h2), h1 qeq I2, I2:big(e',x), I2:dog(x), 14:chase(e,x,y), I5:every(y,h3,h4), h3 qeq I6, I6:cat(y)

Elementary predications (EPs) and scope constraints (qeqs)
some $\left(x, \operatorname{big}\left(e^{\prime}, x\right) \wedge \operatorname{dog}(x)\right.$, every $(y, \operatorname{cat}(y)$, chase $\left.(e, x, y))\right)$ h1=l2, h3=I6, h2=|5, h4=I4
every $\left(y, \operatorname{cat}(y), \operatorname{some}\left(x, \operatorname{big}\left(e^{\prime}, x\right) \wedge \operatorname{dog}(x)\right.\right.$, chase $\left.\left.(e, x, y)\right)\right)$ h1=l2, h3=I6, h2=I4, h4=I1

MRS vs (deep) syntax

MRS more abstract, less language-dependent:
e.g., Bender (2008) on Wambaya.

1. Construction semantics: e.g., relative clauses:
every cat who slept snored
15:every(y,h3,h4), h3 qeq I6, I6:cat(y), I6:sleep(e,y), I7:snore(e1,y)
2. Construction semantics: additional predications:

tree house

I1:house(x), I3:udef_q(y,h2,h3), h2 qeq I2, I2:tree(y), I2:cmpd(e,x,y)
house in a tree
I1:house(x), I : $\mathrm{a}(\mathrm{y}, \mathrm{h} 2, \mathrm{~h} 3$), h2 qeq I2, I2:tree(y), I2:in(e, x, y)
3. Words with no direct semantic contribution:
relative clause who, infinitival to, expletive it etc
4. Multiword expressions: verb-particle, idioms etc.

MRS vs predicate calculus

Copestake et al (2005) formally describe MRS as a meta-language for predicate calculus object language. But, as used in ERS:

- NOT a fragment: produce some sort of MRS for everything including: generics, liar sentences, circular square, greetings ...
- contradictions, speakers with different word uses ...
- interpretation of 'logical' vocabulary isn't determined: or (exclusive or not?), all (domain of quantification, really universal?) and so on.
- linguistic entities: unique variable for each noun, verb, adjective, adverb and preposition.
None of this is new, but rarely explicit ...

Dr Who, The Green Death, episode 5 (1973)

BOSS (Bimorphic Organisational Systems Supervisor), a megalomaniac supercomputer.

The Doctor asks BOSS:
If I were to tell you that the next thing I say would be true, but the last thing I said was a lie, would you believe me?

Linguistic entities

- Assume separate step of equating linguistic entities with world entities to get reference.
■ It is possible to 'ground' entities in microworlds or limited domains (e.g., NLIDs, playing Civilization etc).
■ But broad coverage?
the Chinese construction companies consulted
■ Note: lexical chains require lexical information:
Der Bus ist das Zuhause der Band.
Es ist sehr gemütlich.
OR
Er fährt nicht sehr schnell.

The 'logical' fragment of ERS

■ Cannot produce model-theoretic interpretation for all ERS.
■ But: reasonable semantics for a (substantial) fragment.

- Methodology:
- Think of MRS as annotation, not replacement.
- Use intuitions about truth conditions to develop ERS for the 'logical' fragment.
- Assume similar structures outside fragment.

■ Note: there are some structures which don't simply follow from syntax: e.g., generalized quantifiers, 'small clauses'.
■ But: lexical semantics?
■ Even without model-theoretic semantics, we want compositionality (motivation from learnability, substitution).

Elms and beeches

http://www.geograph.org.uk/photo/1512369

Elms and beeches

http://www.geograph.org.uk/photo/2297984 http://www.geograph.org.uk/photo/1512369

RMRS: Split off most of EP's arguments: relate to predicate via anchor

MRS:
11:some(x,h1,h2), h1 qeq l2,
12: $\operatorname{dog}(x)$,
13:chase(e, x,y),
14:every(y,h3,h4), h3 qeq I65,
15:cat(y)
RMRS:
I1:a1:some, BV(a1,x), RSTR(a1,h1), BODY(a1,h2), h1 qeq l2,
12:a2:dog(x),
13:a3:chase(e), ARG1 (a3,x), ARG2(a3,y),
14:a4:every, BV(a4,y), RSTR(a4,h3), BODY(a4,h4), h3 qeq I5,
15:a5:cat(y)
Allows omission or underspecification of arguments.

RMRS: Split off most of EP's arguments: relate to predicate via anchor

MRS:
11:some(x,h1,h2), h1 qeq l2,
12: $\operatorname{dog}(x)$,
13 :chase(e,x,y),
14:every(y,h3,h4), h3 qeq I65,
15:cat(y)
RMRS:
I1:a1:some, BV(a1,x), RSTR(a1,h1), BODY(a1,h2), h1 qeq l2,
12:a2: $\operatorname{dog}(x)$,
13:a3:chase(e), ARG1(a3,x), ARG2(a3,y),
14:a4:every, $\operatorname{BV}(\mathbf{a 4}, \mathrm{y}), \operatorname{RSTR}(\mathbf{a 4}, \mathrm{h} 3), \operatorname{BODY}(\mathbf{a 4} 44)$, h3 qeq 15 ,
15:a5:cat(y)
Allows omission or underspecification of arguments.

DMRS

Some big angry dog barks loudly
some $(x 4, \operatorname{big}(x 4) \wedge \operatorname{angry}(x 4) \wedge \operatorname{dog}(x 4), \operatorname{bark}(e 2, x 4) \wedge \operatorname{loud}(e 2))$
I1:a1:_some_q, BV(a1,x4), RSTR(a1,h5), BODY(a1,h6),
12:a2:_big_a(e8), ARG1(a2,x4),
12:a3:_angry_a(e9), ARG1(a3,x4),
12:a4:_dog_n(x4), 14:a5:_bark_v(e2), ARG1(a5,x4),
14:a6:_loud_a(e10), ARG1(a6,e2), h5 = ${ }_{q}$ I2
_some_q _big_a _angry_a _dog_n _bark_v* _loud_a

Dependency MRS (DMRS)

■ predicates with simple inventory of links, no variables;
■ all information is retained so inter-convertible with MRS (without external information source);

- structure is minimal (no redundancy);

■ applicable to different grammars, robust to changes in grammars;
■ much easier to work with for most applications.
■ However: Simplified DMRS ...
No attempt at direct logical interpretation for DMRS: but this is perhaps less misleading than MRS variables.

Outline.

1 Semantics in DELPH-IN

Engineering

MRS and variants

2 Lexical semantics
Lexicalized compositionality

3 Shopping for philosophy?

Compositional semantics and distributional semantics

- Standard approach in formal semantics is meaning postulates but:

■ formalization? (e.g., non-monotonicity)

- don't capture many aspects of lexical semantics
- Fregean assumptions of shared intensions, shared word senses are implausible.
■ distributional semantics and compositional semantics:
- composing distributions
- supporting inference
- Here: the formal link: based on ideas from 'Lexicalised compositionality' (with Aurélie Herbelot); note also Katrin Erk $(2013,2015)$ and others.

Linking distributional semantics and Montague Grammar

■ Take a microworld and a corresponding model (in MG sense).
■ Use MG fragment to generate all sentences which are true in that world (restricting logical connectives to \wedge).

- Produce MRS representations for those sentences.

■ Generate distributions from MRS analyses (ideal distributions).

- Ideal distributions give hyponymy etc, and also link to models (via MRS linguistic entities).

MG sentences

Microworld S_{1} : A jiggling black sphere (a) and a rotating white cube (b)

Possible utterances (restrict lexemes to a, sphere, cube, object, rotate, jiggle, black, white):
a sphere jiggles
a black sphere jiggles
a cube rotates
a white cube rotates
an object jiggles
a black object jiggles
an object rotates
a white object rotates
and a black black sphere jiggles etc

LC context sets

Logical forms in simplified MRS:
a sphere jiggles: $a(x 1)$, sphere ${ }^{\circ}(x 1)$, jiggle ${ }^{\circ}(e 1, x 1)$ a black sphere jiggles:
$a(x 2)$, black $^{\circ}(x 2)$, sphere $^{\circ}(x 2)$, jiggle $^{\circ}(e 2, x 2)$
Context set for sphere (paired with S_{1}):

$$
\begin{aligned}
& \text { sphere }^{\circ}=\left\{\quad<[x 1]\left[a(x 1) \text {, jiggle }{ }^{\circ}(e 1, x 1)\right], S_{1}>\right.\text {, } \\
& \left.<[x 2]\left[a(x 2), \text { black }^{\circ}(x 2), \text { jiggle }^{\circ}(e 2, x 2)\right], S_{1}>\right\}
\end{aligned}
$$

Context set: pair of distributional argument tuple and distributional LF.

Ideal distribution for S_{1}

```
sphere }\mp@subsup{}{}{\circ}={\quad<[x1][a(x1), jiggle * (e1, x1)], S S >,
    < [x2][a(x2), black}\mp@subsup{}{}{\circ}(x2),\mp@subsup{\mathrm{ jiggle }}{}{\circ}(e2,x2)], S S >}
cube }\mp@subsup{}{}{\circ}={\quad<[x3][a(x3),\mp@subsup{\mathrm{ rotate }}{}{\circ}(e3,x3)],\mp@subsup{S}{1}{}>
    < [x4][a(x4), white }\mp@subsup{}{}{\circ}(x4),\mp@subsup{\mathrm{ rotate }}{}{\circ}(e4,x4)],\mp@subsup{S}{1}{}>
object }\mp@subsup{}{}{\circ}={\quad<[x5][a(x5),\mp@subsup{\mathrm{ jiggle }}{}{\circ}(e5,x5)],\mp@subsup{S}{1}{}>
    < [x6][a(x6), black}\mp@subsup{}{}{\circ}(x6),\mp@subsup{\mathrm{ jiggle }}{}{\circ}(e6,x6)], S S >,
    < [x7][a(x7), rotate }\mp@subsup{}{}{\circ}(e7,x7)],\mp@subsup{S}{1}{}>
    < [x8][a(x8), white }\mp@subsup{}{}{\circ}(x8),\mp@subsup{\mathrm{ rotate }}{}{\circ}(e8,x8)],\mp@subsup{S}{1}{}>
jiggle }\mp@subsup{}{}{\circ}={\quad<[e1,x1][a(x1),\mp@subsup{\mathrm{ sphere }}{}{\circ}(x1)],\mp@subsup{S}{1}{}>
    < [e2, x2][a(x2), black}\mp@subsup{}{}{\circ}(x2),\mathrm{ sphere }\mp@subsup{}{}{\circ}(x2)],\mp@subsup{S}{1}{}>
    < [e5, x5][a(x5), object }\mp@subsup{}{}{\circ}(x5)],\mp@subsup{S}{1}{}>
    < [e6, x6][a(x6), black}\mp@subsup{}{}{\circ}(x6),\mp@subsup{\mathrm{ object }}{}{\circ}(x6)],\mp@subsup{S}{1}{}>
```


Ideal distribution for S_{1}, continued

$$
\begin{aligned}
& \text { rotate }{ }^{\circ}=\left\{\quad<[e 3, x 3]\left[a(x 3), \text { cube }^{\circ}(x 3)\right], S_{1}>,\right. \\
& <[e 4, x 4]\left[a(x 4), \text { white }^{\circ}(x 4), \text { cube }^{\circ}(x 4)\right], S_{1}>, \\
& <[e 7, x 7]\left[a(x 7), \text { object }^{\circ}(x 7)\right], S_{1}>, \\
& \left.<[e 8, x 8]\left[a(x 8), \text { white }^{\circ}(x 8), \text { object }{ }^{\circ}(x 8)\right], S_{1}>\right\} \\
& \text { black }^{\circ}=\left\{\quad<[x 2]\left[a(x 2), \text { sphere }^{\circ}(x 2), \text { jiggle }^{\circ}(e 2, x 2)\right], S_{1}>,\right. \\
& \left.<[x 5]\left[a(x 5), \text { object }^{\circ}(x 5) \text {, jiggle }{ }^{\circ}(e 5, x 5)\right], S_{1}>\right\} \\
& \text { white }{ }^{\circ}=\left\{\quad<[x 4]\left[a(x 4), \text { cube }^{\circ}(x 4), \text { rotate }^{\circ}(e 4, x 4)\right], S_{1}>,\right. \\
& \left.<[x 8]\left[a(x 8), \text { object }^{\circ}(x 8), \text { rotate }^{\circ}(e 8, x 8)\right], S_{1}>\right\}
\end{aligned}
$$

Context sets as vectors

	jiggle $^{\circ}(\mathrm{e}, \mathrm{x})$	rotate $^{\circ}(\mathrm{e}, \mathrm{x})$	sphere $^{\circ}(\mathrm{x})$	cube $^{\circ}(\mathrm{x})$	object $^{\circ}(\mathrm{x})$
sphere $^{\circ}$	1	0	0	0	0
cube $^{\circ}$	0	1	0	0	0
object $^{\circ}$	1	1	0	0	0
black $^{\circ}$	1	0	1	0	1
white $^{\circ}$	0	1	0	1	1

■ Hyponomy etc: direct from distribution.
■ One way of generalizing over the context sets.
■ RMRS semantic representation allows more possibilities for fine-grained decomposition.

Relationship to standard notion of extension

For a predicate P , the distributional arguments of P° correspond to P^{\prime}, assuming real world equalities.

$$
\begin{aligned}
\text { sphere }^{\circ}=\{ & <[x 1]\left[a(x 1), \text { jiggle }^{\circ}(e 1, x 1)\right], S_{1}>, \\
& \left.<[x 2]\left[a(x 2), \text { black }^{\circ}(x 2), \text { jiggle }^{\circ}(e 2, x 2)\right], S_{1}>\right\}
\end{aligned}
$$

distributional arguments $x 1, x 2=_{r w} a($ where $=r w$ stands for real world equality):

$$
\begin{aligned}
\text { object }^{\circ}=\{ & <[x 5]\left[a(x 5), \text {, } \text { iiggle }^{\circ}(e 5, x 5)\right], S_{1}>, \\
& <[x 6]\left[a(x 6), \text { black }^{\circ}(x 6), \text { jiggle }{ }^{\circ}(e 6, x 6)\right], S_{1}>, \\
& <[x 7]\left[a(x 7), \text { rotate }^{\circ}(e 7, x 7)\right], S_{1}>, \\
& \left.<[x 8]\left[a(x 8), \text { white }^{\circ}(x 8), \text { rotate }^{\circ}(e 8, x 8)\right], S_{1}>\right\}
\end{aligned}
$$

distributional arguments $x 5, x 6={ }_{r w} a, x 7, x 8=_{r w} b$

Ideal distribution properties

■ Requires some notion of entity in distribution which is mappable into MG entities.
■ Lexical similarity, hyponymy, (denotational) synonymy in terms of context sets.

■ Word 'senses' as subspaces of context sets.
■ Given context sets, learner can associate lexemes with real world entities on plausible assumptions about perceptual similarity.
■ Ideal distribution is unrealistic, but we hypothesize it can be approximated (partially) from actual distributions.

Distributional semantics and modality

■ Multiple microworlds (possible worlds): cubes and spheres rotating and jiggling. Add spherical and cubical.
■ Distribution for each world (as before), vectors summed, normalized by number of distributions for that word.

	jiggle $^{\circ}(\mathrm{e}, \mathrm{x})$	rotate $^{\circ}(\mathrm{e}, \mathrm{x})$	spherical $^{\circ}(\mathrm{x})$	cubical $^{\circ}(\mathrm{x})$
sphere $^{\circ}$	0.5	0.5	1	0
cube $^{\circ}$	0.5	0.5	0	1
object $^{\circ}$	0.5	0.5	0.5	0.5

Distributional semantics and modality

■ Multiple microworlds (possible worlds): cubes and spheres rotating and jiggling. Add spherical and cubical.
■ Distribution for each world (as before), vectors summed, normalized by number of distributions for that word.

	jiggle $^{\circ}(\mathrm{e}, \mathrm{x})$	rotate $^{\circ}(\mathrm{e}, \mathrm{x})$	spherical $^{\circ}(\mathrm{x})$	cubical $^{\circ}(\mathrm{x})$
sphere $^{\circ}$	0.5	0.5	1	0
cube $^{\circ}$	0.5	0.5	0	1
object $^{\circ}$	0.5	0.5	0.5	0.5

■ object has possible properties which include everything possible for sphere, cube etc but very few necessary properties.

Actual distributions

■ People don't say everything ...
■ What they say isn't a random sample of an ideal distribution.
■ e.g., basic level categories vs words like object or thing. Although: "We need to make more things; we need to design more things; we need to sell more things."
■ Actual distributions can be augmented to get closer to ideal distributions: e.g., via generics such as cubes are objects.
■ Herbelot (2015) shows how to construct distributions with individuals.

Ideal distributions and philosophical approaches

■ Alternative sources of ideal distributions, depending on underlying theoretical approaches.
■ However, the ideal distributions end up being the same, if the same sentences are true/valid in a microworld.
■ Copestake and Herbelot (2012) consider a speaker-dependent ideal distribution.
■ Note the use of MRS as a way of splitting up sentences: i.e., decompositionality, not as a model itself.

Outline.

1 Semantics in DELPH-IN Engineering MRS and variants

2 Lexical semantics Lexicalized compositionality

3 Shopping for philosophy?

Alternative philosophical accounts?

■ Fregean tradition has problems if we assume we want a meaning representation for every utterance.
■ Also has problems as a psycholinguistically plausible account (e.g., generics learned earlier than quantifiers).

- CL can use explicit models for interfaces to databases etc, but no obvious counterpart in broad-coverage systems.
■ Rare to see full MG (intensional contexts etc), and only done for smallish fragments.
■ Meaning as use (late Wittgenstein): explicit in some early Computational Linguistics (Masterman/CLRU).
- But late Wittgenstein much more about what we can't do than what we can ...

One alternative: Brandom's version of Inferentialism

■ Brandom (1994, 2000): non-Platonist, non-representationalist philosophical approach.
■ cf 'meaning as use' but prioritizes 'giving and asking for reasons'.
■ 'good inference' as prior to truth (cf early Frege).
■ Logical inferences are a subset of material inferences.
Pittsburgh is to the west of Philadelphia
Philadelphia is to the east of Pittsburgh
■ Top-down: propositions decomposable but not built from atomic meanings (cf Frege's Context Principle).
■ Emphasis on pragmatics.

Inferentialism for computational linguists?

■ Methodology of using human judgements (RTE etc) fits better with Brandom's 'commitment' to propositions than model-theoretic account: no theoretical problem with differing judgements.
■ Not much in Brandom about differences in lexical semantics between speakers, but not obviously inconsistent.

■ Lexical semantics: material inferences without further justification (e.g., 'east' and 'west').
■ Explicitly logical vocabulary has important role: no need for us to abandon the stuff that works.

- MRS is a representation but use for decomposition/substitution consistent with inferentialism.

Shopping for philosophy?

■ Not at all helpful for immediate grammar engineering!
■ Philosophers and linguists taking us seriously (or not) ...
■ Less contingent explanations for why we DON'T do things: e.g., intensional contexts.

- The point isn't whether or not Brandom (or others) are right, but what it leads us to investigate.
e.g., use of language in more varied social contexts.

■ Computational linguistics as empirical investigation of approaches to language semantics.

Computational compositional semantics

Some conclusions

- Computational compositional semantics is not bad/baby Montague Grammar: it has a coherent rationale.
- 'logical' fragment of ERS has interpretation analogous to MG fragment: it also guides ERS outside that fragment.
■ MRS compositionality principle can be justified in terms of substitution, learnability or good engineering as well as formal semantics.
- Idealization of distributional semantics compatible with model theory.
■ Inferentialism arguably better fit than MG for most CL practice.
- Maybe a computational approach is a way of making the philosophical debates more grounded?

Is there any logic in logical forms?

Is there any logic in logical forms? some, sometimes ...

STOP!

MRS composition: she chases some dog

dog $[14, x] \mid 4: \operatorname{dog}(x)$
some $[18, \mathrm{x} 1]\left\{[19, \mathrm{x} 1]_{\mathrm{n}}\right\}$ I3:some(x1, h1, h2), h1 qeq 19 some dog opn(Det, N)
$[18, x]$ I3:some($x, h 1, h 2$), I4:dog(x), h1 qeq I4

14: $\operatorname{dog}(x)$, h1 qeq I4
she [$10, \mathrm{y}$] I0:pron(y)
[|2,e] I2:pron(y), I2:chase(e,y,x), I3:some(x,h1,h2), I4:dog(x),

MRS composition: she chases some dog

dog $[14, \mathbf{x}] 14: \operatorname{dog}(x)$
some $[\mid 8, \mathrm{x} 1]\left\{[19, \mathrm{x} 1]_{n}\right\} \mid 3:$ some($\left.\mathrm{x} 1, \mathrm{~h} 1, \mathrm{~h} 2\right)$, h1 qeq 19 some dog opn(Det, N)
$[\mid 8, \mathrm{x}] \mathrm{I} 3: \operatorname{some}(\mathrm{x}, \mathrm{h} 1, \mathrm{~h} 2), \mathrm{I} 4: \operatorname{dog}(\mathrm{x})$, h1 qeq I 4

14:dog(x), h1 qeq 14
she $[10, y]$ I0:pron(y)
she chases some dog op subj $(V P, N P)$
[12,e] I2:pron(y), I2:chase(e,y,x), I3:some(x,h1,h2), I4:dog(x),

MRS composition: she chases some dog

$\operatorname{dog}[14, \mathrm{x}] \mid 4: \operatorname{dog}(\mathrm{x})$
some $[18, \mathrm{x} 1]\{[\mid 9, \mathbf{x} 1] \mathrm{n}\} \mid 3:$ some(x1, h1, h2), h1 qeq 19 slot some dog opn(Det, N)
$[\mid 8, \mathrm{x}] \mathrm{I} 3: \operatorname{some}(\mathrm{x}, \mathrm{h} 1, \mathrm{~h} 2), \mathrm{I} 4: \operatorname{dog}(\mathrm{x})$, h1 qeq I 4

she [$10, y$] IO:pron(y)

[I2,e] I2:pron(y), I2:chase(e,y,x), I3:some(x,h1,h2), I4:dog(x),

MRS composition: she chases some dog

dog $[14, x] \mid 4: \operatorname{dog}(x)$
some $[18, \mathrm{x} 1]\left\{[19, \mathrm{x} 1]_{\mathrm{n}}\right\}$ I3:some(x1, h1, h2), h1 qeq 19 some dog opn(Det, N) hook fills slot, $x 1=x$, I9=14 $[18, x]$ I3:some($x, h 1, h 2$), I4:dog(x), h1 qeq I4

MRS composition: she chases some dog

$\operatorname{dog}[14, \mathrm{x}] \mid 4: \operatorname{dog}(\mathrm{x})$
some $[\mid 8, \mathrm{x} 1]\{[19, \mathrm{x} 1] \mathrm{n}\} \mid 3:$ some(x1, h1, h2), h1 qeq 19 some dog opn(Det, N)
$[18, \mathrm{x}] 13: \operatorname{some}(\mathrm{x}, \mathrm{h} 1, \mathrm{~h} 2), \mathrm{I4}: \operatorname{dog}(\mathrm{x})$, h1 qeq I 4
chases $[12, e]\left\{[12, x 2]_{\text {subj }},[12, x 3]_{\text {obj }}\right\}$, I2:chase $(e, x 2, x 3)$
chases some dog $\quad 0 p_{o b j}(\mathrm{~V}, \mathrm{NP})$
$[12, \mathrm{e}]\left\{[12, \mathrm{x} 12]_{\text {subj }}\right\}$, l2:chase $(\mathrm{e}, \mathrm{x} 2, \mathrm{x})$, I3:some ($\mathrm{x}, \mathrm{h} 1, \mathrm{~h} 2$),
14:dog(x), h1 qeq I4
she $[10, y] 10: p r o n(y)$
she chases some dog $o p_{\text {subj }}($ VP, NP)
[12,e] I2:pron(y), I2:chase(e,y,x), I3:some(x,h1,h2), 14:dog(x), h1 qeq 14

Composition, schematically

Accumulate predications, combine hook variables with argument slot, variables not in hook or slot are inaccessible.

Semantics via incremental annotation (RMRS)

Most cats noisily chased a large dog
most_DAT cat_NN2 noisily_RR chase_VVD a_AT1 large_JJ dog_NN1

11:a1:most_q
12:a2:cat_n(x2)
13:a3:noisy(e3)
14:a4:chase(e4)
15:a5:a(x5)
16:a6:large(e6)
17:a7:dog(x7)

Semantics via incremental annotation (RMRS)

Most cats noisily chased a large dog
most_DAT cat_NN2 noisily_RR chase_VVD a_AT1 large_JJ dog_NN1

11:a1:most_q	$a 1: B V(x 2)$
12:a2:cat_n(x2)	
13:a3:noisy(e3)	
14:a4:chase(e4)	
15:a5:a(x5)	$x 5=x 7$
16:a6:large(e6)	a6:ARG1(x7) $16=17$
17:a7:dog(x7)	

Semantics via incremental annotation (RMRS)

Most cats noisily chased a large dog
most_DAT cat_NN2 noisily_RR chase_VVD a_AT1 large_JJ dog_NN1

11:a1:most_q	$a 1:$ BV(x2)
12:a2:cat_n(x2)	
I3:a3:noisy(e3)	I3=14 e3=e4
14:a4:chase(e4)	a4:ARG1(x2) a4:ARG2(x5)
15:a5:a(x5)	x5=x7
I6:a6:large(e6)	a6:ARG1(x7) $16=17$
17:a7:dog(x7)	

Semantics via incremental annotation (RMRS)

Most cats noisily chased a large dog
most_DAT cat_NN2 noisily_RR chase_VVD a_AT1 large_JJ dog_NN1

11:a1:most_q	a1:BV(x2) a1:RSTR(h1) h1 qeq I2
I2:a2:cat_n(x2)	
13:a3:noisy(e3)	I3=14 e3=e4
14:a4:chase(e4)	a4:ARG1(x2) a4:ARG2(x5)
15:a5:a(x5)	x5=x7 a5:RSTR(h5) h5 qeq I6
16:a6:large(e6)	a6:ARG1(x7) I6=I7
17:a7:dog(x7)	

Semantics via incremental annotation (RMRS)

Most cats noisily chased a large dog
most_DAT cat_NN2 noisily_RR chase_VVD a_AT1 large_JJ dog_NN1

I1:a1:most_q	a1:BV(x2) a1:RSTR(h1) h1 qeq l2	a1:BODY(I5)
I2:a2:cat_n(x2)		
13:a3:noisy(e3)	I3=14 e3=e4	
14:a4:chase(e4)	a4:ARG1(x2) a4:ARG2(x5)	
15:a5:a(x5)	x5=x7 a5:RSTR(h5) h5 qeq l6	a1:BODY(I3)
16:a6:large(e6)	a6:ARG1(x7) I6=17	
17:a7:dog(x7)		

Semantics via incremental annotation (RMRS)

Most cats noisily chased a large dog
most_DAT cat_NN2 noisily_RR chase_VVD a_AT1 large_JJ dog_NN1

I1:a1:most_q	a1:BV(x2) a1:RSTR(h1) h1 qeq I2	a1:BODY(I3)
I2:a2:cat_n(x2)		
13:a3:noisy(e3)	I3=14 e3=e4	
14:a4:chase(e4)	a4:ARG1(x2) a4:ARG2(x5)	
15:a5:a(x5)	x5=x7 a5:RSTR(h5) h5 qeq I6	a1:BODY(I1)
16:a6:large(e6)	a6:ARG1(x7) I6=17	
17:a7:dog(x7)		

DMRS

I1:a1:_some_q, BV(a1,x4), RSTR(a1,h5), BODY(a1,h6),
h5 qeq l2,
12:a2:_big_a(e8), ARG1 (a2,x4),
12:a3:_angry_a(e9), ARG1(a3,x4),
12:a4:_dog_n(x4),
14:a5:_bark_v(e2), ARG1 (a5,x4),
14:a6:_loud_a(e10), ARG1(a6,e2)

DMRS

11:a1:_some_q, BV(a1,x4), RSTR(a1,h5), BODY(a1,h6), h5 qeq l2,
12:a2:_big_a(e8), ARG1(a2,x4),
12:a3:_angry_a(e9), ARG1(a3,x4),
12:a4:_dog_n(x4),
14:a5:_bark_v(e2), ARG1(a5,x4),
14:a6:_loud_a(e10), ARG1(a6,e2)

Characteristic variables

11:a1:_some_q, BV(a1,x4), RSTR(a1,h5), BODY(a1,h6), h5 qeq l2,
12:a2:_big_a(e8), ARG1(a2,x4),
12:a3:_angry_a(e9), ARG1 (a3, x4),
12:a4:_dog_n(x4),
14:a5:_bark_v(e2), ARG1(a5,x4),
14:a6:_Ioud_a(e10), ARG1(a6,e2)

RMRS: EPs may have a distinguished argument.
Characteristic variable property: the distinguished argument of
an RMRS EP (arg0) is unique to it.
Introduced into DELPH-IN grammars for grammar-internal

Characteristic variables

11:a1:_some_q, BV(a1,x4), RSTR(a1,h5), BODY(a1,h6),
h5 qeq l2,
12:a2:_big_a(e8), ARG1(a2,x4),
12:a3:_angry_a(e9), ARG1 (a3, x4),
12:a4:_dog_n(x4),
14:a5:_bark_v(e2), ARG1(a5,x4),
14:a6:_loud_a(e10), ARG1 (a6,e2)
_some_q(x4,_big_a $(e 8, x 4) \wedge$ _angry_a $(e 9, x 4) \wedge$ _dog_n $(x 4)$, _bark_v(e2,x4) ^_loud_a(e10,e2))

RMRS: EPs may have a distinguished argument.
Characteristic variable property: the distinguished argument of
an RMRS EP (arg0) is unique to it.
Introduced into DELPH-IN grammars for grammar-internal

Characteristic variables

```
I1:a1:_some_q, BV(a1, x4), RSTR(a1,h5), BODY(a1,h6),
h5 qeq l2,
12:a2:_big_a(e8), ARG1(a2,x4),
12:a3:_angry_a(e9), ARG1 (a3, x4),
12:a4:_dog_n(x4),
14:a5:_bark_v(e2), ARG1(a5,x4),
14:a6:_loud_a(e10), ARG1 (a6,e2)
```



```
                                    _bark_v(e2,x4) ^_loud_a(e10,e2))
```

RMRS: EPs may have a distinguished argument.
Characteristic variable property: the distinguished argument of an RMRS EP (arg0) is unique to it. Introduced into DELPH-IN grammars for grammar-internal reasons.

Back to DMRS

■ looks more like syntax
■ no variables: nodes instead of 'linguistic entities’
■ perhaps more room for fudging/flexibility:
■ ERS for former president: former (e, x), $\operatorname{president}^{\prime}(x, y)$

- DMRS could be read as less committed?

